Exercice 1

$$\frac{x^2 + x - 2}{x^2 - 9} \le 0$$

$$\Leftrightarrow \frac{(x - 1)(x + 2)}{(x - 3)(x + 3)} \le 0$$

$$\Leftrightarrow x \in]-3,-2] \cup [1,3[$$

(en faisant un tableau de signes)

Exercice 2

$$\begin{cases} x + y = 126 \\ xy = 3569 \end{cases} \Leftrightarrow \begin{cases} y = 126 - x \\ x(126 - x) = 3569 \end{cases} \Leftrightarrow \begin{cases} y = 126 - x \\ x^2 - 126x + 3569 = 0 \end{cases} (1)$$

$$\Delta = 40^2$$
, les solutions de (1) sont $x_1 = \frac{126 - 40}{2} = 43$ et $x_2 = \frac{126 + 40}{2} = 83$.

Les couples solutions sont (43,83) et (83,43).

Exercice 3

1. D_m est la droite de coefficient directeur m et passant par le point A(2,4).

Une équation de D_m est : y = m(x-2)+4, soit y = mx-2m+4.

2. On a:

$$M(x,y) \in P \cap D_m \Leftrightarrow \begin{cases} y = x^2 \\ y = mx - 2m + 4 \end{cases} \Leftrightarrow \begin{cases} y = x^2 \\ x^2 - mx + 2m - 4 = 0 \end{cases}$$

3.
$$P_m(x) = x^2 - mx + 2m - 4$$
, $\Delta = m^2 - 4(2m - 4) = m^2 - 8m + 16 = (m - 4)^2$.

Le polynôme admet une racine double si et seulement si m = 4.

4. D_4 coupe P en un seul point, c'est la tangente à P en A, une équation cartésienne de cette tangente est y = 4x - 4.

Exercice 4

1. $\overrightarrow{AB}(4,4)$ est un vecteur directeur de D_1 . Une équation cartésienne de la droite D_1 est x-y+c=0. $A \in D_1 \Leftrightarrow 3+2+c=0 \Leftrightarrow c=-5$. Une équation cartésienne de D_1 est donc x-y-5=0.

2. D_2 est parallèle à la droite Δ , donc une équation cartésienne de la droite D_2 est 2x-y+c=0. $C \in D_2 \Leftrightarrow -6+1+c=0 \Leftrightarrow c=5$. Une équation cartésienne de D_2 est donc 2x-y+5=0.

3. Une équation cartésienne de la droite D_3 est $y = \frac{4}{3}(x-2)+1$, soit 4x-3y-5=0.

4. On a:
$$\begin{cases} x - y = 5 \\ 2x - y = -5 \end{cases} \Leftrightarrow \begin{cases} y = x - 5 \\ 2x - x + 5 = -5 \end{cases} \Leftrightarrow \begin{cases} x = -10 \\ y = -15 \end{cases}.$$

Le point I(-10,-15) est l'intersection de D_1 et D_2 . On vérifie qu'il appartient aussi à D_3 . Les trois droites sont concourantes.

Exercice 5

1. On a : A(0,0), B(1,0), C(0,1), I(1/2,0), L(0,3).

$$\overrightarrow{AJ} = \overrightarrow{AB} + \overrightarrow{BJ} = \overrightarrow{AB} + \frac{3}{5}(\overrightarrow{BA} + \overrightarrow{AC}) = \frac{2}{5}\overrightarrow{AB} + \frac{3}{5}\overrightarrow{AC} \text{, d'où } J(2/5,3/5) \text{.}$$

2. On a : $\overrightarrow{IL}(-1/2,3)$ et $\overrightarrow{IJ}(-1/10,3/5)$.

$$det(\overrightarrow{IL}, \overrightarrow{IJ}) = \begin{vmatrix} -1/2 & -1/10 \\ 3 & 3/5 \end{vmatrix} = 0$$
, donc I, J et L sont alignés.