Méthode de Simpson

I. On veut montrer que la formule $\int_a^b g(x)dx = \frac{b-a}{6}(g(a)+4g(c)+g(b))$, où $c = \frac{a+b}{2}$, est vérifiée si g est un polynôme de degré inférieur ou égal à 3.

- a) Montrer que la formule est vérifiée pour les polynômes $P_0(x) = 1$, $P_1(x) = x$ et $P_2(x) = x^2$.
- b) En utilisant la linéarité de l'intégrale, montrer que la formule est vérifiée pour tout polynôme $P(x) = \alpha x^2 + \beta x + \gamma$.
- c) Montrer que la formule est aussi vérifiée pour le polynôme $x \mapsto x^3$.
- d) En déduire que la formule est exacte pour les polynômes de degré inférieur ou égal à 3.
- e) Calculer $\int_{1}^{3} (2x^3 7x + 3) dx$ avec cette formule.

II. Soit f une fonction continue sur [a, b].

Soit y = P(x), où P est un polynôme de degré inférieur ou égal à 2, une équation de la courbe passant par les points (a, f(a)), (c, f(c)) et (b, f(b)) où $c = \frac{a+b}{2}$.

On approchera $\int_a^b f(x)dx$ par $\int_a^b P(x)dx = \frac{b-a}{6}(f(a)+4f(c)+f(b))$, cette approximation est d'autant meilleure que la largeur de l'intervalle est petite.

On subdivise l'intervalle [a, b] en 2n intervalles de même largeur, on pose $h = \frac{b-a}{2n}$, $x_i = a + ih$ pour i = 0..2n.

$$\begin{aligned} &\text{Montrer que l'on peut approcher } \int_a^b f(x) dx = \int_{x_0}^{x_2} f(x) dx + \int_{x_2}^{x_4} f(x) dx + ... + \int_{x_{2n-2}}^{x_{2n}} f(x) dx & \text{ par } \\ &K_n = \frac{h}{3} (f(x_0) + 4(f(x_1) + f(x_3) + ... + f(x_{2n-1})) + 2(f(x_2) + f(x_4) + ... + f(x_{2n})) - f(x_{2n})) \,. \end{aligned}$$

Si f est 4 fois continûment dérivable sur [a, b], on peut montrer que si M est un majorant de $\left|f^{(4)}\right|$ sur

[a, b], alors
$$\left| \int_a^b f(x) dx - K_n \right| \le \frac{M(b-a)^5}{2880n^4}$$
.

III. Un exemple. Soit
$$I = \int_{-1}^{1} \frac{e^x}{1+x^2} dx$$
.

En utilisant le tableur Excel, calculer une valeur approchée de I en prenant n = 2.

	А	В	С	D	E
9	n=	2	h=	0,5	
10	0	-1	0,18393972	0,18393972	
11	1	-0,5	0,48522453	1,94089811	
12	2	0	1	2	
13	3	0,5	1,31897702	5,27590807	
14	4	1	1,35914091	2,71828183	1,79331447

Faites les saisies ci-dessous :

$$B9 = 2$$
, $D9 = 2/(B9*2)$

$$A10 = 0$$
, $B10 = -1$, $C10 = EXP(B10)/(1+(B10)^2)$, $D10 = C10$

$$A11 = A10 + 1$$
, $B11 = B10 + D$9$, $C11 = EXP(B11)/(1 + (B11)^2)$,

Sélectionner la plage A11 – D11 et la recopier jusqu'à A14 – D14 avec la poignée de recopie.

$$E14 = (SOMME(\$D\$10:D14)-D14/2)*\$D\$9/3$$

Calculer une valeur approchée de I pour n=5, 10 puis 15; pour cela, changer la valeur de n et recopier les cellules A14-E14 tant que nécessaire.