CONSTRUCTION DES FOYERS D'UNE ELLIPSE

A. El Kacimi

Problème. Soit \mathcal{E} une ellipse (qui n'est pas un cercle) dont on ne connaît que le tracé. Construire géométriquement (à la règle et au compas) ses deux foyers.

- Soient KK' et LL' deux cordes parallèles de \mathcal{E} et ω et δ leurs milieux respectifs. La droite $(\omega\delta)$ coupe \mathcal{E} en deux points R et S. Le centre de l'ellipse est alors le milieu O du segment [RS]. En effet, l'affinité (orthogonale) qui envoie \mathcal{E} sur son cercle principal Γ envoie KK' et LL' sur deux cordes parallèles $K_1K'_1$ et $L_1L'_1$ de Γ et les points ω et δ sur les milieux ω_1 et δ_1 respectivement de $K_1K'_1$ et $L_1L'_1$; par suite la droite $(\omega_1\delta_1)$ passe par le centre de Γ et donc $(\omega\delta)$ (c'est aussi la droite (RS)) passe par le centre de l'ellipse qui donc n'est rien d'autre que O.
- Maintenant qu'on a construit le centre O de l'ellipse \mathcal{E} , on va construire ses foyers. On trace un cercle centré en O et passant par K (ou par tout autre point de \mathcal{E}); il coupe \mathcal{E} en trois autres points U, V et W (cf. dessin ci-dessous). Comme K, U, V et W sont équidistants du centre O de l'ellipse, U est le symétrique de K par rapport au premier axe, V est le symétrique de U par rapport au second axe et W est le symétrique de V par rapport au premier axe. On en déduit que les deux axes de \mathcal{E} sont les médiatrices des segments [KU] et [VW] (voir dessin). Ces médiatrices coupent \mathcal{E} respectivement en A, A' et B, B': [AA'] est l'un des axes (dont supposera qu'il est le grand sinon on échange les notations) et [BB'] est le petit axe. Pour finir, on trace le cercle de centre B et de rayon $\rho = OA$; il coupe le segment [AA'] en deux points F et F' qui sont les foyers cherchés. \diamondsuit

