Le but du problème est de trouver toutes les fonctions f vérifiant :

$$\begin{cases} f & \text{est d\'efinie et d\'erivable sur } \mathbb{R} \\ \forall x, y \in \mathbb{R}, \ f(x+y) = f(x)f(y) \end{cases} \tag{1}$$

- 1. Soit f une fonction constante égale à C qui vérifie (1). Alors, f(0) = f(0)f(0), ce qui amène $C = C^2$, soit C = 0 ou C = 1. Les fonctions $x \mapsto 0$ et $x \mapsto 1$ vérifient bien (1).
- 2. La fonction $x \mapsto e^{ax}$, où a est un réel, est définie et dérivable sur $\mathbb R$.

Pour tous x et $y \in \mathbb{R}$, $e^{a(x+y)} = e^{ax+ay} = e^{ax}e^{ay}$.

- 3. A partir de maintenant on suppose que f n'est pas la fonction nulle et que f vérifie (1).
- a) Supposons qu'il existe $a \in \mathbb{R}$ tel que f(a) = 0, alors, pour tout x,

 $f(x) = f((x-a)+a) = f(x-a)f(a) = f(x-a) \times 0 = 0$; donc f est la fonction nulle, ce qui est exclu. On en déduit que, pour tout x, $f(x) \neq 0$.

b) f(0) = f(0)f(0), donc f(0) = 0 ou f(0) = 1, et d'après 3a, f(0) = 1.

Pour tout x, $f(x) = f(x/2 + x/2) = (f(x/2))^2 \ge 0$; or, pour tout y, $f(y) \ne 0$, donc, pour tout x, f(x) > 0.

- 4. On pose k = f'(0).
- a) Soit a fixé, on pose, pour tout x, g(x) = f(x+a) f(a)f(x).

f vérifie (1), donc, pour tout x, g(x) = 0.

Pour tout x, g'(x) = f'(a+x) - f(a)f'(x) = 0.

En prenant x = 0, il vient alors que, pour tout a, f'(a) = f'(0)f(a) = kf(a).

- 5. On pose, pour tout x, $h(x) = f(x)e^{-kx}$
- a) On a: $h(0) = f(0)e^0 = 1$.
- b) Pour tout x, $h'(x) = f'(x)e^{-kx} kf(x)e^{-kx} = kf(x)e^{-kx} kf(x)e^{-kx} = 0$.
- c) D'après 5b, h est une fonction constante sur l'intervalle \mathbb{R} , de plus h(0) = 1, donc, pour tout x, h(x) = 1.
- d) On en déduit que, pour tout x, $f(x)e^{-kx}=1$, soit $f(x)=e^{kx}$. D'après 2, ces fonctions vérifient bien (1). Les fonctions f définies sur $\mathbb R$ par $f(x)=e^{kx}$, où $k\in\mathbb R$, sont les seules solutions de (1), hormis la fonction nulle.