Exercice 1.

On cherche les nombres réels a strictement positifs et les fonctions f définies et continues sur l'intervalle $[a, +\infty[$, vérifiant, pour tout x supérieur ou égal à a, la relation $\int_a^x f(t) \, \mathrm{d} \, t = 2 \ln x$. Démontrer que le problème posé a une et une seule solution, que l'on déterminera.

Exercice 2.

Dans une pièce à température constante de 20 °C, à l'instant initial, noté 0, la température $\theta(0)$ d'un liquide est égale à 70 °C.

Cinq minutes plus tard, elle est de 60 °C.

On admet que la température θ du liquide est une fonction dérivable du temps t, exprimé en minutes, et que $\theta'(t)$ est proportionnel à la différence entre la température $\theta(t)$ et celle de la pièce. On notera a le coefficient de proportionnalité, $a \in \mathbf{R}$.

1. Démonstration de cours.

Soit (E) l'équation différentielle z' = az.

Prérequis : la fonction $x \mapsto e^{ax}$ est solution de l'équation (E).

Démontrer que toute solution de (E) est de la forme $x \mapsto Ce^{ax}$, où C est une constante réelle.

- 2. Résoudre l'équation différentielle : y' = ay 20a.
- 3. Quelle sera la température du liquide 30 minutes après l'instant initial?

Exercice 3.

Soit f une fonction définie et dérivable sur R. On suppose que f(0) = 1.

- 1. On suppose vérifiée, pour tout nombre réel x, la relation $f(x) + f'(x) \leq 0$. Comparer, pour $x \geq 0$, f(x) et e^{-x} .
- 2. Soit a un réel positif. On suppose à présent que f vérifie la relation

$$af(x) + f'(x) \leq 0.$$

Que peut-on en déduire pour f?

3. Dans un processus, une certaine quantité est mesurée par une fonction g du temps t, qui vérifie l'équation différentielle :

$$g'(t) + 0.001g(t) + k(t)g^2(t) = 0$$

où k est une fonction positive de t. Déterminer un instant t_0 tel que l'on puisse affirmer que, pour $t \ge t_0$ la valeur de g(t) est inférieure ou égale à 5% de sa valeur initiale g(0).