Exercice 1

On considère la suite (u_n) définie, pour tout $n \in \mathbb{N}^*$, par $u_n = \frac{1! + 2! + ... + n!}{n!}$.

- 1. Montrer que, pour tout $n \in \mathbb{N}^*$, $u_{n+1} = \frac{1}{n+1}u_n + 1$.
- 2. Si la suite (u_n) converge, quelle est sa limite?
- 3. Montrer que, pour tout $\,n\in\mathbb{N}^*\,,\,1\!\leq\!u_{_{n}}\!\leq\!2\,.$
- 4. En déduire que, pour tout $\,n\in\mathbb{N}^*\,,\;0\,{\le}\,u_{_{n+1}}\,{-}\,1\,{\le}\,\frac{2}{n+1}\,.$ Conclure.

Exercice 2

Soit
$$f(x) = x^4 + x^3 - x + 1/2$$
.

Etudier les variations de la fonction f'.

Justifier qu'il existe une unique valeur α telle que f'(α) = 0.

Montrer que $0,4 < \alpha < 0,5$.

En procédant par encadrement, montrer que $0,0896 < f(\alpha) < 0,2875$.

En déduire que l'équation f(x) = 0 n'a pas de solution sur \mathbb{R}

Exercice 3

Un marcheur parcourt 12 km en une heure.

Soit f(t) le nombre de kilomètres parcourus en t heure, $t \in [0, 1]$.

On pose
$$g(t) = f(t+1/2) - f(t), t \in [0, 1/2].$$

- 1. Calculer g(0) et g(1/2). En déduire que 12 = g(0) + g(1/2), puis que 6 est entre g(0) et g(1/2).
- 2. En déduire, en utilisant le théorème des valeurs intermédiaires, qu'il existe un intervalle d'une demi-heure pendant lequel le marcheur a parcouru exactement 6 km.