Exercice 1

Soit h(x) = g(x) - f(x). Pour tout $x \in \mathbb{R}^+$, $h'(x) = g'(x) - f'(x) \ge 0$. Donc h est croissante sur \mathbb{R}^+ , de plus h(0) = g(0) - f(0) = 0, donc, pour tout $x \in \mathbb{R}^+$, $h(x) \ge 0$, soit $g(x) \ge f(x)$.

Exercice 2

Soit $f(x) = \sqrt{x^2 + x + 1} - x$ et C sa courbe représentative dans un repère $(0; \vec{i}, \vec{j})$.

1 Limite en −∞

$$\lim_{x \to -\infty} (x^2 + x + 1) = \lim_{x \to -\infty} x^2 = +\infty, \quad \lim_{x \to +\infty} \sqrt{X} = +\infty, \quad \text{donc, par composition des limites,}$$

$$\lim_{x \to -\infty} \sqrt{x^2 + x + 1} = +\infty \text{ ; or } \lim_{x \to -\infty} (-x) = +\infty, \text{ donc } \lim_{x \to -\infty} f = +\infty.$$

Limite en +∞

Pour tout
$$x > 0$$
, $f(x) = \frac{x^2 + x + 1 - x^2}{\sqrt{x^2 + x + 1} + x} = \frac{x + 1}{x\sqrt{1 + 1/x + 1/x^2} + x} = \frac{1 + 1/x}{\sqrt{1 + 1/x + 1/x^2} + 1}$.

$$\lim_{x \to +\infty} (1 + 1/x + 1/x^2) = 1, \quad \lim_{x \to 1} \sqrt{X} = 1, \quad \text{donc}, \quad \text{par composition des limites,}$$

$$\lim_{x \to +\infty} \sqrt{1 + 1/x + 1/x^2} = 1 \text{ ; de plus } \lim_{x \to +\infty} (1 + 1/x) = 1, \text{ on en déduit que } \lim_{x \to +\infty} f = \frac{1}{2}.$$

2. Equation de la droite asymptote à C en −∞

Pour tout
$$x < 0$$
, $\frac{f(x)}{x} = \frac{-x\sqrt{1+1/x+1/x^2} - x}{x} = -\sqrt{1+1/x+1/x^2} - 1$.

Donc
$$\lim_{x \to -\infty} \frac{f(x)}{x} = -2$$
.

Pour tout
$$x < 0$$
, $f(x) + 2x = \sqrt{x^2 + x + 1} + x = \frac{x + 1}{\sqrt{x^2 + x + 1} - x} = \frac{1 + 1/x}{-\sqrt{1 + 1/x + 1/x^2} - 1}$.

On en déduit que $\lim_{x \to -\infty} (f(x) + 2x) = -\frac{1}{2}$.

Une équation de la droite asymptote en $-\infty$ est $y = -2x - \frac{1}{2}$.

Exercice 3

1. a) Pour tout x,
$$P(x) = 2x^3 - 3x^2 - 1$$
, $P'(x) = 6x^2 - 6x = 6x(x-1)$

On en déduit le tableau de variations ci-dessous :

X	$-\infty$	0		1	2	+ ∞
P '(x)	+	0	-	0	+	
P(x)		<u></u> -1		_ -2_	9	+ ∞

Sur
$$]-\infty,1], P(x) < 0.$$

Sur $[1,+\infty[$, la fonction P est continue et strictement croissante, au vu du tableau de variations et par le corollaire du théorème des valeurs intermédiaires, P admet un zéro unique α dans $[1,+\infty[$ qui appartient à [1,2].

$$P(1,6) \approx -0.488$$
 et $P(1,7) \approx 0.156$, donc $1.6 < \alpha < 1.7$ (en fait $\alpha \approx 1.67765$).

2.
$$x \in D =]-1, +\infty[, f(x) = \frac{1-x}{1+x^3}.$$

a) f est une fonction rationnelle, donc dérivable sur son domaine de définition, et on a, pour tout $x \in D$, $f'(x) = \frac{2x^3 - 3x^2 - 1}{(1 + x^3)^2} = \frac{P(x)}{(1 + x^3)^2}$.

On en déduit le tableau de variations ci-dessous :

X	-	$\alpha + \infty$				
f'(x)		- 0 +				
		+∞ 0				
f(x)						
		$f(\alpha) \approx -0.12$				

b) f(0) = 1, f'(0) = -1, une équation de la tangente D' au point d'abscisse 0 est y = 1 - x.

Pour tout
$$x \in D$$
, $f(x) - (1-x) = \frac{x^3(x-1)}{1+x^3} = d(x)$.

	$1 \pm \lambda$							
X	-1		0		1		$+\infty$	
d(x)		+	0	-	0	+		

Ce tableau précise la position de la courbe par rapport à la tangente D'.

c) f(1) = 0, f'(1) = -1/2, une équation de la tangente D" au point d'abscisse 1 est y = -(x-1)/2.

Pour tout
$$x \in D$$
, $f(x) + (x-1)/2 = \frac{(x-1)^2(x^2+x+1)}{2(1+x^3)} \ge 0$.

Donc la courbe est toujours au-dessus de D".

