Exercice 1

Soit f la fonction définie sur [-2, 8] par $f(x) = \frac{x^2 + 4x + 7}{x + 3}$.

1. Pour tout $x \in [-2, 8]$,

$$f'(x) = \frac{(2x+4)(x+3) - (x^2+4x+7)}{(x+3)^2} = \frac{2x^2+10x+12-x^2-4x-7}{(x+3)^2} = \frac{x^2+6x+5}{(x+3)^2}.$$

Pour tout x, $(x+1)(x+5) = x^2 + 6x + 5$, donc, pour tout $x \in [-2, 8]$, $f'(x) = \frac{(x+1)(x+5)}{(x+3)^2}$.

2. Le signe de f'(x) est celui de (x+1)(x+5).

X	-2	-1		8
f'(x)	-	0	+	

Tableau de variations de f:

X	-2		-1	8
f'(x)		-	0	+
f(x)	3		2	103/11

3. On a : $f(3) = \frac{14}{3}$ et $f'(3) = \frac{8}{9}$, donc une équation cartésienne de la tangente au point d'abscisse 3 est : $y = \frac{8}{9}(x-3) + \frac{14}{3}$, soit $y = \frac{8}{9}x + 2$.

4. Pour tout
$$x \in [-2, 8]$$
, $x+1+\frac{4}{x+3}=\frac{(x+1)(x+3)+4}{x+3}=\frac{x^2+4x+7}{x+3}=f(x)$.

5. Pour tout $x \in [-2, 8]$, $f(x) - (x+1) = \frac{4}{x+3} > 0$, la courbe C est strictement au-dessus de la droite D d'équation y = x+1.

Exercice 2

1. Soit x > 0, A(3, 0), $M(x, x^2)$, $\overrightarrow{AM}(x - 3, x^2)$.

Pour tout x > 0, $g(x) = AM^2 = (x-3)^2 + x^4 = x^4 + x^2 - 6x + 9$.

2. Pour tout x > 0, $g'(x) = 4x^3 + 2x - 6$.

Pour tout x, $(x-1)(4x^2+4x+6) = 4x^3+4x^2+6x-4x^2-4x-6 = 4x^3+2x-6$.

3. Pour tout x > 0, $4x^2 + 4x + 6 > 0$, le signe de g'(x) dépend de x - 1.

X	0 1	$+\infty$
g'(x)	- 0 +	
g (x)	5	•

4. Pour tout x > 0, $h(x) = AM = \sqrt{g(x)}$.

 $h = \sqrt{g}$ et g ont les mêmes variations.

5. On en déduit que la valeur minimale de AM, obtenue pour x = 1, est $h(1) = \sqrt{5}$.

Exercice 3

1. On a :
$$AC^2 = (\overrightarrow{AB} + \overrightarrow{BC})^2 = AB^2 + BC^2 + 2\overrightarrow{AB}.\overrightarrow{BC}$$
, d'où $\overrightarrow{AB}.\overrightarrow{BC} = \frac{1}{2}(AC^2 - AB^2 - BC^2) = \frac{1}{2}(-44) = -22$.

2. On a :
$$\overrightarrow{AB}.\overrightarrow{BC} = \overrightarrow{AB} \times \overrightarrow{BC} \times \cos(\overrightarrow{AB},\overrightarrow{BC})$$
, d'où $\cos(\overrightarrow{AB},\overrightarrow{BC}) = \frac{\overrightarrow{AB}.\overrightarrow{BC}}{\overrightarrow{AB} \times \overrightarrow{BC}} = \frac{-22}{32} = \frac{-11}{16}$.

La mesure principale de $(\overrightarrow{AB}, \overrightarrow{BC})$ est d'environ 2,33 rd.

3.
$$\overrightarrow{AD} = \overrightarrow{AB} + 2\overrightarrow{BC}$$
. On a:

$$AD^{2} = (\overrightarrow{AB} + 2\overrightarrow{BC})^{2} = AB^{2} + 4BC^{2} + 4\overrightarrow{AB}.\overrightarrow{BC} = 64 + 64 - 88 = 40.$$

D'où AD =
$$\sqrt{40} = 2\sqrt{10}$$
.

Exercice 4

$$2. \qquad \cos x = \frac{-20}{29}$$

- 3. si t est solution, alors –t est solution
- 4. 4 solutions
- 5. 2 solutions
- 6. $\frac{2\pi}{3}$