1. Généralités

 Une sigmatropie est la migration d'une liaison s le long d'un système p. Cette définition permet de mieux comprendre ce qu'est un réarrangement sigmatropique. Ainsi un tel réarrangement ne peut pas avoir lieu sur un alcane, car ce dernier ne possède pas de liaison p. A noter que cette liaison p peut provenir d'une double liaison, d'une fonction carbonyle, et bien d'autres…

Le réarrangement sigmatropique admet une nomenclature bien particulière. En effet, on parle de réarrangement de type [n, m]. Avec n et m des valeurs décimales. Ces valeurs sont simples à attribuer, il suffit d'établir une numérotation à partir de la liaison que l'on va rompre (des deux cotés on attribue une numérotation), puis on attribue les valeurs de n et m à la position que va occuper la liaison s qui a migrée.

L'exemple suivant montre donc une sigmatropie de type [3, 3]. L'exemple ci-dessous est un réarrangement de Claisen.

 

2. Réarrangement de Claisen

Les publications originales sont en allemand mais qu'importe quand on aime… Claisen, L. Chem. Ber. 1912, 45, 3157; Chem. Ber. 1925, 58, 275 et Chem. Ber. 1926, 59, 2344. Voir aussi, mais en anglais cette fois-ci, la revue de Nowicki, J. Molecules 2000, 5, 1033.

2.1 Transfert de chiralité-1,3

L'exemple ci-dessous est un peu particulier puisqu'en fait au cours de cette sigmatropie on va rompre une liaison portée par un carbone stéréogène. Ce centre stéréogène va être recréé, après le réarrangement et il y aura eu transfert de chiralité de la position 1 (en rouge) vers la nouvelle position 3 (en rouge), mais nous reviendrons en détail sur ce point un peu plus loin.

 

2.2 Méthode de Johnson

Cette méthode permet de mettre en place la fonction alcool allylique nécessaire au réarrangement. Pour cela on utilise un ortho ester. Dans le cas suivant le produit final sera une cétone dans le cas où le groupe R est de type alkyle. Si R est de type OEt alors on obtiendra un ester en fin de réaction.

Transfert de chiralité : Basé sur la même méthode, on peut utiliser l'alcool allylique chiral suivant. Au cours du réarrangement on aura conservation de la stéréochimie. Cela est du à l'état de transition, en effet ici on fait un réarrangement [3, 3], donc l'état de transition est de type Zimmerman-Traxler, d'où un très bon transfert de chiralité.

Deux points importants sont à souligner pour cet exemple :

  1. Le groupe méthyle qui est en avant du plan, avant réarrangement, se retrouve aussi en avant du plan après le réarrangement. De plus sa configuration absolue est R avant et après réarrangement, mais ça c'est pas une règle c'est juste une observation car il faut toujours revérifier les ordres de priorité selon les règles de Cahn-Ingold-Prelog.
  2. La stéréochimie E de l'insaturation reste inchangée avant et après réarrangement.

Le réarrangement de Claisen est aussi possible à partir de triples liaisons carbone-carbone (ce qui va alors donner un allène) ou à partir d'une triple liaisons carbone-azote.

Tous ces réarrangements sont des réarrangements qui se font par chauffage. Par addition d'un acide de Lewis, il est possible de diminuer cette température et ainsi éviter des dégradations ou des polymérisations.

2.3 Réaction d'aza Claisen

Le réarrangement d'aza Claisen est semblable au réarrangement de Claisen classique à la petite exception que dans le cas de l'aza Claisen il y a un atome d'azote qui intervient. En gros on va rompre une liaison carbone-azote. Dans le cas suivant la réaction est palladocatalysée, alors on ne peut pas vraiment écrire le mécanisme avec les flèches comme précédemment, mais on peut quand même mettre quelques flèches juste pour mieux comprendre (Overmann, L. E. Angew. Chem. 1984, 96, 565). A nouveau, on observe une sigmatropie [3,3].

Pour bien comprendre voici donc un exemple encore plus simple (Hill, R. K.; Gilman, N. W. Tetrahedron Lett. 1967, 1421) :

Enfin, un dernier exemple utilisé en synthèse cette fois-ci (Kazmaier, U.; Schneider, C. Synthesis 1998, 9, 1321) : Dans cet exemple on a un réarrangement de Claisen classique, avec transfert 1,3 de chiralité.

 

3. Réarrangement de Cope

Le réarrangement de Cope est assez proche de celui de Claisen (Cope, A. C.; Hardy, E. M. J. Am. Chem. Soc., 1940, 62, 441). A nouveau, on observe une sigmatropie [3,3], cette fois-ci la réaction est un équilibre qui évolue vers la formation du produit thermodynamiquement le plus stable.

L'addition de complexes de palladium est connue pour faciliter ce réarrangement, comme nous l'avons vu pour le réarrangement de Claisen.
L'exemple suivant décrit en 1997 (Schneider, C. Synlett 1997, 815) l'utilisation de ce réarrangement en synthèse. Ici la force motrice de la réaction est la conjugaison de la double liaison à la fonction carbonyle, ce qui déplace totalement l'équilibre dans le sens de la formation du produit.

3.1 Oxy-Cope

Concernant la réaction d'oxy-Cope, il n'y a pas grand chose à dire si ce n'est qu’elle est très proche de la réaction de Cope.

3.2 Aza-Cope

De même que l'on avait observé une réaction d'aza-Claisen, il existe une réaction d'aza-Cope qui fait intervenir un atome d'azote, comme sont nom l'indique… En fait, il existe plusieurs types de réactions d'aza-Cope, comme pour les aza-Claisen, et celles peuvent se faire à partir de molécules neutres ou de molécules chargées comme des ions iminiums.

 


4. Réarrangement de Carroll

4.1 Généralités

Le réarrangement de Carroll est un réarrangement extrêmement stéréosélectif. (Carroll, K. F. J. Chem. Soc. 1940, 704.)

L'exemple suivant montre le réarrangement de Carroll classique. Celui-ci commence par une transestérification entre l'alcool allylique A et le cétoester B, pour donner un nouvel ester C. Ce nouveau cétoester C peut exister sous deux formes, une forme cétone C (minoritaire) et une forme énol D (majoritaire). C'est cette forme énol D qui va permettre le réarrangement sigmatropique pour donner l'acide E. Or comme pour faire cette sigmatropie, on chauffe, on va observer une décarboxylation pour finalement obtenir la cétone G.

L'exemple ci-dessous met en valeur un réarrangement de Carroll au cours de la synthèse d'une molécule naturelle (Hatcher, M. A. Tetrahedron Lett. 2002, 43, 5009).

La première étape consiste en une déprotonation par NaH au pied du cétoester. Cette déprotonation se fait à chaud dans le para-xylène, et ainsi le réarrangement se fait dans la foulée, ainsi que la décarboxylation ce qui donne directement le produit issu du réarrangement. Alors bien sûr au cours de cette réaction il y a création d'un centre stéréogène (celui qui porte la fonction acide carboxylique) mais comme la molécule est immédiatement décarboxylée, on n'étudie pas la configuration absolue de ce centre.


4.2 Variante de Ireland

La variante de Ireland, permet de faire le même réarrangement de Carroll toujours en chauffant, mais cette fois-ci on évite la réaction de décarboxylation. Car cette fois on ne part plus d'un cétoester, mais tout simplement d'un ester (Ireland, R. E.; Mueller, R. H. J. Am. Chem. Soc. 1972, 94, 5897; Ireland, R. E.; Mueller, R. H.; Willard, A. K. J. Am. Chem. Soc. 1976, 98, 2868).

L'exemple ci-dessous montre un réarrangement de Ireland avec un parfait transfert de chiralité (Konno, T.; Daitoh, T.; Ishihara, T.; Yamanaka, H. Tetrahedron: Asymmetry 2001, 12, 2743.) :

4.3 Exemple en synthèse

 Cet exemple illustre le réarrangement de Carroll dans lequel on observe une contraction de cycles (voir Tetrahedron Lett. 1996, 37, 8065).

 

Pour plus d'informations ...
Pour aller plus loin ...