Exercice 1 On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $$u_0 = 5$$ et, pour tout entier $n \ge 1$, $u_n = \left(1 + \frac{2}{n}\right)u_{n-1} + \frac{6}{n}$. - 1. a. Calculer u_1 . - **b.** Les valeurs de u_2 , u_3 , u_4 , u_5 , u_6 , u_7 , u_8 , u_9 , u_{10} , u_{11} sont respectivement égales à : 45, 77, 117, 165, 221, 285, 357, 437, 525, 621. À partir de ces données conjecturer la nature de la suite $(d_n)_{n\in\mathbb{N}}$ définie par $d_n = u_{n+1} - u_n$. 2. On considère la suite arithmétique $(v_n)_{n\in\mathbb{N}}$ de raison 8 et de premier terme $v_0 = 16$. Justifier que la somme des n premiers termes de cette suite est égale à $4n^2 + 12n$. - 3. Démontrer par récurrence que pour tout entier naturel n on a : $u_n = 4n^2 + 12n + 5$. - 4. Valider la conjecture émise à la question 1. b.. ## **Exercice 2** ## Partie A On considère l'ensemble (E) des suites (x_n) définies sur $\mathbb N$ et vérifiant la relation suivante : pour tout entier naturel *n* non nul, $x_{n+1} - x_n = 0.24x_{n-1}$. 1. On considère un réel λ non nul et on définit sur $\mathbb N$ la suite (t_n) par $t_n=\lambda^n$. Démontrer que la suite (t_n) appartient à l'ensemble (E) si et seulement si λ est solution de l'équation $\lambda^2-\lambda-0,24=0$. En déduire les suites (t_n) appartenant à l'ensemble (E). On admet que (E) est l'ensemble des suites (u_n) définies sur $\mathbb N$ par une relation de la forme : $$u_n = \alpha(1,2)^n + \beta(-0,2)^n$$ où α et β sont deux réels. - 2. On considère une suite (u_n) de l'ensemble (E). Déterminer les valeurs de α et β telles que $u_0=6$ et $u_1=6,6$. En déduire que, pour tout entier naturel $n,\ u_n=\frac{39}{7}(1,2)^n+\frac{3}{7}(-0,2)^n$. - 3. Determiner $\lim_{n\to+\infty} u_n$. ## Partie B On considère la suite (v_n) définie sur \mathbb{N} par : $$v_0 = 6$$ et, pour tout entier naturel n , $v_{n+1} = 1.4v_n - 0.05v_n^2$ - 1. Soit f la fonction définie sur \mathbb{R} par $f(x) = 1,4x 0,05x^2$. - **a.** Étudier les variations de la fonction f sur l'intervalle [0; 8]. - **b.** Montrer par récurrence que, pour tout entier naturel n, $0 \le v_n < v_{n+1} \le 8$ - 2. En déduire que la suite (v_n) est convergente et déterminer sa limite ℓ .