Exercice 1

 $(0, \overrightarrow{u}, \overrightarrow{v})$ est un repère orthonormal du plan \mathscr{P} .

Soit A le point d'affixe 1; soit B le point d'affixe −1.

Soit F l'application de \mathscr{P} privé de O dans \mathscr{P} qui à tout point M d'affixe z distinct de O associe le point M' = F(M) d'affixe $z' = \frac{-1}{\overline{z}}$.

- 1. a. Soit E le point d'affixe $e^{i\frac{\pi}{3}}$; on appelle E' son image par F. Déterminer l'affixe de E' sous forme exponentielle, puis sous forme algébrique.
 - **b.** On note \mathscr{C}_1 le cercle de centre O et de rayon 1. Déterminer l'image de \mathscr{C}_1 par l'application F.
- **2. a.** Soit K le point d'affixe $2e^{i\frac{5\pi}{6}}$ et K' l'image de K par F. Calculer l'affixe de K'.
 - **b.** Soit \mathcal{C}_2 le cercle de centre O et de rayon 2. Déterminer l'image de \mathcal{C}_2 par l'application F.
- 3. On désigne par R un point d'affixe $1+e^{\mathrm{i}\theta}$ où $\theta\in]-\pi$; $\pi[.R$ appartient au cercle \mathscr{C}_3 de centre A et de rayon 1.
 - **a.** Montrer que $z' + 1 = \frac{\overline{z} 1}{\overline{z}}$.

En déduire que : |z' + 1| = |z'|.

b. Si on considère maintenant les points d'affixe $1+e^{i\theta}$ où $\theta \in]-\pi$; π [, montrer que leurs images sont situées sur une droite. On pourra utiliser le résultat du **a.**.

Exercice 2

I. Restitution organisée de connaissances

- 1. Démontrer qu' un nombre complexe z est imaginaire pur si et seulement si $\overline{z} = -z$.
- 2. Démontrer qu'un nombre complexe z est réel si et seulement si $\overline{z} = z$.
- **3.** Démontrer que pour tout nombre complexe z, on a l'égalité : $z\overline{z} = |z|^2$.

Le plan complexe est rapporté a un repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$. On se propose de démontrer, à l'aide des nombres complexes, que tout triangle de sommets A, B, C, deux à deux distincts, d'affixes respective a, b, c, et dont le centre du cercle circonscrit est situé à l'origine O, a pour orthocentre le point H d'affixe a+b+c.

Il. Étude d'un cas particulier

On pose : a = 3 + i, b = -1 + 3i, $c = -\sqrt{5} - i\sqrt{5}$.

- 1. Vérifier que O est le centre du cercle circonscrit au triangle ABC.
- 2. Placer les points A, B, C et le point H d'aflixe a+b+c, puis vérifier graphiquement que le point H est l'orthocentre du triangle ABC.

III. Étude du cas général.

ABC est un triangle dont O est le centre du cercle circonscrit, et *a*, *b*, *c* sont les affixes respectives des points A, B, C.

1. Justifier le fait que O est le centre du cercle circonscrit au triangle ABC si et seulement si :

$$a\overline{a} = b\overline{b} = c\overline{c}$$
.

- 1. On pose $w = \overline{b}c b\overline{c}$.
 - **a.** En utilisant la caractérisation d'un nombre imaginaire pur établie dans le I., démontrer que w est imaginaire pur.
 - **b.** Verifier l'égalité : $(b+c)\left(\overline{b}-\overline{c}\right)=w$ et justifier que : $\frac{b+c}{b-c}=\frac{w}{|b-c|^2}$.
 - **c.** En déduire que le nombre complexe $\frac{b+c}{b-c}$ est imaginaire pur.
- **2.** Soit H le point d'affixe a + b + c.
 - **a.** Exprimer en fonction de a, b et c les affixes des vecteurs \overrightarrow{AH} et \overrightarrow{CB} .
 - **b.** Prouver que $(\overrightarrow{CB}, \overrightarrow{AH}) = \frac{\pi}{2} + k\pi$, où k est un entier relatif quelconque. (On admet de même que $(\overrightarrow{CA}, \overrightarrow{BH}) = \frac{\pi}{2} + k\pi$).
 - c. Que représente le point H pour le triangle ABC?