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SKEW-PRODUCT FOR GROUP-VALUED EDGE

LABELLINGS OF BRATTELI DIAGRAMS

A. El Kacimi and R. Parthasarathy

Abstract
We associate a Cantor dynamical system to a non-properly or-
dered Bratteli diagram. Group valued edge labellings λ of a Brat-
teli diagram B give rise to a skew-product Bratteli diagram B(λ)
on which the group acts. The quotient by the group action of the
associated dynamics can be a nontrivial extension of the dynamics
of B. We exhibit a Bratteli diagram for this quotient and con-
struct a morphism to B with unique path lifting property. This is
shown to be an isomorphism for the dynamics if a property “loops
lifting to loops” is satisfied by B(λ) → B.

Introduction

In this article we associate (Subsection 1.10) a Cantor dynamical sys-
tem to a non-properly ordered Bratteli diagram. In other words, we
are able to define dynamics without the assumption of unique maximal
path and unique minimal path. If one had a Bratteli diagram with,
say 2 max paths and 2 min paths, one can, of course, define the usual
Vershik transformation on the path space, except the two max paths.
The issue of whether this map extends continuously seems a very subtle
issue. Generically, one should expect that it does not. But it is easy to
get examples where it does: just begin with a Cantor minimal system
and choose K-R partitions where the tops shrink to two points. Natu-
rally our model is not the infinite path space, but it reduces to it in the
properly ordered case.

Since Bratteli diagrams with group actions rarely have unique maxi-
mal and minimal paths, until now there was no dynamics associated to
them. Since this is no more a hurdle, in Subsection 2.1 we construct
skew-product dynamical systems associated to finite group valued edge
labellings. Our main result Theorem 2.11 has two parts. The first part
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gives a sufficient condition: when a certain condition “loops lifting to
loops” (see 2.9) is satisfied for the labelling the quotient by G of our
skew-product dynamical system is the original system. In the second
part of Theorem 2.11 we describe what happens when the “loops lift-
ing to loops” property does not hold; we show that these skew-products
also arise from an edge labelling enjoying the property “loops lifting to
loops” of another Bratteli diagram which admits a morphism into the
original Bratteli diagram with a certain “unique path lifting” property.
This is achieved by employing a certain “tripling” construction (see Re-
mark 2.14). Our attention has been drawn by the referee to the notion
of “collaring” introduced by J. E. Anderson and I. F. Putnam [AP] in
the context of tilings, which, as observed by the referee, is seemingly a
procedure akin to what we refer to here as “tripling”. We heartily thank
the referee for this observation. However, our results here are different
from [AP] as well as [M] below.

Matui [M] studied “skew-product dynamical systems”, even though
he did not consider edge labellings. We were inspired to consider edge
labellings in the context of Bratteli diagrams by studying the above-
mentioned article of Matui and also the article [KP] of Kumjian and
Pask who introduced skew-product C∗-algebras associated to group val-
ued edge labellings of graphs. The obvious diagrams which arise in pur-
suing our curiosity are seldom properly ordered and this was our first
stumbling block which we had to overcome. We remark at the outset
that the skew-products which Matui associates to cocycles arise as our
skew-products for particular edge labellings. For Matui, going modulo
the group action on the skew-product system always produces the orig-
inal dynamical system. The quotient by G of our skew-product systems
would in general be nontrivial extensions of the original dynamical sys-
tem. Even for an odometer system our skew-product associated to edge
labellings arises from a cocycle for Matui only when the group is severely
restricted. (See Example 2.10.2). We are further thankful to the referee
for many valuable remarks. He/She also informed us about a paper by
K. Medynets [Me].

We briefly recall some basic concepts and definitions which are fun-
damental in the theory of Cantor dynamical systems.

1. Preliminaries

A topological dynamical system is a pair (X, ϕ) where X is a compact
metric space and ϕ is a homeomorphism in X . We say that ϕ is minimal
if for any x ∈ X , the ϕ-orbit of x := {ϕn(x) | n ∈ Z} is dense in X .
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We say that (X, ϕ) is a Cantor dynamical system if X is a Cantor set,
i.e. X is totally disconnected without isolated points. (X, ϕ) is a Cantor
minimal dynamical system if, in addition, ϕ is minimal. Some of the
basic concepts of the theory are recalled below, mostly from the more
detailed sources [DHS] and [HPS].

1.1. Bratteli diagram. A Bratteli diagram is an infinite directed
graph (V, E), where V is the vertex set and E is the edge set. Both V
and E are partitioned into non-empty disjoint finite sets

V = V0 ∪ V1 ∪ V2 · · · and E = E1 ∪ E2 ∪ · · · .

There are two maps r, s : E → V the range and source maps. The
following properties hold:

(i) V0 = {v0} consists of a single point, referred to as the “top vertex”
of the Bratteli diagram.

(ii) r(En) ⊆ Vn, s(En) ⊆ Vn−1, n = 1, 2, . . . . Also s−1(v) 6= φ,
∀ v ∈ V and r−1(v) 6= φ for all v ∈ V1, V2, . . . .

Maps between Bratteli diagrams are assumed to preserve gradings and
intertwine the range and source maps. If v ∈ Vn and w ∈ Vm, where m >
n, then a path from v to w is a sequence of edges (en+1, . . . , em) such that
s(en+1) = v, r(em) = w and s(ej+1) = r(ej). Infinite paths from v0 ∈ V0

are defined similarly. The Bratteli diagram is called simple if for any n =
0, 1, 2, . . . there exists m > n such that every vertex of Vn can be joined
to every vertex of Vm by a path.

1.2. Order. An ordered Bratteli diagram (V, E,≥) is a Bratteli dia-
gram (V, E) together with a linear order on r−1(v), ∀ v ∈ V − {v0} =
V1∪V2∪V3 · · · . We say that an edge e ∈ En is a maximal edge (resp. min-
imal edge) if e is maximal (resp. minimal) with respect to the linear order
in r−1(r(e)).

Given v ∈ Vn, it is easy to see that there exists a unique path
(e1, e2, . . . , en) from v0 to v such that each ei is maximal (resp. mini-
mal).

Note that if m > n, then for any w ∈ Vm, the set of paths starting
from Vn and ending at w obtains an induced (lexicographic) linear order:

(en+1, en+2, . . . , em) > (fn+1, fn+2, . . . , fm)

if for some i with n + 1 ≤ i ≤ m, ej = fj for 1 < j ≤ m and ei > fi.
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1.3. Proper order. A properly ordered Bratteli diagram is a simple
ordered Bratteli diagram (V, E ≥) which possesses a unique infinite
path xmax = (e1, e2, . . . ) such that each ei is a maximal edge and a
unique infinite path xmin = (f1, f2, . . . ) such that each fi is a minimal
edge.

Given a properly ordered Bratteli diagram B = (V, E,≥) we denote
by XB its infinite path space. So

XB = {(e1, e2, . . . ) | ei ∈ Ei, r(ei) = s(ei+1), i = 1, 2, . . . }.

For an initial segment (e1, e2, . . . , en) we define the cylinder sets

U(e1, e2, . . . , en) = {(f1, f2, . . . ) ∈ XB | fi = ei, 1 ≤ i ≤ n}.

By taking cylinder sets to be a basis for open sets XB becomes a topolog-
ical space. We exclude trivial cases (where XB is finite, or has isolated
points). Thus, XB is a Cantor set. XB is a metric space, where for two
paths x, y whose initial segments to level m agree but not to level m+1,
d(x, y) = 1/m + 1.

1.4. Vershik map. If x = (e1, e2, . . . , en, . . . ) ∈ XB and if at least
one ei is not maximal define

VB(x) = y = (f1, f2, . . . , fj, ej+1, ej+2, . . . ) ∈ XB

where e1, e2, . . . , ej−1 are maximal, ej is not maximal and has fj as
successor in the linearly ordered set r−1(r(ej)) and (f1, f2, . . . , fj−1) is
the minimal path from v0 to s(fj). Extend the above VB to all of XB by
setting VB(xmax) = xmin. Then (XB, VB) is a Cantor minimal dynamical
system. VB is called a Vershik map.

Next, we describe the construction of a dynamical system associated
to a non-properly ordered Bratteli diagram. The Bratteli diagram need
not be simple. To motivate this construction, it is perhaps worthwhile
to begin by indicating how it works in the case of an ordered Bratteli
diagram associated to a nested sequence of Kakutani-Rohlin partitions
of a Cantor dynamical system (X, T ).

1.5. K-R partition. A Kakutani-Rohlin partition of the Cantor mini-
mal system (X, T ) is a clopen partition P of the kind

P = {T jZk | k ∈ A and 0 ≤ j < hk}

where A is a finite set and hk is a positive integer. The kth tower Sk

of P is {T jZk | 0 ≤ j < hk}; its floors are T jZk, (0 ≤ j < hk). The base
of P is the set Z =

⋃
k∈A Zk.
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Let {Pn}, (n ∈ N) be a sequence of Kakutani-Rohlin partitions

Pn = {T jZn,k | k ∈ An, and 0 ≤ j < hn,k},

with P0 = {X} and with base Zn =
⋃

k∈An
Zn,k. We say that this

sequence is nested if, for each n,

(i) Zn+1 ⊆ Zn.
(ii) Pn+1 refines the partition Pn.

For the Bratteli-Vershik system (XB, VB) of Subsections 1.3–1.4, one
obtains a Kakutani-Rohlin partition Pn for each n by taking the sets in
the partition to be the cylinder sets U(e1, e2, . . . , en) of Subsection 1.3
and taking as the base of the partition the union

⋃
U(e1, e2, . . . , en) over

minimal paths (i.e., each ei is a minimal edge). This is a nested sequence.

1.6. To any nested sequence {Pn}, (n ∈ N) of Kakutani-Rohlin parti-
tions we associate an ordered Bratteli diagram B = (V, E,≥) as follows
(see [DHS, Section 2.3]): the |An| towers in Pn are in 1-1 correspon-
dence with Vn, the set of vertices at level n. Let vn,k ∈ Vn corre-
spond to the tower Sn,k = {T jZn,k | 0 ≤ j < hn,k} in Pn. We refer
to T jZn,k, 0 ≤ j < hn,k as floors of the tower Sn,k and to hn,k as
the height of the tower. We will exclude nested sequences of K-R par-
titions where the infimum (over k for fixed n) of the height hn,k does
not go to infinity with n. Let us view the tower Sn,k against the par-
tition Pn−1 = {T jZn−1,k | k ∈ An−1, and 0 ≤ j < hn−1,k}. As the
floors of Sn,k rise from level j = 0 to level j = hn,k − 1, Sn,k will
start traversing a tower Sn−1,i1 from the bottom to the top floor, then
another tower Sn−1,i2 from the bottom to the top floor, then another
tower Sn−1,i3 likewise and so on till a final segment of Sn,k traverses
a tower Sn−1,im

from the bottom to the top. Note that in this fi-
nal step the top floor T jZn,k for j = hn,k − 1 of Sn,k reaches the
top floor T qZn−1,im

for q = hn−1,im
− 1 of Sn−1,im

as a consequence
of the assumption Zn ⊂ Zn−1 and the fact that T−1 (union of bot-
tom floors) = union of top floors. Bearing in mind this order in which
Sn,k traverses Sn−1,i1 ,Sn−1,i2 , . . . ,Sn−1,im

we associate m edges, ordered
as e1,k < e2,k < · · · < em,k and we set the range and source maps for
edges by r(ej,k) = vn,k and s(ej,k) = vn−1,ij

. Note that m depends
on the index k ∈ An (and that by convention the indexing sets An are
disjoint). En is the disjoint union over k ∈ An of the edges having range
in Vn.

1.7. For x ∈ X , we define xn ∈ PZ
n , n ∈ N as follows: xn = (xn,i)i∈Z,

where xn,i ∈ Pn is the unique floor in Pn to which T i(x) belongs. If m >
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n, let jm,n : Pm → Pn be the unique map defined by jm,n(F ) = F ′

if F ⊆ F ′. (By abuse of notation, we use the same symbol F to denote
a point of the finite set Pm and also to denote the subset of X , in the
partition Pn, which F represents.) An important property of the map

X −→
∏

n

(PZ

n), x 7−→ (x1, x2, . . . ), xn = (xn,i)i∈Z,

defined above is the following:

1.8. If F and TF are two successive floors of a Pn-tower and if xn,i = F
then xn,i+1 = TF . If xn,i is the top floor of a Pn-tower, then xn,i+1 is
the bottom floor of a Pn-tower. More importantly, given integers K
and n, there exist m > n and a single tower Sm,k of level m such that
the finite sequence (xn,i)−K≤i≤K is an interval segment contained in

{jm,n(T ℓ(Zm,k)) | 0 ≤ ℓ < hm,k}.

This is a consequence of the assumption that the infimum of the heights
of level-n towers goes to infinity. It is true that xn,i = jm,n(xm,i), but the
sequence (xm,i)−K≤i≤K need not be an interval segment of {T ℓ(Zm,k) |
0 ≤ ℓ < hm,k}.

The foregoing observations in the case of an ordered Bratteli diagram
associated to a nested sequence of Kakutani-Rohlin partitions gives us
the hint to define a dynamical system (XB, TB) of a non properly ordered
Bratteli diagram B = (V, E,≥) as follows:

1.9. ̟n-tower. For each n define ̟n = the set of paths from V0 to Vn.
There is an obvious truncation map jm,n : ̟m → ̟n which truncates
paths from V0 to Vm to the initial segment ending in Vn. For each
v ∈ Vn, the set ̟(v) of paths from {∗} ∈ V0 ending at v will be called
a “̟n-tower parametrised by v”; the cardinality |̟(v)| will be referred
to as the height of this tower. Each tower is a linearly ordered set
(whose elements may be referred to as floors of the tower) since paths
from v0 to v acquire a linear order (cf. 1.2). We will exclude unusual
examples of ordered Bratteli diagram where the infimum of the height of
level-n towers does not go to infinity with n, (for example like [HPS,
Example 3.2]). Now, we define

1.10. Underlying space of the dynamics. XB = {x = (x1, x2, . . . ,
xn, . . . )} where

(i) xn = (xn,i)i∈Z ∈ ̟Z
n,

(ii) jm,n(xm,i) = xn,i for m > n and i ∈ Z and
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(iii) given n and K there exists m such that m > n and a vertex v ∈ Vm,
such that the interval segment xn[−K, K] := (xn,−K , xn,−K+1, . . . ,
xn,K) is obtained by applying jm,n to an interval segment of the
linearly ordered set of paths from v0 to v.

The condition (iii) is the crucial part of the definition. Without it what
one gets is an inverse system.

The condition (iii) implies that a property similar to 1.8 holds. Since
each ̟n is a finite set ̟Z

n has a product topology which makes it a
compact set —in fact a Cantor set. Likewise,

∏
n(̟Z

n) is again a Cantor
set. Thus, XB ⊆

∏
n(̟Z

n) has an induced topology. The lemma below
and the following proposition are analogous to corresponding facts for
the Vershik model associated to properly ordered Bratteli diagrams.

Lemma 1.11. The topological space XB is compact.

Proof: We show that XB is closed in
∏

n ̟Z
n. Let z = (z1, z2, . . . , zn, . . . ),

where zn ∈ ̟Z
n. Assume that z = limm→∞ wm, where wm ∈

∏
n ̟Z

n

and moreover wm ∈ XB. Let K1, K2, . . . , be a strictly increasing se-
quence of positive integers. Define neighbourhoods U1, U2, . . . , Um, . . .
of z in

∏
n ̟Z

n shrinking to z by Um =
{
z′=(z′1, z

′
2, . . . , z

′
m, . . . ) ∈

∏
n ̟Z

n

}

where z′k has the same coordinates as zk in the range [−Km, Km], i.e.
z′k[−Km, Km] = zk[−Km, Km] for 1 ≤ k ≤ m. Since z = limwj , for
any given m, ∃ J(m), such that “j > J(m)” ⇒ wj ∈ Um. But, since
wj ∈ XB, we conclude that for 1 ≤ k ≤ m, the interval segments
zk[−Km, Km] are obtained by applying jM,k to an interval segment of
the sequence of floors of a single ̟M−tower (for some M). This shows
that z ∈ XB.

Denote by TB the restriction of the shift operator to XB. So, if x =
(x1, x2, . . . ), where xn =(xn,i)i∈Z∈̟Z

n, then TB(x)=(x′
1, x

′
2, . . . , x

′
n, . . . ),

where x′
n = (x′

n,i)i∈Z ∈ ̟Z
n and x′

n,i = xn,i+1.

(XB, TB) will be called the dynamical system associated to B =
(V, E,≥).

Proposition 1.12. If B = (V, E,≥) is a simple ordered Bratteli dia-
gram, then (XB, TB) is a Cantor minimal dynamical system.

Proof: Let x, y∈XB , where x=(x1, . . . , xm, . . . ) and y=(y1, . . . , ym, . . . )
satisfy the conditions (i), (ii) and (iii) of 1.10. We will show that x be-
longs to the closure of the orbit {T i

B(y) | i ∈ Z}. For integers n and K
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define the neighbourhood U(n, K, x) of x to be the set

{z = (z1, z2, . . . , zm, . . . ) ∈ XB | zm[−K, K] = xm[−K, K]

for 1 ≤ m ≤ n}.

Given any neighbourhood U of x, choose n and K such that U ⊇
U(n, K, x). Since x ∈ XB, we can choose J and a PJ -tower Sv of
paths from v0 ending at a fixed v ∈ VJ , such that xn[−K, K] is ob-
tained by applying jJ,n to an interval segment of Sv. Since the Bratteli
diagram (V, E,≥) is simple, we can choose L > J such that every point
of VJ is connected to every point of VL by a path. This implies that
xn[−K, K] occurs as an interval segment of the sequence obtained by
applying jL,n to the sequence of floors of any PL-tower. Now, choose
a < b such that yL[a, b] is the sequence of all floors of a PL-tower. From
the preceding observation, we can choose d such that a ≤ d < d+2K ≤ b
and xn[−K, K] = jL,n(yL[d, d + 2K]). But since y ∈ XB, y satisfies
condition (ii) in 1.10. So xn[−K, K] = yn[d, d + 2K] and we conclude

T d+K
B (y) ∈ U(n, K, x).

In 1.7, given a nested sequence of Kakutani-Rohlin partitions of
(X, T ), we defined a map from (X, T ) to the dynamical system (XB, TB)
of the associated ordered Bratteli diagram. It follows that if (X, T ) is
minimal, and if the Bratteli diagram of the nested sequence of K-R par-
titions is a simple Bratteli diagram, then (X, T ) → (XB, TB) is onto. If
the topology of (X, T ) is spanned by the collection of the clopen sets be-
longing to the K-R partitions then clearly the map (X, T ) → (XB, TB) is
injective. In particular, if the Bratteli diagram is properly ordered then
the Bratteli-Vershik system is naturally isomorphic to the system given
by our construction in 1.10.

Note that the same term “towers” has been used to denote two sep-
arate but related objects (in 1.5 and 1.9). For v ∈ Vn, let y be a path
from {∗} to v in (V, E,≥). So, y is a “floor” (consisting of the single
element y) belonging to the ̟n- tower ̟(v) (a finite set) parametrized
by v ∈ Vn —all in the sense of 1.9. Here, ̟(v)= all paths from {∗} to v.
Put Fy = {x = (x1, x2, . . . , xn, . . . ) ∈ XB | xn,0 = y}. Fy is a clopen
set of the Cantor set XB. Put Pn = {Fy | y ∈ ̟(v), v ∈ Vn}. Then,
in the sense of 1.5 Pn is a K-R partition of XB whose base is the union
of

⋃
Fy, (y minimal ∈ ̟(v), v ∈ Vn). Its towers Sv are parametrized

by v ∈ Vn : Sv = {Fy | y ∈ ̟(v)}. Fy, (y ∈ ̟(v)) are the floors of
the tower Sv. (We encountered this K-R partition earlier in the case
of the Bratteli-Vershik system at the end of 1.5.) It is easy to see that
the ordered Bratteli diagram obtained from {Fy | y ∈ ̟(v), v ∈ Vn}
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is (V, E,≥) (compare the last two lines in the proof of [HPS, Theo-
rem 4.5] and also the opening observation in the proof of [DHS, Propo-
sition 16]).

2. Skew-product dynamical systems

2.1. Let (V, E,≥) be an ordered Bratteli diagram. Let G be a finite
group and λ : E → G a map defined on the edges with values in G

(λ
def.
= the “labels” on edges). We define a new Bratteli diagram B(λ)

def.
=

(Vλ, Eλ) as follows: V0,λ = {∗}, Vn,λ = Vn×G, (n ≥ 1) and En,λ = En×
G, (n ≥ 1). The source and range maps on Eλ are defined by r(e, g) =
(r(e), g), and s(e, g) = (s(e), gλ(e)). If e ∈ E1, we define s(e, g) = {∗}.
We define a map π : (Vλ, Eλ) → (V, E) by π(vλ,0) = v0, π(v, g) = v
if v ∈ Vn, n ≥ 1 and π(e, g) = e. One sees that π commutes with the
range and source map. It is easy to see that π|r−1(v,g) maps bijectively

onto r−1(v), ∀ v ∈ V −{v0} and ∀ g ∈ G. Thus if (V, E,≥) is an ordered
Bratteli diagram there is a unique order in Eλ such that π : (Vλ, Eλ,≥) →
(V, E,≥) is order preserving. In the sequel we assume that (Vλ, Eλ) is
equipped with this order. The ordered Bratteli diagram (Vλ, Eλ,≥) will
be denoted by B(λ). The dynamical system constructed in 1.10 for
this ordered Bratteli diagram B(λ) will be denoted by (Xλ, Tλ). The
dynamical system (Xλ, Tλ) will be called the skew-product system for
the edge labelling λ. We also remark that

π : (Vλ, Eλ) −→ (V, E) has the “unique path lifting” property

in the following sense. If m > n ≥ 1, and (en, en+1, . . . , em) is a
path in (V, E) from Vn−1 to Vm with r(em) = v then for any g ∈ G,
there is a unique path (ẽn, ẽn+1, . . . , ẽm) in (Vλ, Eλ) which maps onto
(en, en+1, . . . , em) under π and such that r(ẽm) = (v, g).

[caution: Even in the presence of unique path lifting property two
different edges on the left with the same source may map into the same
edge on the right. See 2.8 below. What the property asserts is that two
different edges on the left with the same range cannot map to the same
edge on the right.]

The group G acts on (Vλ, Eλ,≥) by γg(v, h) = (v, gh) and γg(e, h) =
(e, gh) for v ∈ V − {v0} and of course γg(v0,λ) = v0,λ.

Given the labelling λ we can extend the labelling to paths from Vn−1

to Vm, for m > n. With notation as above, we define:

λ(en, en+1, . . . , em) = λ(em)λ(em−1) . . . λ(en).
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Let {nk}
∞
k=0 be a subsequence of {0, 1, 2, . . .} where we assume n0 = 0.

A Bratteli diagram (V ′, E′) is called a “telescoping” of (V, E) if V ′
k = Vnk

and E′
k consists of paths (enk−1+1, . . . , enk

) from Vnk−1
to Vnk

in (V, E),
the range and source maps being the obvious ones. Thus, for every
telescoping the labelling λ on the edges of (V, E) gives rise to a labelling
on the edges of (V ′, E′).

Remark 2.2. Suppose there is a telescoping (V ′, E′) of (V, E) such that
the induced labelling λ on (V ′, E′) has the following property: given k,
there exists v′ ∈ V ′

k and w′ ∈ V ′
k+1, such that λ(s−1(v′) ∩ r−1(w′)) = G.

If in addition (V, E) is simple, then (Vλ, Eλ) is simple.

2.3. Stationary Bratteli diagrams. A Bratteli diagram is stationary
if the diagram repeats itself after level 1. (One may relax by allowing a
period from some level onwards; but, a telescoping will be stationary in
the above restricted sense.) If (V, E,≥) is an ordered Bratteli diagram
and the diagram together with the order repeats itself after level 1, then
(V, E,≥) will be called a stationary ordered Bratteli diagram. We refer
the reader to [DHS, Section 3.3] for the usual definition of a substitu-
tional system and how they give rise to stationary Bratteli diagrams.
Some details are recalled below. Let (V, E,≥) be as above and suppose
moreover that it is a simple Bratteli diagram and that λ is a labelling of
the edges with values in a finite group G. Assume that the labelling is
stationary: so, we have

(1) an enumeration {vn,1, vn,2, . . . , vn,L} of Vn, ∀ n ≥ 1,

(2) for n > 1 and 1 ≤ j ≤ L an enumeration {en,j,1, en,j,2, . . . , en,j,aj
}

of r−1(en,j) which is assumed to be listed in the linear order in
r−1(vn,j),

(3) in the enumerations above, L does not depend on n and aj depends
only on j and not on n. Moreover, if n, m > 1, if 1 ≤ j ≤ L,
1 ≤ k ≤ L, 1 ≤ i ≤ aj , then “s(en,j,i) = vn−1,k” ⇒ “s(em,j,i) =
vm−1,k”,

(4) with notation as in (3) above, λ(en,j,i) = λ(em,j,i).

If S is a set of generators for G and if in addition to the above, we also
assume that λ({r−1(vn,j)} ∩ {s−1(vn−1,k)}) ⊇ S ∪ {e}, ∀ j, k between 1
and L then (Vλ, Eλ) is simple.

2.4. Substitutional systems. Let A be an alphabet set. Write A+ for
the set of words of finite length in the alphabets of A. Let σ : A → A+ be
a substitution, written, σ(a) = αβγ . . . . The stationary ordered Bratteli
diagram B = (V, E,≥) associated to (A, σ) (cf. [DHS, Section 3.3] can
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be described as

Vn = A, ∀ n ≥ 1, V0 = {∗}

En ={(a, k, b) | a, b ∈ A, k ∈ N, a is the kth alphabet in the word σ(b)}.

(If one prefers one can introduce an extra factor “×{n}” so that vertices
and edges at different levels are seen to be disjoint.) The source and
range maps s and r are defined by s(a, k, b) = a, r(a, k, b) = b. In
the linear order in r−1(b), (a, k, b) is the kth edge. If λ is a stationary
labelling on edges with values in a finite group G, then define a new
“skew-product” substitutional system (Aλ, σλ) as follows:=

Aλ = A × G.

En,λ = {[(a, g), k, (b, h)] | (i) (a, k, b) ∈ En, (ii) g = h · λ(a, k, b)}.

Define σλ : Aλ → A+
λ by the rule that

(a, g) is the kth alphabet in the word σλ(b, h)

if

[(a, g), k, (b, h)] ∈ En,λ.

Set Vλ = {∗} ∪ {
⋃

n∈N
Vn,λ} where each Vn,λ is a (disjoint) copy of Aλ

and likewise, Eλ = ∪nEn,λ. The source and range maps are defined
by s([(a, g), k, (b, h)]) = (a, g) and r([(a, g), k, (b, h)]) = (b, h). Then
(Vλ, Eλ,≥) is the stationary ordered Bratteli diagram arising from the
substitutional system (Aλ, σλ). The group G acts on (Vλ, Eλ,≥) by

g(a, g1) = (a, gg1)

g[(a, g1), k, (b, g2)] = [(a, gg1), k, (b, gg2)].

The ordered Bratteli diagram (Vλ, Eλ,≥) thus obtained is the same as
the skew-product of 2.1 if one starts with the (V, E,≥) in the beginning
of 2.4.

To the stationary ordered Bratteli diagram B of (A, σ) (which may
not be properly ordered unless σ is a primitive, aperiodic, proper substi-
tution, see [DHS, Section 3]) we can associate a dynamical system XB

following the construction of 1.10; we will see that this is naturally iso-
morphic to the substitutional dynamical system Xσ associated to (A, σ)
defined for example in [DHS, Section 3.3.1].

2.5. For a stationary ordered Bratteli diagram B the dynamical sys-
tem 1.10 is identical to the usual substitutional dynamical system.
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Let us use the nested sequence (Pn) of Kakutani-Rohlin partitions
in Xσ defined in [DHS, Corollary 13]; the ordered Bratteli diagram
associated by Subsection 1.6 to this nested sequence (Pn) is the same
as the stationary ordered Bratteli diagram B in the beginning of this
section. (This is the opening observation in the proof of [DHS, Propo-
sition 16], but, this observation also remains valid for improper substi-
tutions.) Next apply the map Xσ → XB that was defined in 1.7. As
remarked after the proof of Proposition 1.12, this map is onto. That
this map is also injective can be seen as follows: let x ∈ Xσ. So,
x = (ai)i∈Z ∈ AZ. Let the image of x in XB by the map of 1.7 be denoted
by (x1, x2, . . . ) where xn = (xn,i)i∈Z ∈ PZ

n . The sequence x = (ai)i ∈ AZ

can be read off from the first co-ordinate x1 = (x1,i)i ∈ PZ
1 . Choose

any element z ∈ x1,i. Writing, uniquely, as in [DHS, Corollary 12(ii)]
z = T k

σ (σ(y)) where y ∈ Xσ and 0 ≤ k < |σ(y0)|, it is at once seen that
ai is the kth alphabet in σ(y0) and is independent of z ∈ x1,i. In fact it
is a part of the definition [DHS, Corollary 13] of the Kakutani-Rohlin
partition Pn that y0 and k are independent of z ∈ x1,i.

2.6. Example where G is infinite. Let G be a residually finite group.
Let G ⊃ N0 ⊃ N1 ⊃ · · · ⊃ Ni ⊃ · · · be a decreasing sequence of cofinite
normal subgroups of G such that

⋂
i(Ni) = {e}. Let ϕi : G → G/Ni be

the canonical projection. We use freely the notation for a substitutional
system (A, σ) set up in 2.4. Let λ be a stationary labelling on E =
{(a, k, b) | a is the kth alphabet in σ(b)} with values in G. The skew-
product system in this example is defined as follows:

Vn,λ = A × (G/Nn), ∀ n

En,λ = {[(a, ϕn−1(g)), k, (b, ϕn(h))]}

where a, b ∈ A, (a, k, b) ∈ E and ϕn−1(g) = ϕn−1(h · λ(a, k, b)).
In the statements below, we do not assume that (Vλ, Eλ,≥) arises

from a stationary labelling of a stationary ordered Bratteli diagram.
Nor do we assume that (Vλ, Eλ,≥) is simple. We only assume that

(1) (V, E,≥) is a simple ordered Bratteli diagram and
(2) λ is a labelling with values in G.

2.7. Let (X, T ) and (Xλ, Tλ) be the Cantor dynamical systems asso-
ciated respectively to (V, E,≥) and (Vλ, Eλ,≥) as in Subsection 1.10.
The map π : (Vλ, Eλ,≥) → (V, E,≥) sends paths from {∗} to (v, g)
in (Vλ, Eλ) to paths from {∗} to v in (V, E) and respects truncation
(cf. 1.9). The unique path lifting property implies that π maps a ̟n,λ-
tower in (Vλ, Eλ,≥) parametrised by (v, g) ∈ Vn,λ bijectively onto the
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̟n-tower in (V, E,≥) parametrised by v ∈ Vn (and of course, respects
the linear order of the floors). Thus π induces a map π : (Xλ, Tλ) →
(X,T ) between the two dynamical systems. The action of G on (Vλ,Eλ,≥)
given by {γg}g∈G gives rise to a free action {γg}g∈G of G on (Xλ, Tλ)
such that π ◦ γg = π.

2.8. In the next few sections, we describe an ordered Bratteli diagram
for the quotient of (Xλ, Tλ) by the G-action {γg}g∈G. The Bratteli
diagram thus constructed naturally maps to (V, E,≥) with unique path
lifting property.

Recall that by definition Xλ = {x = (x1, x2, . . . , xn, . . . )} where

(i) xn = (xn,i)i∈Z ∈ (̟n,λ)Z.

(ii) jm,n(xm,i) = xn,i for m > n and i ∈ Z.

(iii) Given n and K, ∃ m > n and a vertex v ∈ Vm,λ such that the inter-
val segment xn[−K, K] := (xn,−K , xn,−K+1, . . . , xn,K) is obtained
by applying jm,n to an interval segment of the linearly ordered set
of paths from v0 to v.

2.9. Definition: “Loops lift to loops”. If (V, E,≥) and (V ′, E′,≥)
are two ordered Bratteli diagrams and π : (V, E,≥) → (V ′, E′,≥) is a
morphism with unique path-lifting property we say that π “lifts loops
to loops” (or, that π has the “loops lifting to loops” property) if the
following condition is satisfied:

(“Loops on the right”). Let u′ ∈ V ′
m, v′ ∈ V ′

n. Let k ≤ m and k ≤ n.
Suppose α′ and β′ are paths from V ′

k ranging at u′. Suppose γ′ and δ′

are paths from V ′
k ranging at v′. In the lexicographic order induced on

paths from V ′
k to u′ assume that α′ is the successor of β′. Similarly for

paths from V ′
k to v′ assume that γ′ is the successor of δ′. Assume that α′

and γ′ have the same source in V ′
k and that, likewise, β′ and δ′ have the

same source in V ′
k . (Thus, one has a loop: going from the range of α′ to

the source of β′ via β′, then to the range of δ′ via δ′, then to the source
of α′ via γ′ and then to the range of α′ via α′.)

(“Pull-back of the above loop to the left”). Now, let u ∈ Vm,
v ∈ Vn and assume π(u) = u′, π(v) = v′. Let α (resp. β) be the unique
path from Vk to Vm lying above α′, (resp. β′) and ranging at u. Similarly,
let γ (resp. δ) be the unique path from Vk to Vn lying above γ′ (resp. δ′)
and ranging at v. If π has the property that under the above conditions,

“{source of β = source of δ}” =⇒ “{source of α = source of γ}”

then we say that π has the “loops lifting to loops” property.
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Diagram 1

level k

level m

level n

α

βγ

δ

u

v

α′

β′γ′

δ′

u′

v′

?

Finally, we say that the labelling λ : E → G has the “loops lifting to
loops” property if (Vλ, Eλ,≥) → (V, E,≥) has the above property.

Example 2.10.1. Let β : V → G be a function. The labelling λ de-
fined on E by λ(e) = β(r(e))−1β(s(e)) has the “loops lifting to loops”
property.

Example 2.10.2. Let s, t ∈ G. Let λ be a G-valued stationary labelling
on the 2-adic odometer system (cf. [GJ, pp. 1691, 1695]) whose image
consists of {s, t}.

The Bratteli diagram of the odometer has one vertex at each level
and two edges, say, min and max from level k to k + 1 for k ≥ 1, with
λ(min) = s and λ(max) = t. In Theorem 2.11, we take

α′ = max from level 1 to 2,

β′ = min from level 1 to 2,

γ′ = (min, max) from level 1 to 3,

δ′ = (max, min) from level 1 to 3.
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Denote by w′, u′, v′ the vertices at levels 1,2,3. Following the description
of vertices and edges for (Vλ, Eλ) as in 2.5,

first (resp. second) edge ranging at (u′, g) has source (w′, gs)
(resp. (w′, gt)),

first (resp. second) edge ranging at (v′, h) has source (u′, hs)
(resp. (u′, ht)),

source (w′, gt) to range (u′, g) is a lift α of α′,
source (w′, gs) to range (u′, g) is a lift β of β′,
(w′, hts) to (u′, ht) to (v′, h) is a lift γ of γ′,
(w′, hst) to (u′, hs) to (v′, h) is a lift δ of δ′.

If the “loops lifting to loops” property holds then for the above choice
of α′, β′, γ′, δ′ the condition that

“{source of β = source of δ }” =⇒ “{source of α = source of γ }”

yields the property in the group

“{(w′, gs) = (w′, hst)}” =⇒ “{(w′, gt) = (w′, hts)}”.

This reduces to the condition that st−1s−1 = ts−1t−1. One can easily
see that analogous conditions with other choices of α′, β′, γ′, δ′ are all
consequences of the property st−1s−1 = ts−1t−1.

Assume that G is generated by s, t and that st−1s−1 = ts−1t−1. Then
either s = t, (so G is cyclic), or, G has the following simple description:

Put x = ts−1. Then, x2 = ts−1ts−1 = ts−1ts−1t−1t = ts−1st−1s−1t =
s−1t. So, t−1xt = s−1t = x2. Let H be the subgroup of G generated
by x. Let J be the subgroup of G generated by t. Note that elements
of J normalize H . Also, J ∩ H = {e} the unit element. In fact since x
and x2 are conjugate, the order of x has to be 2k + 1 an odd number. If
xℓ = tm ∈ J ∩ H , where, 0 ≤ ℓ < 2k + 1 then xℓ = tm = t−1xℓt = x2ℓ,
which implies that xℓ = {e} which is not possible (unless ℓ = 0) since
ℓ < order of x.

Hence, G is the semi-direct product of J and H for the action given
by t−1xt = x2. The skew-product Bratteli diagram (Vλ, Eλ,≥) has
the following connectivity structure. Telescoping to levels {0, n1 =
1, n2, n3, . . . , ni, . . . } where ni = 1+(i−1)×{order of G}, a vertex (v, g)
in level ni is connected to a vertex (w, g′) in level ni+1 by an edge if and
only if g and g′ belong to the same H-coset.

Our main result about the skew-product dynamical systems (Xλ, Tλ)
which were constructed in 2.1 are contained in the following.
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Theorem 2.11. (I) Suppose that the map π : (Vλ, Eλ,≥) → (V, E,≥)
has the property “loops lift to loops”. Then the quotient of (Xλ, Tλ)
by the action of G is canonically isomorphic to (X, T ).

(II) In general, there is a commutative diagram

(Vλ, Eλ,≥)
π

−−−−→ (V, E,≥)

ρ′

x
xρ

(Ṽµ, Ẽµ,≥)
eπ

−−−−→ (Ṽ , Ẽ,≥)

and the induced diagram

(Xλ, Tλ)
πB−−−−→ (X, T )

ρ′
B

x
xρB

(X̃µ, T̃µ)
eπB−−−−→ (X̃, T̃ )

between the corresponding dynamical systems, where
(i) All the horizontal and vertical arrows in the first diagram have

the “unique path lifting property”,

(ii) (Ṽµ, Ẽµ,≥) is the skew-product Bratteli diagram associated to

the G-valued labelling µ on (Ṽ , Ẽ,≥) defined by µ = λ ◦ ρ,

(iii) ρ′ commutes with the G-action and ρ′B is an isomorphism, and

(iv) the map π̃ : (Ṽµ, Ẽµ,≥) → (Ṽ , Ẽ,≥) has the property “loops lift
to loops”. (Consequently, by Part (I), the quotient of (Xλ, Tλ)

by the action of G is isomorphic to (X̃, T̃ ).)

Remark. Note that Part (II) is almost a converse to Part (I). If we
are given that the quotient of (Xλ, Tλ) by the action of G is isomorphic
to (X, T ), we are not deducing from this that π : (Vλ, Eλ,≥) → (V, E,≥)
has the property “loops lift to loops”. Instead, Part (II) gives us a closely
related morphism with the property “loops lift to loops” which can be
nicely fit into a square with the given morphism π as one of its sides
and in which all the arrows have the unique path lifting property; the
vertical arrows are compatible with the given labelling and its pull-back
and induce isomorphisms in the corresponding dynamical systems.

Proof of Part (I): By hypothesis π : (Vλ, Eλ,≥)→(V, E,≥) has the prop-
erty “loops lifts to loops”. Suppose that πB : (Xλ, Eλ,≥) → (X, E,≥)
is not an isomorphism, modulo the G-action on Xλ. Let y and z be two
different G-orbits in Xλ, which have the same image x in X . We employ



Skew-product for . . . 345

the notation of 2.7 and 2.8. Write

y = (yn)n, yn = (yn,i)i∈Z, yn,i ∈ ̟n,λ

z = (zn)n, zn = (zn,i)i∈Z, zn,i ∈ ̟n,λ

x = (xn)n, xn = (xn,i)i∈Z, xn,i ∈ ̟n.

By the hypothesis, y and z have the image x in X and also the G-orbits
of y and z are different. By shifting y and z by a suitable power of the
shift operator Tλ and replacing z if necessary by another element within
the orbit {γg ·z | g ∈ G}, we can assume that, for some k ∈ N, yk,0 = zk,0

and yk,1 6= zk,1. In view of 1.8 it follows that

2.11.1. yk,0 is the top floor of a ̟k,λ-tower ̟(u, g1)

and

2.11.2. yk,1 is the lowest floor of a ̟k,λ-tower ̟(w, g2).

In the same way,

2.11.3. zk,0 is the top floor of the ̟k,λ-tower ̟(u, g1)

and

2.11.4. zk,1 the lowest floor of a ̟k,λ-tower ̟(w, g3).

By property 1.10 (iii) there exists m ≥ k, a vertex (a, h) ∈ Vm,λ

and two successive floors F 0, F 1 of the ̟m,λ tower ̟(a, h) such that
jm,k(F 0) = yk,0 and jm,k(F 1) = yk,1. Similarly, there exists n ≥ k, a

vertex (b, h˜) ∈ Vn,λ and two successive floors F̃ 0, F̃ 1 of the ̟n,λ-tower

̟(b, h˜) such that jm,k(F̃ 0) = yk,0 and jm,k(F̃ 1) = yk,1. The floors F 0

and F 1 correspond to two successive paths from {∗} ∈ V0,λ to (a, h) ∈
Vm,λ in the linearly ordered set of paths from {∗} to (a, h). The path F 0

is traced by first tracing a path F 0[0, k] from level 0 to level k and
following it by a path from level k to level m. The part F 0[0, k] being
the truncation jm,k(F 0) represents the floor yk,0. By 2.11.1, yk,0 is the
unique maximal path from {∗} ∈ V0,λ to (u, g1) ∈ Vk,λ. Similarly, the
path F 1 from level 0 to level m initially traces the truncation F 1[0, k] =
jm,k(F 1) which represents the floor yk,1 followed by F 1[k, m] from level k
to level m. By 2.11.2, yk,1 is the unique minimal path (lowest floor)
from {∗} ∈ V0,λ to (w, g2) ∈ Vk,λ. Since F 1 is the successor of F 0 in the
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lexicographic order of paths from {∗} to (a, h) ∈ Vm,λ, we conclude from
the above observation that

2.11.5. F 1[k, m] is the successor of F 0[k, m] in the lexicographic
order of paths from Vk,λ to (a, h) ∈ Vm,λ.

Similarly, if F̃ 0[k, n] and F̃ 1[k, n] represent the truncation of F̃ 0 and

F̃ 1 respectively from level k to level n then

2.11.6. F̃ 1[k, n] is the successor of F̃ 0[k, n] in the lexicographic order
of paths from Vk,λ to (a, h˜) ∈ Vn,λ.

We show how this leads to a contradiction of the property “loops lift

to loops”. Denote the paths F 0[k, m], F 1[k, m], F̃ 0[k, n] and F̃ 1[k, n] by
β, α, δ and γ respectively. Let their images under π be denoted by β′,
α′, δ′ and γ′ respectively.

We will observe that with the above data we have something on the
left which is almost a loop, but not actually a loop eventhough its image
on the right is a loop (cf. 2.9).

(Object on the right which is a loop). α′ and β′ are paths from Vk

ranging at a. Also γ′ and δ′ are paths from Vk ranging at b. α′ is the
successor of β′. For paths from Vk to Vn, γ′ is the successor of δ′. The
paths α′ and γ′ have the same source in Vk, β′ and δ′ have the same
source in Vk. (Thus, one has a loop: going from the range of α′ to the
source of β′ via β′, then to the range of δ′ via δ′, then to the source of α′

via γ′ and then to the range of α′ via α′.)

(Object on the left lying over the above loop). (a, h) ∈ Vm,λ,
(b, h˜) ∈ Vn,λ, π(a, h) = a, π(b, h˜) = b. α (resp. β) is the unique path
from Vk,λ to Vm,λ lying above α′, (resp. β′) and ranging at (a, h). Sim-
ilarly, γ (resp. δ) is the unique path from Vk,λ to Vn,λ, lying above γ′

(resp. δ′) and ranging at (b, h˜). α is the successor of β. γ is the successor
of δ.

(Object on the left is almost a loop). Moreover source of β = source
of δ.

But source of α 6= source of γ, which contradicts the “loops lifting to
loops” property.
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Now we begin the proof of the Part (II) in the statement of the the-
orem.

2.12. We will now define two nested sequences of K-R partitions of Xλ,
both acted on by the group G. Recall Vn,λ = Vn × G (for n ≥ 1). For
(v, g) ∈ Vn ×G, let y be a path from {∗} to (v, g) in (Vλ, Eλ,≥). So, y is
a “floor” belonging to the ̟n,λ- tower ̟(v, g) parametrized by (v, g).
Put Fy = {x = (x1, x2, . . . , xn, . . . ) ∈ Xλ | xn,0 = y}

Pn,λ = {Fy | y ∈ ̟(v, g), (v, g) ∈ Vn,λ}.

Then {Pn,λ}n is a nested sequence of K-R partitions of Xλ acted on
by G. But, the topology of Xλ need not be spanned by the collection
of clopen sets {Fy}, (y ∈ ̟(v, g), (v, g) ∈ Vn,λ, n ∈ N). In contrast,
the topology of Xλ is indeed spanned by the collection of clopen sets in
another nested sequence {Qn,λ}n of K-R partitions, defined below. Let
̟ = ̟(u, g1), ̟′ = ̟(v, g2), ̟′′ = ̟(w, g3) be three ̟n,λ-towers and
y a floor of ̟′. For any x ∈ Xλ and for any n if xn,i is a floor of a ̟n,λ-
tower ̟, then for some a, b ∈ Z such that a ≤ i ≤ b, the segment xn[a, b]
is just the sequence of floors in ̟. We define F(̟, ̟′, ̟′′; y) = the
clopen subset of Fy consisting of the elements x = (x1, x2, . . . , xn, . . . )
with the property that for some a1 < a2 ≤ 0 < a3 < a4 ∈ Z, the seg-
ment xn[a1, a2−1] is the sequence of floors of ̟, the segment xn[a2, a3−1]
is the sequence of floors of ̟′ and the segment xn[a3, a4] is the sequence
of floors of ̟′′. Some of the sets F(̟, ̟′, ̟′′; y) may be empty, but
the non-empty sets F(̟, ̟′, ̟′′; y) form a K-R partition which we de-
note by Qn,λ. For fixed ̟, ̟′, ̟′′ the subcollection {F(̟, ̟′, ̟′′; y)}
as y varies through the floors of ̟′, is a Qn,λ-tower parametrized by
[(u, g1), (v, g2), (w, g3)]. We denote this Qn,λ-tower by S(̟,̟′,̟′′). The
floors of the tower S(̟,̟′,̟′′) are {F(̟, ̟′, ̟′′; y)} as y runs through
the sequence of floors of ̟′.

Lemma 2.13. {Qn,λ}n is a nested sequence of K-R partitions of Xλ

acted on by G. The topology of Xλ is spanned by the clopen sets in this
sequence of partitions.

Proof: Each Qn,λ = {F(̟, ̟′, ̟′′; y)} (for a fixed n) is a K-R partition.
This is evident on going through the definitions. Since the infimum of
the height of ̟n,λ-towers (̟, ̟′ etc.) goes to infinity as n → ∞, it is
evident from the definition of the topology of Xλ that the clopen sets
F(̟, ̟′, ̟′′; y), (for various n, ̟n,λ- towers ̟, ̟′, ̟”, floors y of ̟′)
span the topology of Xλ.
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Remark 2.14. The above construction involving “triples” can be intro-
duced starting with any simple ordered Bratteli diagram, (not necessarily
the diagram (Vλ, Eλ,≥) which had a G-action). For this, let (V, E,≥)
be an arbitrary simple, ordered Bratteli diagram. Define (V Q, EQ,≥)
as follows: V Q

0 = {∗}, a single point.
V Q

n consists of triples (u, v, w) ∈ Vn ×Vn ×Vn such that for some y ∈
Vm where m > n, the level-m tower ̟y passes successively through
the level-n tower ̟u, then ̟v and then ̟w. An edge ẽ ∈ EQ

n is a
triple (u, e, w) such that e is an edge of (V, E) and (u, r(e), w) ∈ V Q

n .
Let

{e1, e2, . . . , ek} be all the edges in r−1(r(e)),

{f1, f2, . . . , fℓ} be all the edges in r−1(u) and

{g1, g2, . . . , gm}be all the edges in r−1(w).

The sources of (u, e1, w), (u, e2, w), . . . , (u, ek, w) are defined to be

(s(fℓ), s(e1), s(e2)), (s(e1), s(e2), s(e3)), . . . , (s(ek−1), s(ek), s(g1))

respectively. The range of (u, e, w) is of course (u, r(e), w).
The map (u, v, w) 7→ v, (u, e, w) 7→ e from (V Q, EQ) to (V, E) has

unique path lifting property; in particular it gives rise to the ordered
Bratteli diagram (V Q, EQ,≥).

2.15. The ordered Bratteli diagrams BQ(λ) and B
Q

(λ). The
construction 1.6 of an ordered Bratteli diagram applied to the
nested sequence of K-R partitions {Qn,λ}n gives rise to an ordered

Bratteli diagram. The vertices V Q
n,λ are in 1-1 correspondence with

the towers S[̟(u,g1),̟(v,g2),̟(w,g3)] of Qn,λ. Note that not all choices
[(u, g1), (v, g2), (w, g3)] may give rise to a non-empty set
S[̟(u,g1),̟(v,g2),̟(w,g3)]. We may denote the vertex corresponding to
(non-empty) S[̟(u,g1),̟(v,g2),̟(w,g3)] by [(u, g1), (v, g2), (w, g3)]. If

[(u, g1), (v, g2), (w, g3)] ∈ V Q
n,λ, then [(u, gg1), (v, gg2), (w, gg3)] ∈ V Q

n,λ,

∀ g ∈ G. So G acts on V Q
n,λ freely if n ≥ 1. As in 1.6 the edges connecting

V Q
n,λ and V Q

n+1,λ and the linear order between edges with the same range
simply reflects the sequence of Qn,λ-towers traversed by a given Qn+1,λ-
tower. It is then clear that G-acts on the ordered Bratteli diagram

(V Q
λ , EQ

λ ,≥). We denote by (V
Q

λ , E
Q

λ ,≥) the ordered Bratteli diagram

which is the quotient by G-action on (V Q
λ , EQ

λ ,≥). We write BQ(λ) and

B
Q

(λ) for the Bratteli diagrams (V Q
λ , EQ

λ ,≥) and (V
Q

λ , E
Q

λ ,≥) respec-
tively.
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2.16. Tripling for a substitutional system (A, σ). If (A, σ) is a
substitutional system, define AQ to be the unique smallest subset of A×
A × A with the property that (a, b, c) ∈ AQ if and only if the word abc
occurs as a subword of σn(d) for some d ∈ A and some n. Define

σQ : AQ −→ (AQ)+

by σQ[(a, b, c)] = (am, b1, b2)·(b1, b2, b3) · · · (bn−2, bn−1, bn)·(bn−1, bn, c1),
where σ(b) = b1 ·b2 · · · bn, and am is the last alphabet in σ(a), while c1 is
the first alphabet in σ(c). Suppose moreover that the ordered Bratteli
diagram associated to (A, σ) is equipped with a stationary labelling λ.
Then following the construction of 2.4 we get a skew-product substi-
tutional system (Aλ, σλ). The tripling described above applied to this
(Aλ, σλ) gives a substitutional system (AQ

λ , σQ
λ ).

2.17. It now remains to finish the proof of Part (II) of Theorem 2.11.

Our construction of B
Q

(λ) =
(
V

Q

λ , E
Q

λ ,≥
)

in 2.15 was motivated pre-

cisely to serve as a candidate for the B̃ in the statement of Part (II)

of the theorem. Thus, we set Ṽ = V
Q

λ , Ẽ = E
Q

λ , B̃ = (Ṽ , Ẽ,≥) =(
V

Q

λ , E
Q

λ ,≥
)

= B
Q

(λ). A vertex of V
Q

n,λ is represented by the G-or-

bit of a triple [(u, g1), (v, g2), (w, g3)]. Define ρ : V
Q

λ → V by send-

ing the above vertex to v ∈ Vn. The set E
Q

n,λ of edges of B
Q

(λ)

from V
Q

n−1,λ to V
Q

n,λ ranging at [(u, g1), (v, g2), (w, g3)] is represented
by the triple [(u, g1), (e, g2), (w, g3)] where e is an edge from Vn−1 to Vn

ranging at v. Define ρ : E
Q

λ → E by sending the above edge (namely the
G-orbit of [(u, g1), (e, g2), (w, g3)]) to e.

Define a labelling µ on E
Q

λ by µ = λ ◦ ρ. We show that the corre-

sponding skew-product of
(
V

Q

λ , E
Q

λ ,≥
)

by µ is precisely (V Q
λ , EQ

λ ,≥).

For this we define a map

Φ: (V Q
λ , EQ

λ ,≥) −→ (V
Q

λ × G, E
Q

λ × G,≥)

as follows: let x = [(u, g1), (v, g2), (w, g3)] ∈ V Q
λ . Let the G-orbit of x

be denoted by x ∈ V
Q

λ . Then, define Φ(x) = (x, g2). Similarly, let
η = [(u, g1), (e, g2), (w, g3)] be an edge of EQ

λ . Let the G-orbit of η

be denoted by η ∈ E
Q

λ . Then, define Φ(η) = (η, g2). Then Φ is an
isomorphism between the two ordered Bratteli diagrams.
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Referring to the requirements in the statement of Part (II) of Theo-
rem 2.11, the map ρ′ : (V Q

λ , EQ
λ ,≥) → (Vλ, Eλ,≥) is easy to define:

ρ′[(u, g1), (v, g2), (w, g3)] = (v, g2) and

ρ′[(u, g1), (e, g2), (w, g3)] = (e, g2).

The map ρ′: BQ(λ) = (V Q
λ , EQ

λ ,≥) → (Vλ, Eλ,≥) = B(λ) induces a
map ρ′B between the corresponding dynamical systems XBQ(λ) and XB(λ).
The inverse β of this map is defined as follows:

Let z ∈ XB(λ). So z = (z1, . . . , zn, . . . ), where zn = (zn,i)i∈Z ∈

(̟n,λ)Z. Fix n and i. So zn,i is a floor of a ̟n,λ-tower S(v,g2). Choose
a, b, c, d ∈ Z such that a < b ≤ i < c < d, the interval segment zn[b, c−1]
is the sequence of all the floors of the tower S(v,g2), zn[a, b − 1] is the
sequence of all the floors of some ̟n,λ-tower S(u,g1) and zn[c, d − 1] is
the sequence of all the floors of some ̟n,λ-tower S(w,g3). Define

y = (y1, . . . , yn, . . . ) ∈ XBQ(λ) where yn = (yn,i)i∈Z ∈
(
̟Q

n,λ

)Z

by yn,i = ((u, g1), (v, g2), (w, g3); zn,i). This map defines an inverse of ρ′B.
Finally, we prove the property “loops lift to loops” for the map

(V Q
λ , EQ

λ ,≥) −→ (V
Q

λ , E
Q

λ ,≥).

To verify the property “loops lift to loops” for the above map, we start
with some data on the left-side which is “almost” a loop, we make a
further assumption that the image is actually a loop and then we have
to conclude that the data we started with on the left-side must in fact
be a loop.

2.18. The data on the left which is almost a loop. Let û ∈ V Q
m,λ

and v̂ ∈ V Q
n,λ. Let k ≤ m and k ≤ n. Let α and β be paths from V Q

k,λ

ranging at û. Let γ, δ be paths from V Q
k,λ ranging at v̂. Assume that β

and δ have the same source in V Q
k,λ.

2.19. The data “image on the right is actually a loop”. Denote

by α′, β′, γ′, δ′ the paths in (V
Q

λ , E
Q

λ ,≥) which are the images of α, β,
γ, δ. Suppose that α′ is the successor of β′ and that γ′ is the successor

of δ′. Assume that α′ and γ′ have the same source in V
Q

k,λ and that β′

and δ′ have the same source in V
Q

k,λ.
To conclude that the data on the left must in fact be a loop we have

to show that α and γ have the same source in V Q
k,λ.
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Let source of β = source of δ = [(a, g1), (b, g2), (c, g3)] ∈ V Q
k,λ. Since

α is the successor of β, necessarily the source of α has the form
[(b, g2), (c, g3), (d, g4)] for some d ∈ Vk and g4∈G. Likewise, since γ is the
successor of δ the source of γ must be of the form [(b, g2), (c, g3), (d

′, g5)],
for some d′ ∈ Vk and g5 ∈ G. But it is a consequence of the as-
sumption “source of α′ = source of γ′” that [(b, g2), (c, g3), (d, g4)] and
[(b, g2), (c, g3), (d

′, g5)] must lie in the same G-orbit, i.e., for some h ∈ G,
[(b, g2), (c, g3), (d, g4)] = [(b, hg2), (c, hg3), (d

′, hg5)].
Therefore, we conclude that d = d′ and g4 = g5. Thus, the property

“loops lift to loops” is verified.
This ends the proof of the theorem.

2.20. Cohomologous labellings. Let λ and µ be two G-valued edge
labellings of (V, E,≥). We say that λ and µ are cohomologous if there
exists a function β : V → G such that

β(r(e))µ(e) = λ(e)β(s(e)), for e ∈ En, (n ≥ 1).

Such a map β gives rise to an isomorphism

Φβ : (Vλ, Eλ,≥) −→ (Vµ, Eµ,≥)

where Φβ(v, g) = (v, gβ(v)) and Φβ(e, g) = (e, gβ(r(e))).

2.21. Initially we were hopeful that our work for stationary labellings
will lead to an example of a substitutional system (Aλ, σλ) (see 2.4)
arising from a stationary labelling λ with values in any permutation
group G, such that (A, σ) and (Aλ, σλ) are both Toeplitz flows defined
below as usual (cf. eg. [GJ, p. 1695]).

Definition 2.22. A Toeplitz sequence is a non-periodic sequence η =
(ηn)n∈Z in AZ, where A is any finite alphabet set, so that for each m ∈ Z

there exists n ∈ N so that ηm = ηm+kn for all k ∈ Z.

The following gives such an example with G a cyclic group of or-
der k. Let (A, σ) be a primitive aperiodic proper substituion of constant
length n. By [GJ, Corollary 9, p. 1698] this gives rise to a Toeplitz
flow. Assume that n is congruent to 1 mod k. Let z denote a generator
for G. We take the stationary labelling λ which assigns zi to the ith edge
ranging at any vertex of the stationary Bratteli diagram for (A, σ) that
we described in Subsection 2.5. It is not hard to see that if η = (ai)i∈Z

is a Toeplitz sequence for (A, σ) then η̃
def.
= {(ai, z

i)}i∈Z is a Toeplitz
sequence for (Aλ, σλ).
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But outside the domain of cyclic groups it is not possible to have such
examples as the following result shows.

Proposition 2.23. For a non-cyclic group G, one cannot have Toeplitz
sequences occurring in primitive substitutional systems (Aλ, σλ) arising
( cf. 2.4) from G-valued stationary edge labellings λ of another substitu-
tional system (A, σ).

Proof: Suppose η̃
def.
= (ai, gi)i∈Z is a Toeplitz sequence in (Aλ, σλ) (which

is assumed to be primitive). Then ∀ g ∈ G, η̃g
def.
= (ai, ggi)i∈Z are also

Toeplitz sequences. Further, they all admit the same period structure
p = (p0, p1, p2, . . . ) (cf. [DKL, p. 220], [GJ, p. 1695]). More impor-
tantly, all these Toeplitz sequences lie in the same (minimal) subshift
dynamical system Xλ in the alphabets Aλ and the Z- orbit of any one
of these Toeplitz sequences η̃g is dense in Xλ. Let (Gp, 1) be the max-
imal uniformly continuous factor of (Xλ, Tλ) (cf. [GJ, p. 1696]) and
let π : (Xλ, Tλ) → (Gp, 1) denote the corresponding factor map. For
a Toeplitz sequence ω, π−1(π(ω)) = {ω} (cf. [W], [GJ, p. 1696], [DL,
Theorem 6, p. 167]). Define elements hg, (g ∈ G) of the monothetic
group Gp by hg = π(η̃g). They are pairwise distinct. For g ∈ G, denote
by τg : (Xλ, Tλ) → (Xλ, Tλ) the unique isomorphism which replaces an
alphabet (a, θ) by (a, gθ), for θ ∈ G. Thus, for example, τg(η̃θ) = (η̃gθ).

As observed in [DKL, Section 2, paragraph 1], we have the following
commutative diagram

(Xλ, Tλ)
τg

−−−−→ (Xλ, Tλ)

π

y
yπ

(Gp, 1)
hg

−−−−→ (Gp, 1)

where the bottom map denotes group operation by hg. Composition of
two such diagrams for g1, g2 ∈ G yields the diagram for g1g2. Thus, the
group G sits faithfully as a finite subgroup of Gp. Hence, it has to be
isomorphic to a subgroup of the finite cyclic group Zpi

for one of the
essential periods in p0, p1, p2, . . . , pi, . . . .

Going forward. The success of the Bratteli-Vershik model as origi-
nally envisaged (in the properly ordered case) was basically that, first,
the space X could be seen as the path space of the diagram while the
orbit relation appeared as cofinality (almost). Secondly, the K-theory
invariant could be read off the diagram in the usual way. While neither
of these is strictly true for our models here (except in the case it reduces
to the old one), Ian Putnam and Christian Skau have pointed out that
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it does not seem to be far from being true and feel that sorting out the
exact sense of this could be quite interesting. We thank them for this
observation and for the encouraging letter to us wherein they noted that
the construction of a dynamical system without the usual assumption of
unique maximal and minimal path resolves many long-standing issues.
In separate work the authors have resolved the K-theory aspect.

Note added in proof: For further comments and remarks apropos 1.10
see our forthcoming article The K-group of substitutional systems to
appear in this journal.
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