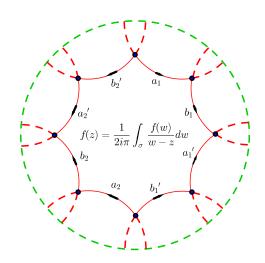
VARIABLE COMPLEXE ET SURFACES RIEMANNIENNES

Aziz El Kacimi Alaoui

Professeur émérite (Université Polytechnique Hauts-de-France)



Un octogone fondamental qui donne une surface hyperbolique de genre 2. La formule de Cauchy, un ingrédient au cœur de l'analyse complexe.

Version mai 2021, à paraître aux ÉDITIONS ELLIPSES

AVANT-PROPOS

Par l'apport de ses outils performants, la théorie des fonctions d'une variable complexe a contribué à la compréhension de la géométrie différentielle et la topologie des surfaces. C'est la raison qui a motivé mon choix de mettre ces deux thèmes dans un texte commun. Celui-ci se compose de deux parties ayant constitué les contenus de cours que j'ai dispensés en Licence et en Master à l'Université Polytechnique Hauts-de-France.

La première partie introduit l'analyse complexe en dimension un. Ce qui suppose bien entendu une connaissance maîtrisée des nombres complexes. On en expose l'essentiel au chapitre I. On construit le corps $(\mathbb{C}, +, \times)$ et on liste ce qu'on peut en dire d'important. On définit ses objets géométriques comme le module, l'argument, et on donne l'interprétation des opérations algébriques en termes de transformations : l'addition et la multiplication correspondent respectivement à translater et à appliquer une similitude directe.

La notion de série entière est fondamentale dans cette partie. On l'introduit dans le chapitre II avec les objets qui lui sont rattachés (en premier lieu son rayon de convergence) et quelques-unes de ses propriétés essentielles : l'analyticité de la fonction qu'elle définit, l'unicité du prolongement analytique de celle-ci (quand elle en admet) et ses zéros qui sont toujours isolés.

Les fonctions holomorphes apparaissent au chapitre III. Leur définition principale en est donnée : celle de l'existence de la dérivée au sens complexe. Géométriquement, cette propriété force la différentielle réelle, a priori \mathbb{R} -linéaire, à être en fait \mathbb{C} -linéaire, ce qui amène les conditions de Cauchy-Riemann qui sont un critère pratique d'holomorphie. On définit l'intégrale d'une fonction complexe f sur un chemin, en insistant sur ses propriétés bien particulières lorsque f est holomorphe.

S'ensuivent, au chapitre IV, la formule intégrale de Cauchy et ce qu'elle permet d'établir, par exemple l'analyticité d'une fonction holomorphe et le développement de Laurent (au chapitre VI).

Au chapitre V on étudie les homographies (sous l'aspect analytique et géométrique) de la sphère de Riemann $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. Le groupe des homographies y est décrit et mis en lien avec le groupe $\mathrm{SL}(2,\mathbb{C})$. On y détermine aussi explicitement le groupe des biholomorphismes du disque unité ouvert et celui du demi-plan supérieur.

Le chapitre VI est consacré aux singularités d'une fonction holomorphe : apparente, pôle ou singularité essentielle. Ce qui amène de façon naturelle à la notion de fonction méromorphe, ensuite au théorème des résidus et ses fameuses applications au calcul effectif des intégrales de fonctions d'une variable réelle. On termine par le principe de l'argument et le théorème de Rouché.

Des exercices résolus sont proposés à la fin de chaque chapitre. Certains d'entre eux sont longs mais traitent souvent d'une notion apportant un complément au cours.

Plus réduite, la deuxième partie est consacrée à une introduction élémentaire aux surfaces riemanniennes avec un peu d'insistance sur le cas hyperbolique. Dans beaucoup d'endroits, l'utilisation des outils développés dans la première partie s'est avérée pertinente.

Dans le chapitre VII, on introduit la notion de surface différentiable à l'aide des cartes locales. Celles-ci permettent de transposer ce qu'on sait faire sur les ouverts du plan pour définir l'espace tangent, les champs de vecteurs, les formes différentielles... L'orientabilité d'une surface assure l'existence des formes volume qui donnent des mesures régulières similaires à la mesure de Lebesgue sur l'espace euclidien \mathbb{R}^2 . Les actions libres et propres de groupes discrets offrent un bon moyen pour fabriquer des surfaces.

Les métriques riemanniennes et les objets géométriques associés (par exemple la longueur d'une courbe) sont définis dans le chapitre VIII. Suivent, dans le chapitre IX, les connexions affines, les connexions riemanniennes et le théorème de Levi-Civita. On calcule en détail la courbure sectionnelle des trois surfaces \mathbb{R}^2 , \mathbb{S}^2 et \mathbb{H} (munies de leurs métriques respectives habituelles) et on détermine explicitement les géodésiques des deux premières. On clôt le chapitre par l'énoncé du théorème de classification des surfaces simplement connexes à courbure constante.

Le dernier chapitre est dédié à l'étude spécifique du demi-plan \mathbb{H} , ses géodésiques, son groupe d'isométries et à l'énoncé du théorème de Poincaré.

Contrairement à la première partie on n'a proposé que des exercices en vrac, sans solutions, laissant ainsi le soin au lecteur de réfléchir dessus et de les résoudre lui-même.

Une «troisième partie » de cet ouvrage consiste en cinq compléments. Ils sont peu développés et ne sont là que pour donner une idée de certaines notions utilisées dans les deux premières.

Dans Complément 1, on donne deux démonstrations du théorème fondamental de l'algèbre : une par le théorème de Liouville et l'autre utilisant des outils élémentaires de topologie algébrique.

Complément 2 est un regard furtif sur des ouverts du plan complexe, des simplement connexes à quelques autres : les couronnes par exemple.

Complément 3 est une introduction au groupe fondamental et aux revêtements. On donne le calcul explicite du groupe fondamental d'un espace d'orbites (obtenu par une action libre et propre d'un groupe discret). On explique l'énoncé et la signification du théorème de Van Kampen et on l'applique sur quelques exemples.

Complément 4 est constitué de quelques éléments de la théorie des groupes pour éclairer la lecture de certains passages dans les deux parties principales. On y introduit la notion de section, celle d'extension, de produit semi-direct, les groupes résolubles et les groupes nilpotents. On montre aussi comment est bâti un groupe dénombrable par générateurs et relations ainsi que la définition de la somme amalgamée (celle-ci intervient de façon déterminante dans le théorème de Van Kampen).

Complément 5 est un exposé rapide sur la notion de courbe elliptique : sa définition à partir d'un réseau de \mathbb{C} , sa structure complexe et la variation de celle-ci en fonction du réseau. On y définit les fonctions elliptiques et on indique comment la fonction de Weierstrass (la plus célèbre d'entre elles) permet de plonger une courbe elliptique en courbe algébrique dans le plan projectif $P^2(\mathbb{C})$.

TABLE DES MATIÈRES

VARIABLE COMPLEXE

I. NOMBRES COMPLEXES	
1. L'aspect algébrique	11
2. L'aspect géométrique	
3. Propriétés et calculs	
II. SÉRIES ENTIÈRES	
1. Rappels sur les séries numériques	25
2. Séries entières	
3. Exponentielle et logarithme complexes	
4. Fonctions analytiques	32
III. FONCTIONS HOLOMORPHES	
1. Préliminaires et premières définitions	41
2. Intégration complexe	44
IV. FORMULE ET THÉORÈME DE CAUCHY	
1. Homotopie des chemins	53
2. Théorème de Cauchy	55
3. Formule de Cauchy	57
4. Analyticité des fonctions holomorphes	59
V. HOMOGRAPHIE	
1. Définitions et notations	69
2. Étude de l'homographie	70
3. Le groupe $PSL(2,\mathbb{C})$	71
4. Le birapport	73
5. Étude géométrique d'un exemple	74
6. Biholomorphismes	76
VI. SINGULARITÉS ET RÉSIDUS	
1. Séries de Laurent	89
2. Singularités	90
3. Résidus	93
4. Calcul d'intégrales	
5. Principe de l'argument	98
COMPLÉMENT 1 : Le théorème fondamental de l'algèbre	
COMPLÉMENT 2 : Regard sur quelques ouverts de $\mathbb C$	

SURFACES RIEMANNIENNES

VII. SURFACES DIFFÉRENTIABLES	
 Définitions et exemples Applications différentiables Espace tangent Formes différentielles Actions de groupes Courbes complexes 	123 124 126 129
VIII. SURFACES RIEMANNIENNES	
1. Métriques riemanniennes	
IX. COURBURE	
 Connexions Courbure Exemples de calcul 	146
X. GÉOMÉTRIE HYPERBOLIQUE DES SURFACES	
1. Groupe des isométries de \mathbb{H} 2. Géodésiques de \mathbb{H} 3. Surfaces hyperboliques	153
EXERCICES EN VRAC	158
COMPLÉMENT 3 : Groupe fondamental et revêtements	
 Homotopie Groupe fondamental Revêtements Groupe fondamental d'un espace d'orbites Quelques exemples 	164 167 169
COMPLÉMENT 4 : Quelques notions utiles en théorie des groupes	
1. La notion de section 2. Extentions de groupes 3. Divers 4. Exemples d'extensions 5. Groupes résolubles, groupes nilpotents 6. Générateurs et relations	177 178 179 182
COMPLÉMENT 5 : Courbes elliptiques	
 Réseaux dans C Le tore différentiable Courbes elliptiques Fonctions elliptiques 	188 190
RÉFÉRENCES	

RÉFÉRENCES

La théorie des fonctions d'une variable complexe et celle des surfaces riemanniennes sont plus étendues que le simple aperçu exposé dans notre texte. Le lecteur désirant approfondir ses connaissances sur ces thèmes peut le faire dans les ouvrages référencés ci-dessous.

- [Ah] Ahlfors, L.V. Complex Analysis. Math. Series, McGraw-Hill (1979).
- [Ar] Armstrong, M.A. Groups and Symmetry. Under. Texts in Math., Springer (1988).
- [Be] Beardon, A.F. The Geometry of Discrete Groups. GTM 91, Springer-Verlag, (1983).
- [BP] Benedetti, R. & Petronio, C. Lectures on Hyperbolic Geometry. Universitext, Springer-Verlag, (1992).
- [BD] BONAVERO, L. & DEMAILLY, J.-P. Fonctions holomorphes et surfaces de Riemann. Notes de cours donnés à l'NS de Lyon en 2003-2005.
- [Cm] do Carmo, M. Geometria riemanniana. Projeto Euclides, Rio de Janeiro, (1988).
- [Ca1] Cartan, H. Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes. Enseignement des Sciences, Hermann (1985).
- [Ca2] Cartan, H. Cours de calcul différentiel. Méthodes, Hermann, (1977).
 - [Fo] Forster, O. Lectures on Riemann Surfaces. GTM 81, Springer (1981).
 - [Fr] Freitag, E. Hilbert Modular Forms. Springer-Verlag, (1990).
- [Go] Godbillon, C. Eléments de Topologie algébrique. Méthodes, Hermann, (1971).
- [Ha] HATCHER, A. Algebraic Topology. Cambridge University Press, (2002).
- [Hö] HÖRMANDER, L. An Introduction to Complex Analysis in Several Variables. D. Van Nostrand Compagny, Inc., (1966).
- [JS] Jones, G.A. & Singerman, D. Complex Functions. An algebraic and geometric viewpoint. Cambdrige University Press, (1987).
- [Ko] Kodaira, K. Complex Manifolds and Deformation of Complex Structures. Grund. der math. Wissenschaften 283, Springer-Verlag (1986).
- [Kr] Krantz, S.G. Geometric Function Theory. Cornerstones, Birkhäuser (2006).
- [LC] LAVRENTIEV, M. & CHABAT, B. Méthodes de la théorie des fonctions d'une variable complexe. Éditions Mir, Moscou (1972).
- Ra] Ratcliffe, J.G. Foundations of Hyperbolic Geometry. GTM 149, Springer-Verlag.
- [Se] Serre, J.-P. Cours d'arithmétique. Collection Sup, PUF (1970).
- [ST] SÁ EARP, R. & TOUBIANA, E. Introduction à la géométrie hyperbolique et aux surfaces de Riemann. Bibliothèque des Sciences, Diderot Éditeur (1997).
- [SG] Saint-Gervais, H.P. Uniformisation des surfaces de Riemann. ENS Éditions, Lyon.
- [Ve] Verjovsky, A. Introducción a la geometría y variedades hiperbólicas. Instituto Politéchnico Nacional, Mexico (1986).
- [Vo] Vogel, P. Fonctions analytiques. Collection Licence, Dunod (1999).

INDEX ALPHABÉTIQUE

Action	
- libre	130
- séparante	. 130
– propre	. 130
- totalement discontinue	. 130
Application	
- conforme	. 139
- différentiable	123
- tangente	. 126
Automorphisme d'un groupe	. 177
Biholomorphisme	76
Birapport	73
Centralisateur	. 179
Centre	179
Champ de vecteurs	. 125
Chemin	. 45
Connexion	
– affine	. 143
- riemannienne	. 144
Convergence	
- absolue	25
– rayon de	28
– disque de	28
Conditions de Cauchy-Riemann	43
Courbe complexe	. 132
Courbe elliptique	. 190
Courbure	
- tenseur de	. 146
- courbure sectionnelle	147
Critère	
- de d'Alembert	26
– de Cauchy	26
Dérivée covariante	. 143
Difféomorphisme	
Domaine fondamental	131
Espace	
- projectif	. 122
- tangent	
Étoilé	
Facteur de conformité	
Fonetion	

- analytique 32
– elliptique
– exponentielle
- holomorphe
- logarithme31
– méromorphe91
– multiforme 31
– Weierstrass
Forme différentielle
Formule
- de d'Alembert
– de Cauchy
- de Hadamard
– de Moivre
Géodésique
Groupe
- affine
– des automorphises du plan complexe $\mathbb C$
– des automorphismes du disque unité $\mathbb D$
– des automorphismes du demi-plan $\mathbb H$
- fondamental
- nilpotent
– résoluble
Homographie
Hyperbolique
– demi-plan
- surface
Identité
– de Bianchi
– de Jacobi
Indice d'un lacet
Inégalités de Cauchy
Intégrale sur un chemin45
Isométrie locale
Lemme
– d'Abel
– de Schwarz
Longueur d'une courbe
Métrique riemannienne
Nombre complexe
- argument
- module
Orbite

\mathbf{T}			
Pа	r_1	7,1	e

Partie	
– principale	89
– régulière	89
Partition de l'unité	
Point fixe	
Principe de l'argument	98
Principe du maximum	61
Produit semi-direct	
Quotient par une action	131
Résidu	93
Revêtement	167
Saturé	130
Section	
Série de Laurent	89
Simplement connexe	54
Singularité	
- apparente	91
- essentielle	
– pôle	91
Somme amalgamée	
Sous-groupe d'isotropie	
Support d'une fonction	
Surface	
– différentiable	120
- topologique	119
- hyperbolique	
Symboles de Christoffel	
Théorème	
– de Cauchy	57
- de classification	
– de Levi-Civita	
– fondamental de l'algèbre	
– de Liouville	
– de Mittag-Leffler	
– de Picard	
– de Poincaré	· · · · · · · · · · · · · · · · · · ·
– des résidus	
- de Riemann	
- de Rouché	
- d'uniformisation	
- de Van Kampen	
- de Weierstrass	
Transport parallèle	
1 P	