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Elliptic instability in two-dimensional flattened Taylor–Green vortices
D. Sipp and L. Jacquin
ONERA, 29, Avenue de la Division Leclerc, BP 72, F-92322,
Châtillon Cedex, France

~Received 13 August 1997; accepted 19 December 1997!

The aim of the present paper is to study three-dimensional elliptic instability in two-dimensional
flattened Taylor–Green vortices, which constitutes a model problem for the topics of wake vortex
dynamics. Shortwave asymptotics and classical linear stability theory are developed. Both
approaches show that the flow is unstable. In particular, the structure of the most amplified growing
mode is the same as that obtained in unbounded elliptical flows. The limits of the linear regime and
the effects of the nonlinear interactions are characterized by means of a spectral Direct Numerical
Simulation~DNS!. © 1998 American Institute of Physics.@S1070-6631~98!02404-0#
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I. INTRODUCTION

The three-dimensional~3-D! elliptic instability in homo-
geneous elliptic flows is now well understood.1–3 Extensions
to nonhomogeneous cases, where the flow is only loc
elliptical and where there may be boundary conditions,
not straightforward—we make a distinction between hom
geneous basic flows which are unbounded with a unifo
velocity gradient tensor and nonhomogeneous basic fl
which can be bounded, like a flow in an elliptical cylinder,
unbounded.

However, linear stability results exist for such flow
Stability analyses of a Rankine or a Lamb vortex in an
ternally imposed plane strain field have already be
achieved.4–6 The mechanism of instability involved is a tr
adic resonance between two kelvin waves of the same
quency and strain field. The same phenomenology occu
a bounded elliptic cylinder.7 The linear amplification rate is
found to be nearly the same as in the homogeneous cas
fact, it has been shown2 that the superposition of unstab
unbounded Fourier modes leads to a growing inertial m
that satisfies the boundary conditions in an elliptic cylind
So, in this particular case, a strict analogy exists between
homogeneous and the nonhomogeneous cases.

A recently developed theory by Lifschitz,8–10 the so-
called shortwave asymptotics, enables a generalization o
homogeneous flow theory to nonhomogeneous flows
shows that elliptic stagnation points are always unstable w
respect to short wavelength instabilities, no matter wh
type of flow surrounds them.

This paper is devoted to another example of nonhom
geneous flow subjected to an elliptic instability, the tw
dimensional~2-D! Taylor–Green vortices, which is actuall
a solution of the viscous Navier–Stokes equations. It is
fined by the following stream function:

C5
A~ t !sin bxx sin byy

bx
21by

2

with A(t)5A0 exp(2n(bx
21by

2)t). The wave numbersbx and
by are related to the periodicitiesdx anddy :bx52p/dx and
by52p/dy . This flow, whose streamlines are represented
8391070-6631/98/10(4)/839/11/$15.00
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Fig. 1, corresponds to an infinite array of counter-rotat
vortices. There are elliptic and hyperbolic stagnation poin
For example, at~x5dx/4, y5dy/4!, the flow is locally ellip-
tical: Ux52(g1e)y, Uy51(g2e)x with g5A/2 and e
5A(by

22bx
2)/2(by

21bx
2). The local ellipticity is E

5A(g1e)/(g2e)5dx /dy , which is also the aspect ratio o
the cells. The flow is locally hyperbolic at~x50, y50!:
Ux51dx, Uy52dy with d5Abxby /(bx

21by
2).

It is known, from shortwave asymptotics,8 that both stag-
nation points are unstable. Therefore, we expect elliptic
hyperbolic instabilities. Thus care is needed since we
trying to study only elliptic instability.

Lundgren and Mansour11 have performed a DNS of flat
tened 2-D Taylor–Green vortices and Bayly12,13 gave some
results on the linear stability with respect to short wavelen
perturbations. In the present paper, the linear propertie
this flow will be investigated with shortwave asymptoti
~Sec. II A! and by applying the usual 3-D viscous linear s
bility analysis ~Sec. II B!. Then the nonlinear evolution o
the growing mode will be studied by means of a Direct N
merical Simulation~DNS! ~Sec. III!.

II. LINEAR STABILITY ANALYSIS

In this section, we neglect the slow viscous decay of
Taylor–Green flow by consideringA(t) as constant and
equal to 2.5. This assumes that the decay rate of the m
flow is slow compared to the growth rate of the instability

The following cases have been considered:

~1! E51 with dx51, dy51, where the elliptic points are
now solid rotation points which are stable according
shortwave asymptotics;

~2! E52 with dx52, dy51, where unstable elliptic and hy
perbolic points coexist in the flow.

A. Shortwave asymptotics

1. General equations

Shortwave asymptotics were developed and applied
Lifschitz and Hameiri. In this section we review the bas
theory. The reader is referred to Refs. 8–10 in which
© 1998 American Institute of Physics
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whole theory is thoroughly explained and applied. Th
theory is now currently used in hydrodynamic stability stu
ies of various flows.14–16

The steady basic flowU~x! is perturbed by the following
velocity field:

u~x,t !5a~x,t !exp@ ih21f~x,t !#,

whereh is a small parameter. IntroducingU(x)1u(x,t) in
the inviscid incompressible Navier–Stokes equations
linearizing around the basic flowU~x!, we get the following
equation at lowest order inh:

~] t1U–“ !f50,

which means that the phase field is passively advected.
The next-lowest-order terms yield the evolution equat

for the velocity envelope function:

~] t1U–“ !a5S 2kkT

uku2 2I D La,

wherek5“f, L is the velocity gradient tensor,I is the
identity tensor, and the superscriptT denotes the transpose
Lifschitz proved that the flow is unstable if this system
perturbation equations has any solutions whose amplit
increases unboundedly ast→`.

This system evolves locally along particle trajectorie
which means that it can be written in Lagrangian form. Th
one considers a rapidly oscillating localized perturbat
evolving along the trajectoryX(t) and characterized by
wave vectork(t) and a velocity envelopea(t). For a steady
flow, these quantities are governed by the following set
equations:

dX

dt
5U~X!, ~1!

dk

dt
52L T~X!k, ~2!

da

dt
5S 2kkT

uku2 2I D L~X!a. ~3!

A sufficient criterion for instability is that this system has
least one solution for which the amplitudea(t) unboundedly
increases ast→`.

FIG. 1. Streamlines of 2-D Taylor–Green vortices. Casedx52, dy51, E
52.
Downloaded 12 Sep 2007 to 134.59.10.172. Redistribution subject to AIP
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These equations can be thought of as an extensio
rapid distortion theory ~RDT!17–19 to nonhomogeneous
flows. Although these equations seem similar, shortwave
ymptotics is a different theory. In particular,k and a have
different meanings in the two theories. It should be no
that the sufficient criterion of instability given above is n
valid in RDT. Contrary to shortwave asymptotics, one has
integrate overk to obtain the perturbation energy, which ca
decay, although some Fourier modes~typically a set of mea-
sure zero ink space! have growing amplitudes.20

We restrict our analysis to the streamlines belonging
the cell ~0<x<dx/2, 0<y<dy/2!. This cell contains one
elliptic point at ~x5dx/4, y5dy/4! and four hyperbolic
points at ~x50, y50!, ~x50, y5dx/2!, (x5dx/2, y50),
and (x5dx/2, y5dy/2!. Note that all streamlines are close
except those bounding the cells. The origin of all the
closed streamlines is taken asX(t50)5(x8,dy/4,0) where
dx/4<x8<dx/2. The corresponding time period is denot
T(x8).

2. Floquet analysis for the differential equation
governing k „t …

For the case of closed streamlines, the mat
2L T@X(t)# is periodic in time which means that the firs
order linear-differential equation for the wave vectork(t) ~2!
can be analyzed with Floquet theory. One looks for t
eigenvalues/eigenvectors of the matrixK @T(x8)# where
K (t) is a matrix that satisfies

dK

dt
52L T~X!K

and

K ~0!5I .

With the flow being 2-D, it is readily seen tha
K 31@T(x8)#5K 32@T(x8)#50 and that@l51, k(0)5ez# is
a trivial eigenvalue/eigenvector, which means th
K 13@T(x8)#5K 23@T(x8)#50 and K 33@T(x8)#51. Also,
for a steady flow,d/dt@k–U(X)#50 along each streamline
hencek(t)–U@X(t)#5cte. SinceU(t50) is parallel toey ,
this implies thatK 21@T(x8)#50 andK 22@T(x8)#51. The
trace of the matrix2L T being null, the determinant o
K @T(x8)# is unity which implies thatK 11@T(x8)#51. The
matrix K @T(x8)# therefore reads

K @T~x8!#5S 1 K 12~x8! 0

0 1 0

0 0 1
D .

The componentK 12(x8) must be calculated numericall
along each streamline. The results are shown in Fig. 2 for
caseE52. A similar result is obtained for the caseE51.

In the vortex center (x8→dx/4), where the flow is lo-
cally homogeneous~in this caseK 1250!, the component
K 12(x8) vanishes.

But, the more streamlines become distorted, the m
K 12(x8) grows. This means that ifk(0)–eyÞ0 the wave
vectork(t) will grow indefinitely. One may expect that th
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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wavy-perturbation dies out because of viscosity. Therefo
only the casek(0)–ey50 is considered. Furthermore, th
differential equation fora(t) ~3! is independent of the wav
numberuku. Consequently, the initial wave vectork(0) only
depends on the colatitudeu:k(0)5sin(u)ex1cos(u)ez . Be-
sides, the first-order linear differential equation fora(t) ~3!
can be analyzed with Floquet theory sincek(t) is periodic.

3. Floquet analysis for the differential equation
governing a „t …

The same analysis is now applied for the different
equation governinga(t) ~3!. We consider the matrix
A@T(x8)#, whereA(t) satisfies

dA

dt
5S 2kkT

uku2
2I D L~X!A

and

A~0!5I .

A trivial eigenvalue/eigenvector ofA@T(x8)# is @m51,
a(0)5ez#. Because the determinant ofA@T(x8)# is
unity—it can be verified that the average over one period
the trace of (2kkT/uku22I )L(X) is zero—the two remain-
ing complex eigenvalues (m1,m2) where um1u>um2u must
multiply to 1:m1m251; hence they are either complex co
jugates of unit modulus or real and reciprocals. The sys
verifiesd(kiAi j )/dt50, which proves that if@m,a(0)# is an
eigenvalue/eigenvector ofA@T(x8)#, then @a(0)–k(0)#
3(12m)50. This means that the two possible remaini
eigenvectors are orthogonal tok(0). This result is consisten
with shortwave asymptotics.

If the matrix A@T(x8)# is diagonalizable—a sufficien
but not necessary condition for this is that (m1,m2,1) are all
distinct—, the corresponding complex Floquet expone
(s15s r

11Is i
1, s25s r

21Is i
2), defined as (m15es1T(x8),

m25es2T(x8)! and therefore verifyings r
1>s r

2 and s11s2

50, enable us to conclude: ifs r
1.0 the streamline is un

stable with respect to short wave asymptotics and ifs r
1<0, it

is stable.
When the matrix is not diagonalizable—a necessary

not sufficient condition for this is that equality arises amo

FIG. 2. Values ofK 12(x8) for the caseE52, dx52, dy51.
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eigenvalues—the previous analysis fails. In a conveni
normed basis, the matrixA@T(x8)# can be put in a Jordan
form:

S m l 0

0 m 0

0 0 1
D ,

wherem561. The flow is always unstable but the grow
rate is algebraic:ulu/T(x8) per period. Those cases will no
be considered since we focus on exponentially growing
stabilities; therefore we will only need to compute the tw
Floquet exponents (s1,s2). Hence, the flow is exponentially
unstable ifs r

1.0. Finally, the colatitude angleu of the wave
vector att50 is taken in the interval@0,p/2# since the ei-
genvalues ofA@T(x8)# are invariant with respect to th
transformationsu→2u andu→p2u.

The caseE51 reveals that the closed streamlines a
exponentially stable for all colatitude anglesu of the initial
wave vectork~0! ~we actually hope that we did not miss
narrow instability band since all cases are not studied
only a finite number of them! but the flow is actually alge-
braically unstable since for colatitudesu50, p/2 the matrix
A@T(x8)# is not diagonalizable.

On the other hand, closed streamlines for the caseE
52 are unstable. The results are given in Fig. 3. In the ce
of the vortex, all the results, i.e., the amplification rate a
the instability band of Bayly’s homogeneous case wh
E52, are recovered. As shown in Fig. 4, where the ma
mum values ofs r are plotted versusx8, the amplification
rate decreases asx8 increases: The streamlines do not u
dergo exponential hyperbolic instability although the loc
ized perturbation regularly goes through a hyperbolic regi

4. Open cell-bounding streamlines

Particles on streamlines that are not closed converge
ward the hyperbolic stagnation points. Thus, one only ne
to study these four particular points. Considering for instan
the streamlineX(t)5X(0)5(0,0,0), one gets

FIG. 3. Values of largest Floquet exponents r
1 in the (x8,u) plane. Case

E52, dx52, dy51.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2L T~X!5S 2
Abxby

bx
21by

2 0 0

0 1
Abxby

bx
21by

2 0

0 0 0

D .

k(0)5ey grows unboundedly which means that it will b
damped by viscosity eventually andk(0)5ex will tend to
zero. Therefore, we will only determine the growth rate
a(t) for the casek(0)5k(t)5ez . The matrix involved in~3!
becomes

S 2kkT

uku2
2I D L~X!5S 2

Abxby

bx
21by

2 0 0

0 1
Abxby

bx
21by

2 0

0 0 0

D .

This shows that, whatever the value ofE, the cell-bounding
streamlines are unstable with amplification rates
5Abxby /(bx

21by
2)5d. For the caseE51, s5d51.25 and

with E52, s5d51.00.

B. Viscous linear stability theory

In this section we will perform a ‘‘classical’’ viscou
linear stability analysis. The Reynolds number is defined
the circulation G over each cell:G5ruds5Adxdy /p2

which implies that Re5G/n5Adxdy /(p2n).

1. Method

We consider a 3-D periodic flow, with period
(dx ,dy ,dz). The velocity field and pressure can therefore
expressed as follows:

u~x,y,z,t !5 (
m,n,p

û~m,n,p,t !eI ~mbxx1nbyy1pbzz!,

p~x,y,z,t !5 (
m,n,p

p̂~m,n,p,t !eI ~mbxx1nbyy1pbzz!.

Let k(m,n,p)5(kx ,ky ,kz)5(mbx ,nby ,pbz). The viscous
incompressible Navier–Stokes equations read:

FIG. 4. Maximum values ofs r
1 vs the streamline parameterx8. CaseE

52, dx52, dy51.
Downloaded 12 Sep 2007 to 134.59.10.172. Redistribution subject to AIP
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]ûa

]t
1nk2ûa52IPabNb , ~4!

where

Pab5dab2
kakb

k2 ,

Nb5(
l

ûb~ l!kgûg~k2 l!.

IntroducingÛ(k)1û(k) and linearizing around the basi
flow, we get the following linear problem:

]ûa

]t
52nk2ûa1(

l
S 2Ûa~ l!Ikgûg~k2 l!

1S 2
kakb

k2 2dabD IkgÛg~ l!ûb~k2 l! D . ~5!

Because the basic flow is two dimensional, we can rest
our study to p51 without loss of generality. Now, the
Taylor–Green flow corresponds to a superposition of fo
elementary modes in spectral space:

Ûx~bx ,by,0!5Ûx~bx ,2by,0!

52Ûx~2bx ,by,0!

52Ûx~2bx ,2by,0!51
A

4I

by

bx
21by

2 ,

Ûy~bx ,by,0!52Ûy~bx ,2by,0!

52Ûy~2bx ,by,0!

5Ûy~2bx ,2by,0!52
A

4I

bx

bx
21by

2 .

The sum overl in the linear operator involved on the righ
hand side of Eq.~5! reduces therefore to four terms. Beside
as pointed out by Bayly,13 the eigenmodes can be decom
posed into two independent subsets: the even modes w
m1n is even and the odd modes wherem1n is odd. This
comes from the fact that each mode (m,n) is only coupled
with the four neighboring modes~m21, n21!, ~m21, n
11!, ~m11, n21!, ~m11, n11!.

We represent this linear operator with a matrix, in whi
each component corresponds to a mode interaction. Tha
to viscosity, we truncate that matrix and solve t
eigenvalue/eigenvector problem numerically. When look
for the odd modes eigenvalues on a DEC alpha server 8
5/300 with 8 processors, it takes 19 h of computation wh
the matrix size is 656036560, which corresponds to240
<m<40 and240<n<40.

The eigenvalues and eigenvectors@s, ũ~k!# found are
such that u(t)5estũ(k) is a solution of the linearized
Navier–Stokes equations~5!.

The basic flow is linear with respect toA. This means
that the eigenvalues are proportional toA and that the struc-
ture of the eigenmodes do not depend onA. Thus, an eigen-
mode developing on a viscous decaying Taylor–Green fl
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



at

of
io
ica

i
de
t

of
pe
is
t

f
th
al
lc

re

e
os

or
en
ty
an
a

e

st
g.
l
th
n-
ta
e
ri

e
o
b
io

in
w

l-
ra e

843Phys. Fluids, Vol. 10, No. 4, April 1998 D. Sipp and L. Jacquin
remains an eigenmode for all time, the amplification r
decreasing asA(t). This property will be used in Sec. III.

2. Problems connected with truncation of the Fourier
modes

As we solve the linear problem with a finite number
Fourier modes, we have to be careful with the interpretat
of the eigenvalues/eigenvectors given by this numer
method. An eigenvalue/eigenvector couple is valid only
the eigenvector concentrates all of its energy in the mo
with small wave number (m,n). For example, suppose tha
we represent the modes verifying240<m, n<40. With our
numerical method we will obtain 6560 couples
eigenvalues/eigenvectors. Now, we have to look at the s
trum of each eigenvector. A rough criteria of validity in th
case could be: 99% of the energy should be contained in
modes verifying220<m, n<20, i.e., in the lowest part o
the handled spectrum. If not, part of the energy lies in
upper part of the spectrum and therefore truncation inv
dates the corresponding eigenvector. Hence, for each ca
lation, we have to check the validity of each couple ca
fully.

Finally, this truncation method only gives a few of th
valid eigenvalues/eigenvectors. In the following, we supp
that this set contains the most amplified modes~so that we
can conclude whether the flow is stable or not!. This is true
when viscosity is large, since viscosity stabilizes the sh
wave perturbations. In Secs. II B 3 and II B 5, this argum
holds. But, in Sec. II B 6, we perform an inviscid stabili
analysis. In this case, viscosity cannot be put forward
nothing enables us to state that the calculated set of v
modes includes the most unstable ones.

3. The case E 51

The numerical problem was solved for the following s
of parameters:E51, dx51, dy51, dz50.5625, Re52500.
The vertical wavelengthdz50.5625 corresponds to the mo
unstable configuration. The eigenvalues are plotted in Fi
for both odd and even modes~symbols labeled ‘‘genera
case’’!. Each symbol represents one eigenvalue in
(s r ,s i) plane. The striking fact here is that the flow is u
stable: There are four unstable odd modes and three uns
even modes. The structure of a typical unstable eigenmod
given in Fig. 6 where we have shown the norm of the ho
zontal vorticity in the plane (x,y). All these eigenmodes ar
localized on the planes separating the cells, where as sh
before with short wave asymptotics, streamlines are unsta
Therefore, the instability is due to the hyperbolic stagnat
points.

However, this is a spurious phenomenon when study
instabilities occurring in the center of the vortices. Hence,
will now try to eliminate this ‘‘hyperbolic’’ instability.

4. Slip conditions

In a recent paper,11 Lundgren suggests imposing the fo
lowing consistent set of symmetry conditions in spect
space for all (m,n,p):
Downloaded 12 Sep 2007 to 134.59.10.172. Redistribution subject to AIP
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ûx~2m,n,p!52ûx~m,n,p!,

ûy~2m,n,p!51ûy~m,n,p!,

ûz~2m,n,p!51ûz~m,n,p!,
~6!

ûx~m,2n,p!51ûx~m,n,p!,

ûy~m,2n,p!52ûy~m,n,p!,

ûz~m,2n,p!51ûz~m,n,p!.

FIG. 5. Odd and even mode eigenvalues in the (s r ,s i) plane. CaseE51,
dx51, dy51, dz50.5625, Re52500.

FIG. 6. Iso-vx
21vy

2 in a cutz5cte of a typical unstable eigenfunction. Cas
E51, dx51, dy51, dz50.5625, Re52500.
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We are going to show that these symmetry conditio
stabilize the flowE51, therefore removing the spurious u
stable hyperbolic modes.

It can be shown that the viscous Navier–Stokes eq
tions conserve these symmetries and that the correspon
eigenvalues just form a subset of the general case eigen
ues.

These conditions imply that the flow slips along t
planes separating the vortices:ux50 on the planesx
5nxdx/2 ;nx anduy50 on the planesy5nydy/2 ;ny .

When applying these slip conditions, the flow wi
E51 is stabilized as it is shown in Fig. 5 where the circl
represent the eigenvalues that verify these slip condition

5. The case E 52

We now look at the elliptic instability that should de
velop for the caseE52. Calculations are performed for th
casedx52, dy51, dz51.843 75, Re52500. Again, the ver-
tical size of the box corresponds to the most unstable c
figuration. The eigenvalues are given in Fig. 7. It can be s
that the flow is unstable. Yet the slip condition remov
seven out of eight unstable odd modes and five out of se
unstable even modes. The typical structure of the remain
unstable modes is given in the upper plot of Fig. 8: T
horizontal vorticity is concentrated on the vortex centers a
there is very little vorticity on the planes separating the v

FIG. 7. Odd and even mode eigenvalues in the (s r ,s i) plane. CaseE52,
dx52, dy51, dz51.843 75, Re52500.
Downloaded 12 Sep 2007 to 134.59.10.172. Redistribution subject to AIP
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tices. On the other hand, in the lower plot of Fig. 8, we c
see that the vorticity on the removed eigenmodes is also v
strong on these planes. In conclusion, the slip conditions
an efficient means to eliminating hyperbolic instabili
modes in Taylor–Green flows.

The spectral structure of the remaining unstable o
mode is given in Table I. For each Fourier mod
û(m,n)eI (mbxx1nbyy1bzz), the first and second columns giv
wave numbersm and n, the third to fifth columns giveû
normalized so that(m,nuû(m,n)u251, the sixth column
gives the percentage of energyuû(m,n)u2, and the last col-
umn the cumulative sum of these percentages. It is seen

FIG. 8. Upper plot: iso-(vx
21vy

2) in a z5cte cut of a typical eigenfunction
of the slip-condition subset~‘‘elliptic’’ mode !. Lower plot: the same for a
typical function not belonging to that subset~‘‘hyperbolic’’ mode!. Case
E52, dx52, dy51, dz51.843 75, Re52500.

TABLE I. Spectral structure of the most amplified odd mode. For ea
Fourier mode, the first and second columns give the wave numbersm andn,
the third to fifth columns giveûx , ûy , ûz , the sixth column gives the
percentage of energy in the corresponding (m,n) mode, and the last column
gives the cumulative sum. CaseE52, dx52, dy51, dz51.84375, Re
52500.

m n ûx ûy ûz

Energy fraction
~%!

Energy sum
~%!

21 0 0.312 0 0.287 17.98 17.98
1 0 20.312 0 0.287 17.98 35.96
0 1 0 20.139 0.256 8.45 44.41
0 21 0 0.139 0.256 8.45 52.86
1 22 0.246 0.053 20.031 6.45 59.31

21 22 20.246 0.053 20.031 6.45 65.77
21 2 20.246 20.053 20.031 6.45 72.22

1 2 0.246 20.053 20.031 6.45 78.67
22 1 0.113 0.164 20.093 4.83 83.5

2 1 20.113 0.164 20.093 4.83 88.34
2 21 20.113 20.164 20.093 4.83 93.17

22 21 0.113 20.164 20.093 4.83 98.0
¯ ¯ ¯ ¯ ¯ ¯ ¯
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12 Fourier modes contain 98% of the energy of the eig
mode. The involved Fourier modes are all long wavelen
~umu<2 and unu<2!. An important consequence of this re
sult is that very little resolution is needed in spectral spac
represent the growing mode when performing the DNS
Sec. III.

The corresponding horizontal and vertical vorticity
physical space are given in Fig. 9. These two pictures ca
compared with Figs. 2 and 3 of Waleffe’s paper.2 The struc-
ture of the mode in each cell is roughly the same as
obtained in homogeneous elliptic flows: The vertical vort
ity forms a dipole whose axis is aligned with the stretchi
direction and the horizontal vorticity is oriented in the sam
direction. Furthermore, for both cases the mode is station
The amplification rates50.2414 has to be compared wit
0.3825, obtained both with the correspondingE52 inviscid
homogeneous case and with inviscid shortwave asympto
applied in the center of the vortex~see Figs. 3 and 4!. This
discrepancy is mainly due to the fact that the vertical wa
number kz52p/dz53.41 is not asymptotically large~see
Sec. II B 6!. Also, one could invoke viscosity but viscosit
remains weak for our case where Re52500.

In Fig. 10 we give a plot of the ten most amplified e
genvaluess r—of the slip-condition subset—for both od
and even modes versus vertical wave numberkz . The arrow
locates the vertical wave number corresponding todz

51.843 75, used until now for theE52 case. These intricat
plots represent the linear mode interactions in this flow. F
ure 11 gives a zoom on the area shown by a circle in Fig.

FIG. 9. Vertical vorticityvz ~upper plot! and horizontal vorticity (vx ,vy)
~lower plot! of the most amplified eigenfunction. To be compared with Fi
2 and 3 of Waleffe’s unbounded elliptic instability. CaseE52, dx52, dy

51, dz51.843 75, Re52500.
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We can see in the (s r ,s i) plane two eigenvalues collapsin
and giving rise to the most amplified odd mode.

6. Link between shortwave asymptotics and classical
linear stability theory

The shortwave asymptotics describe inviscid shortwa
instabilities. The results were given in Sec. II A. In order
compare the theory with the classical linear theory used
this section, we solve the eigenvalue/eigenvector prob
with the following set of parameters:dx52, dy51, dz

50.25,n50, which means that Re5`. The periodsdx and
dy correspond to the usual basic flowE52. The perioddz is
smaller compared to the preceding cases in order to desc

.

FIG. 10. Odd and even mode eigenvalues in the (kz ,s r) plane. An arrow
shows the casedz51.843 75. CaseE52, dx52, dy51, Re52500.

FIG. 11. Magnification of the (s r ,s i) plane in the area shown by the circl
in Fig. 10. CaseE52, dx52, dy51, Re52500.
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perturbations with shorter wavelengths. The general cas
genvalues have been computed with a spectral resolutio
240<m, n<40. The slip-condition eigenvalues have be
computed with an even higher resolution to check the qua
of the results of the general case eigenvalues. The calcula
has been performed to account for the following mod
280<m, n<80. This was possible because of the new sy
metries involved in the problem. The size of the matrix
approximately the same as in the previous calculation.

Results are given in Fig. 12. The amplification rate of t
most unstable mode is 0.3500, obtained with both calc
tions. This is close to the 0.3825 amplification rate predic
with shortwave asymptotics.

The spectral structure of the most unstable odd mo
part of which is given in Table II, shows that 99% of th
energy is concentrated in the (m,n) modes verifying214
<m, n<14. The corresponding horizontal and vertical vo
ticity in physical space are given in Fig. 13. We can see t
it is an elliptic mode. The picture given here is very close
the unbounded homogeneous case.2

As mentioned in Sec. II B 2, we have to be cautious w
the interpretation of the results. Since viscosity has been
to zero, shortwave perturbations are not stabilized. Th
fore, the pictures in Fig. 12 may not be exhaustive: Th
may be an eigenvalue/eigenvector couple~which we cannot
describe with the spectral resolution employed!, which is
even more unstable than those exhibited. This is a little

FIG. 12. Odd and even mode Eigenvalues in the (s r ,s i) plane. CaseE
52, dx52, dy51, dz50.25,n50.
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turbing, but the following conclusion still holds: We hav
discovered an inviscid elliptic mode, whose amplificati
rate is close to the value predicted by shortwave asympto
The matching will be more exact if we use an even sho

FIG. 13. Vertical vorticityvz ~upper plot! and horizontal vorticity (vx ,vy)
~lower plot! of the most amplified odd mode~in upper right cell!. To be
compared with Figs. 2 and 3 of Waleffe’s unbounded elliptic instabili
CaseE52, dx52, dy51, dz50.25,n50.

TABLE II. Spectral structure of the most amplified odd mode. The first a
second columns give the wave numbersumu andunu, the third column gives
the percentage of energy in the corresponding (umu,unu) modes, and the las
column gives the cumulative sum. CaseE52, dx52, dy51, dz50.25, Re
5`.

umu unu Energy fraction~%! Energy sum~%!

9 2 5.6 5.6
9 4 4.7 10.3
7 6 4.2 14.5
5 8 3.5 18.0
7 4 3.4 21.4

10 1 3.2 24.6
1 10 3.0 27.6

10 3 3.0 30.6
¯ ¯ ¯ ¯

14 1 0.3 96.5
¯ ¯ ¯ ¯

14 3 0.2 98.6
¯ ¯ ¯ ¯

7 12 0.1 99.0
¯ ¯ ¯ ¯
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wavelengthdz . To prove this statement, we have done
series of calculations with the vertical wavelengthdz set to
dz50.05,0.1,0.15,0.2,0.25.Only the slip condition modes
have been calculated because of memory constraints.
focus on the most amplified odd mode. The smaller the va
of dz , the more spectral resolution we need: For example
the casedz50.1, we need the wave numbers verifyin
229<m,n<29 to store 99% of the energy of the mode. W
checked that for each value ofdz , the mode is elliptic, i.e.,
the mode is localized on the center of the vortices and
structure of the horizontal and vertical vorticity is the sam
as in Waleffe.2 The corresponding amplification rate vers
the vertical wavelengthdz is given in Fig. 14. A straight line
was fitted to the observations and the extrapolation of
line to dz50 gives s r50.3825, which is the same as th
value predicted by shortwave asymptotics in the center of
vortices~this extrapolation method has already been used
Bayly13!. This proves that shortwave asymptotics are tota
consistent with classical linear theory.

III. THE NONLINEAR REGIME

A. The code

We use a Fourier spectral code that solves the inc
pressible Navier–Stokes equations~4!. The nonlinear term is
directly computed in spectral space by evaluation of con
lution sums. Time advancement is achieved with a comp
third-order Runge–Kutta scheme. Time-discretization a
truncation~a finite number of Fourier modes are used! are
the only approximations achieved. Viscosity is used throu
the damping terme2nk2t to filter the shortwave contribution
lying outside the calculation domain.

B. Results for the case E52

A calculation was performed withE52, dx52, dy51,
and dz51.843 75. The Reynolds number is 2500. The v
cous cutoff is given bykc51/An570. The size of the calcu
lation box is 25325317 which, thanks to the high symme
tries achieved in spectral space, enables us to represen
following modes:224<m<24, 224<n<24 and216<p
<16 or, in terms of wavelengths,275<kx<75, 2150<ky

FIG. 14. Amplification rate of the most unstable odd mode of the s
condition subset vs vertical wavelengthdz . CaseE52, dx52, dy51, n
50.
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<150,255<kz<55. This is certainly not sufficient when
strong cascade develops, but this is not the case and
calculation is valid for a long time.

We initialize the calculation with the four Taylor–Gree
modes withA052.5 plus the most amplified odd mode. Th
structure of this mode and its theoretical amplification rate
given by the linear stability analysis. For the present ca
s r50.2414.

The results of the calculations are given in Figs. 15 a
16.

The two upper plots in Fig. 15 give the time evolution
the total energy in the box~solid line!, the energy of the four
modes that form the Taylor–Green flow~dotted line!, and

FIG. 15. Upper plot: total energy~solid line!, Taylor Green energy~dotted
line!, and perturbation energy~dashed line! vs time. Middle plot: the same
in log scale. Lower plot: normalized amplification rates r(t)/s r(0) ~solid
line!. The dashed line is the same but rescaled to take account for vis
decay of the basic flow. CaseE52, dx52, dy51, dz51.843 75, Re
52500.
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the remaining energy called the perturbation energy~dashed
line!. These two plots represent the same data, the firs
linear scale, the second in log scale. The total energy is
creasing because of viscosity. The perturbation ene

FIG. 16. Time evolution of iso-vorticity surfaces.
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which was initially three orders of magnitude smaller th
the basic flow energy, undergoes a dramatic increase a
expense of the basic flow. For example, at timeT523, there
is as much energy in the perturbation as in the Taylor–Gr
vortices. At timeT530, there is nearly no energy any mo
in the Taylor–Green vortices. The plot in log scales sho
that the instability is exponential: The initial slope of th
perturbation energy curve~divided by two to transform en-
ergy growth rates into amplitude growth rates! is exactly that
predicted by linear theory~which proves that our code work
well!. The lower plot in Fig. 15 represents, in solid line, th
energy amplification rate~again divided by two! normalized
by the initial theoretical linear stability amplification rate
This value is decreasing because viscosity is eroding the
sic flow @remember that eigenvalues are proportional
A(t)# and because of nonlinearities. In the lower plot, w
have also represented in a dashed line, a rescaled versi
the amplification rate: s r

rs(t)5s r(t)A(0)/
s r(0)A(t), whereA(t) is the value computed at timet. If
there were no nonlinearities, this quantity should be equa
s r

rs(t)51 for all time. As we can see,s r
rs(t) is close to 1 for

T<20, which corresponds toEp(t)/ETG(t)<1/3, where
Ep(t) is the perturbation energy andETG(t) is the Taylor–
Green energy. This quantity then decreases drastically
cause of nonlinear effects: The energy of the perturbatio
of the same order of magnitude as the energy of the Tayl
Green vortices.

The four plots of Fig. 16 represent time evolution
iso-values of total vorticity in one cell. The initial elliptic
vortex (T50) undergoes a sinusoidal instability (T517.5)
until the vortex encounters the cell-separating bounda
(T522.5 andT527.5). The picture of the early stages
that DNS ~T50 andT517.5! is consistent with Leweke’s
shortwave instabilities observations in a vortex pair.21

IV. CONCLUSION

We have achieved the linear stability analysis for t
two casesE51 andE52. A comparison between shortwav
asymptotics and classical linear stability theory has b
achieved. Although the domain of validity of the two the
ries is completely different~short wavelength for shortwav
asymptotics and long wavelength for viscous classical lin
theory!, this study reveals that they are consistent. Shortw
asymptotics have proved that all closed streamlines oE
51 flow are exponentially stable whereas the planes se
rating each vortex are strongly unstable (s r5d51.25).
These results are consistent with the application of class
linear theory. Imposing slip conditions enables us to elim
nate these unstable modes. For the caseE52, shortwave
asymptotics show that streamlines in the center of the vo
are the most unstable withs r50.3825~these results are to
tally consistent with Bayly’s homogeneousE52 case! and
that this amplification rate decreases when going outwa
The planes separating the vortices are also highly unst
(s r5d51.00). Again, we remove the ‘‘hyperbolic’’ un
stable modes in the classical linear theory by imposing
conditions on these planes. The remaining most ampli
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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mode is stationary and its structure is the same as that fo
in Waleffe’s homogeneous elliptic instability. The nonline
regime has then been studied by means of a spectral DN
has been shown that the elliptic instability develops into
sinusoidal perturbation that grows until it encounters
slip-condition boundaries. The amplification rate is exac
predicted by linear theory for moderate perturbation ener

In brief, we have clearly identified elliptic instability in
this nonhomogeneous Taylor–Green flow. We expect sim
results with more realistic flows, e.g., a vortex pair that w
created by the roll-up of a vortex sheet. As mentioned ear
inviscid stability analyses already exist for a strained La
vortex, i.e., a model problem for the counter-rotating vor
pair, but quantitative results concerning viscosity effects
still lacking. This will be our next concern.
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