
PHYSICS OF FLUIDS VOLUME 12, NUMBER 7 JULY 2000
Weakly nonlinear saturation of short-wave instabilities in a strained
Lamb–Oseen vortex
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A Lamb–Oseen vortex in a planar straining field is known to be subject to 3D~three-dimensional!
short-wave instabilities which are due to the resonance of the straining field and two stationary
Kelvin waves characterized by the same axial wave number and by azimuthal wave numbers equal
to 21 and11. The linear regime has been described by Moore and Saffman~1975!. In this article,
we extend this analysis to the weakly nonlinear regime. The emerging eigenmode is characterized
by a complex amplitudeA5uAueif, whose behavior is governed by an amplitude equation. It is
shown that the unstable perturbation corresponds to an oscillation of the vortex in a plane inclined
at an anglef, while the amplitude of these oscillations is proportional touAu. The vortex centers are
defined as the points where the velocity of the vortex is zero, which also corresponds to the points
where the pressure is minimum. We show that these instabilities saturate. The saturation amplitudes
are evaluated numerically and expressed in terms of oscillation amplitudes of the vortex centers. If
a denotes the internal radius of the vortex and if the straining field is due to a counter-rotating vortex
of same strength, located at a distanceb, then the maximum amplitudeD of the vortex oscillations
is D/b56.1a2/b2. This result is in agreement with those of the experiments of Leweke and
Williamson ~1998! for which a/b50.2. It also shows that in aeronautical situations, for whicha/b
is smaller, i.e.,a/b,0.1, the considered short-wave instability will saturate at very low amplitude.
© 2000 American Institute of Physics.@S1070-6631~00!02607-6#
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I. INTRODUCTION

The experiments of Leweke and Williamson1 show two
counter-rotating vortices subject to two kind of instabilitie
First, the long wave instability, also called the Crow ins
bility, is characterized by symmetric oscillations with a
axial wavelength comprised between 5b and 10b, whereb is
the distance between the two vortices. The linear regime
been described by means of filament vortex methods
Crow, Moore, Saffman, and Widnall.2–7 Secondly, the short-
wave instability, for which the axial wavelength is approx
mately equal to the internal radiusa of the vortices, has bee
analyzed by Moore and Saffman.8 These authors considere
an axisymmetric vortex in a weak planar straining fie
which models the presence of the other vortex. It is sho
that linear instability may arise through the resonance of
straining field with two stationary Kelvin waves of the sam
axial wave number and with azimuthal wave numbers21
and 11. The case of the Rankine vortex was considered
details by Tsai and Widnall9 while the Lamb–Oseen vorte
was treated by Eloy and Le Dize`s.10 In both studies, numeri-
cal values of the amplification rates and of the unstable a
wave numbers have been given. These instabilities belon
a more general family, called the elliptic instabilitie
Pierrehumbert,11 Bayly,12 and Waleffe13 showed that a pla-
nar flow with constant vorticity and elliptic streamlines w
subject to broadband instabilities. They have exhibited
unstable eigenmode concentrated in the neighborhood o

a!Electronic mail: sipp@onera.fr
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elliptic stagnation point, with the horizontal vorticity of th
eigenmode lying in the stretching direction of the basic flo
and the vertical vorticity forming a dipole structure. Such
eigenmode has been identified in the experiment of Lew
and Williamson.1

The nonlinearities modify the dynamics of the emergi
unstable eigenmode. Different behaviors may be expec
e.g., a saturation of the linearly unstable eigenmode. Ob
vations, experiments and simulations14 show that the Crow
instability does not saturate and that its development lead
the formation of vortex rings. This behavior has been e
plained by Klein et al.15,16 Similarly, the experiments of
Leweke and Williamson1 as well as the direct numerica
simulations of Orlandiet al.17 suggest that the short-wav
instabilities do not saturate. One observes in both cases
the vortices are subject to large amplitude oscillations.
are going to prove in this article, that these instabilities
tually saturate, but that the corresponding saturation am
tudes are very large when the dipole aspect ratioa/b is not
small enough, as in the two references mentioned above.
will prove that if one considers lower values ofa/b, typi-
cally a/b,0.1, then the saturation amplitudes will be mu
smaller.

In the case of a rotating elastic cylinder subject to
elliptical distortion, Malkus18 observed that unstable wave
are seen to grow for some time and then dramatically c
lapse into small-scale disorder. In order to explain suc
behavior, Waleffe19 achieved a weakly nonlinear analysis
the elliptic instability developing in a flow in body rotatio
subject to a weak elliptical distortion. He showed that t
5 © 2000 American Institute of Physics
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1716 Phys. Fluids, Vol. 12, No. 7, July 2000 Denis Sipp
elliptic instability should saturate, which is apparently
contradiction with the experiment. This paradox has be
recently explained by Kerswell20 and Mason and Kerswell.21

They show by means of direct numerical simulations t
one cannot actually observe the weakly nonlinear satur
states because they are either unstable to secondary inst
ties at observable amplitudes or neighboring competitor
liptical instabilities grow to ultimately disrupt them. Simila
mechanisms are expected in the case of short-wave insta
ties developing in vortex pairs, but they have not yet be
observed. The maximum development of the short-wave
stabilities is thought to be limited either by the nonline
saturation or by the early development of secondary in
bilities. The present paper is devoted to the evaluation of
amplitude of the saturated states and its dependence
respect to the dipole aspect ratioa/b.

Several studies concerning the weakly nonlinear reg
of the elliptic instability already exist. The first one is due
Waleffe19 who treated the case of a bounded strained
uniform vortex. The constructed amplitude equations in
latter work show that the elliptic instability saturates due t
nonlinear phase shifting from the direction of stretching.
the present paper, which deals with a nonbounded stra
vortex with a radial structure, we find similar amplitud
equations but with different numerical constants. Therefo
the qualitative features of the weakly nonlinear developm
of the elliptic instability that are described in this paper a
the same as those presented by Waleffe. The two phys
problems—case of a bounded strained but uniform vor
and case of a nonbounded strained vortex with ra
structure—are actually very similar. Instability occurs
both situations because of deformations that reduce the s
metry of the system. In the context of Hamiltonian system
Guckenheimer and Mahalov22 and Knoblochet al.23 thor-
oughly analyzed this generic situation. On grounds of sy
metry, these authors have found amplitude equations wh
structure is the same as that found by Waleffe and that fo
in the present paper. Since the equations of fluid dynam
play no explicit role in the derivation of their results, it
interesting in the present paper to discuss their approach
respect to a true fluid-dynamical situation. Finally, Lebov
and Saldanha24 stressed the fact that all the works mention
above only describe local bifurcations. They showed that
weakly non-linear development of elliptic instability cou
also lead to global bifurcations of the system, depending
the linear instabilities that are considered.

Note that the flow will be considered as inviscid so th
the incompressible Euler equations will be used. Viscos
does not play an important role in the basic physics of
elliptic instability. The inviscid analysis presented in this p
per actually holds even if the flow is weakly dissipative
one has to consider sufficiently high Reynolds numbers. T
stems from the fact that no boundaries are considered
and that all velocity profiles are infinitely smooth.

The paper is organized as follows. In Sec. II, we pres
the weakly nonlinear analysis, which is based on a multi
time scale analysis. We consider an expansion for the ve
ity field, which includes two small parameters, the intens
of the straining fielde and the amplitudea of the 3D pertur-
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
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bations. We recall briefly how the vortex adapts8 to the pres-
ence of the straining field and present the essential ideas
afterwards to construct the amplitude equations. In Sec.
we give these amplitude equations as well as the nume
values of the involved constants. We only present the res
the details of the weakly nonlinear analysis being postpo
to Appendix A. In Sec. IV, we analyze the qualitative d
namics of the system in the phase space, which is th
dimensional here. In particular, the well-known features
the linear short-wave instability will be retrieved and th
saturation process presented by Waleffe19 will be recalled.
The results will also be discussed in the light of those o
tained by Guckenheimer and Mahalov.22 Section V is de-
voted to the application of these results to the case o
vortex pair. In particular, it will be shown that for sma
aspect ratiosa/b, as obtained in real aircraft wake vortice
the considered short-wave instability saturates at very
amplitude.

II. PRESENTATION OF THE WEAKLY NONLINEAR
ANALYSIS

We consider an asymptotic expansion of the veloc
field u with two small parameterse anda of the form

~1!
e designates the strength of the straining field whilea is the
amplitude of the leading-order term of the 3D perturbatione
is an external control parameter whilea has to be determined
in the course of the analysis as a function ofe. This expan-
sion as well as the analogous one for the pressure field
introduced in the incompressible Euler equations. For sm
a ande, we obtain a series of equations at various orders
e ia j . Generally speaking,ui j will be determined at order
e ia j by an inhomogeneous linear equation. The homo
neous part of this equation is always the same and desc
the linear dynamics of the Lamb–Oseen vortex while
forcing term involves terms of lower orders, which ha
been determined previously. Solving the inhomogene
equations shows that compatibility conditions for the forci
terms have to be fulfilled when the homogeneous operato
degenerate. These conditions determine the amplitude e
tions. Here two characteristic slow time scales will be intr
duced which are linked to the two basic physical mec
nisms that exist here, i.e., instability developing on t
characteristic time scale 1/e and phase dynamics for th
Kelvin waves on the time scale 1/a2. The comparison be-
tween these two time scales determines the order of ma
tudea of the 3D perturbation:a5Ae.

The expansion~1! is compound of two parts:

~1! The first one,u01eu11¯ is a 2D flow representing a
Lamb–Oseen vortex in a straining field of strengthe. In
a cylindrical basis (er ,eu ,ez):
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1717Phys. Fluids, Vol. 12, No. 7, July 2000 Weakly nonlinear saturation of short-wave instabilities
u0~r !5@0,rV~r !,0#, ~2!

u1~r ,u!5@ f /r sin 2u,1/2d f /dr cos 2u,0#, ~3!

u0(r ) represents the velocity field associated with t
axisymmetrical vortex,V(r ) designating the angular ro
tation. For a Lamb–Oseen vortex

V~r!5
12exp~2r2!

r2 . ~4!

The velocity fieldu1(r ,u) at ordere is a straining field
whose stretching direction lies alongu5p/4 and whose
direction of contraction is alongu52p/4. This field de-
pends on the functionf (r ) which is determined so as t
obtain a steady 2D basic flow—the vortex adapts to
presence of the external straining field. Following Moo
and Saffman:8

d2f

dr2 1
1

r

df

dr
2S3dV/dr1rd2V/dr2

rV
1

4

r2Df50. ~5!

We impose the following normalization condition
f (r )/r 2→1 at infinity. Figure 1 shows the numericall
obtained functionf (r )/r 2. This result has already bee
given by Eloy and Le Dize`s10 and shows that the Lamb–
Oseen vortex is strained 2.5 times more in its center t
in the outer regions. This value has to be compared w
the one corresponding to a strained Rankine vortex,
which Moore and Saffman3 obtained the value of 2.

~2! The second one consists in a 3D perturbation superpo
to this flow. The terms ina i , i.e., u01, u02, and so on,
describe the weakly nonlinear dynamics of Kelv
waves. The results obtained by Greenspan25 for a
bounded flow in rigid rotation suggests that we will b
getting a stable phase dynamics here. The terms ine ia j ,
like u11 or u12, describe the couplings that may exi
between the straining field and the Kelvin waves. F
example, the Widnall instability is obtained at orderea.
As shown by Waleffe,19 an axisymmetric mean flow is
generated at ordera2 as the instability develops. Thi
mean flow allows the energy of the total flow to be co
served at ordere5a2, and is determined at orderea2

through a compatibility condition.

FIG. 1. f (r )/r 2 function.
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
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III. THE AMPLITUDE EQUATIONS

We will now proceed along the guidelines given in th
preceding section. Here, we give the equations obtaine
ordere0a1 which determineu01. We will restrict this study
to a particular combination of Kelvin waves foru01, that is
two stationary Kelvin waves with the same axial wave nu
ber k, and with azimuthal wave numbers21 and11. The
complex amplitudes of these Kelvin waves areA andB. The
amplitude equations governingA and B are given in Sec.
III B, the details of the analysis yielding these equations
ing postponed to Appendix A.

A. Order e0a1

At order e0a1, we obtain the following homogeneou
linear equation:

] tu011Mu011¹p0150, ~6!

div u0150, ~7!

in which M is the matrix

M5S V]u 22V 0

2V1rdV/dr V]u 0

0 0 V]u

D , ~8!

¹ is the gradient operator,¹u5(] ru,1/r ]uv,]zw), and div is
the divergence operator, divu5u/r 1] ru11/r ]uv1]zw.
The following boundary conditions are considered:u01→0
when r→` and u01 bounded whenr→0. The solutions to
these equations are the Kelvin waves. Instability may a
when u01 is compound of two Kelvin waves with the sam
axial wave number and frequency but whose azimuthal w
numbers differ by two. In the case of a Rankine vortex, T
and Widnall9 showed that maximum instability is obtained
the case where the Kelvin waves are stationary and the
muthal wave numbers equal to21 and11. In the following,
we only consider this latter case, so that:

u01~r ,u,z,t !5Ae2 iueikzuA~r !1Be1 iueikzuB~r !1c.c.,
~9!

in which c.c. designates the complex conjugate.A andB are
the complex amplitudes of the two Kelvin waves, whileuA

anduB are their radial structures. It can easily be shown8 that
uA anduB have a structure of the type (iu,v,w) with

uA5~ iuA ,vA ,wA!, uB5~2 iuA ,vA ,2wA!, ~10!

where uA , vA , wA are real functions.uA is determined
through

M21uA1¹21,kpA50, ~11!

div21,kuA50, ~12!

whereMm , ¹m,k and, divm,k are the same operators as b
fore except that the derivatives]u and]z are replaced byim
and ik. The same boundary conditions as those given ab
are considered:uA→0 whenr→` anduA bounded whenr
→0. This equation has solutions only for specific values ok.
These solutions correspond to stationary Kelvin waves w
m521. In agreement with the results found by Eloy and
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1718 Phys. Fluids, Vol. 12, No. 7, July 2000 Denis Sipp
Dizès,10 the first three occurrences arek52.261,k53.958,
andk55.612. The radial structure of the three velocity co
ponents ofuA as well as the corresponding pressure field
given in Fig. 2 in the casek52.261. The numerical metho
used to obtain these results is described in Appendix B.

B. Final amplitude equations

The details concerning the rest of the weakly nonlin
analysis are postponed to Appendix A. Here we recall
final result, which consists in three amplitude equatio
given in ~A56!–~A58!

dA

dt
51 i eaB2 i eA~buAu21cuBu21dC!, ~13!

dB

dt
52 i eaA1 i eB~cuAu21buBu21dC!, ~14!

dC

dt
51 i e~AB̄2ĀB!, ~15!

where the bar stands for the conjugate. The various cons
a, b, c, d entering in these equations are given in Table I
the casesk52.261, 3.958, 5.612.A and B are the complex
amplitudes of the two stationary Kelvin waves introduc
above.C is the amplitude of the axisymmetrical mean flo
generated at ordere as a result of the instability mechanism
This mean flow is characterized by an azimuthal veloc
S(r ), which is represented in Fig. 3 in the casek52.261,

FIG. 2. Kelvin wavee2 iueikzuA(r ). Casek52.261.
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
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3.958, 5.612. Physically, it represents a deceleration of
Lamb–Oseen vortex, due to the growing instability whi
draws its energy from the basic flow.

IV. ANALYSIS AND INTERPRETATION OF THE
AMPLITUDE EQUATIONS

A. Structure of the amplitude equations

The structure of the amplitude equations@Eqs. ~13!–
~15!# is the same as that found in Waleffe.19 In order to
recover the structure obtained on grounds of symmetry
Guckenheimer and Mahalov22 and Knoblochet al.,23 we
eliminate the amplitudeC using the energy conservation
uAu21uBu212aC5E0 @Eq. ~A61!# and make the variable
changes:z15A andz25B̄, so as to obtain

dz1

dt
52 i ed8z11 i eaz21 i ez1~b8uz1u21c8uz2u2!, ~16!

dz2

dt
52 i ed8z21 i eaz11 i ez2~c8uz1u21b8uz2u2!, ~17!

where b85d/2a2b, c85d/2a2c, and d85E0d/2a. As
done in Knoblochet al.,23 we now consider the Hamiltonian
structure of this system. The Hamiltonian structure we us
the standard one obtained by taking the real and imagin
part of zi as conjugate variables. For example, we writez1

5q11 ip1 and require dq1 /dt5]H/]p1 and dp1 /dt
52]H/]q1 . The Hamiltonian related to the above syste
is:

FIG. 3. Created mean flowS(r ). Casek52.261, 3.958, 5.612.
52
1
6

TABLE I. Values of the different constantsa b, c, andd ~columns 2, 3, 4, and 5! entering into the amplitude
equations. Columns 6 and 7 indicate the theoretically equal values of^u0 ,t& and 2a^uA ,uA&. The phase shift
due to the mean fieldDMF5d/a2 and that due to the nonlinearitiesDNL5(b1c)/a are given in columns 8 and
9. The differential phase shiftD5DMF2DNL between the two values is given in column 10.

k a b c d ^u0 ,t& 2a^uA ,uA& DMF DNL D

2.261 1.379 0.151 0.370 2.34 0.9582 0.9582 1.23 0.378 0.8
3.958 1.389 0.111 0.648 4.93 0.5775 0.5775 2.56 0.546 2.0
5.612 1.391 0.0869 1.01 7.64 0.4130 0.4130 3.95 0.789 3.1
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1719Phys. Fluids, Vol. 12, No. 7, July 2000 Weakly nonlinear saturation of short-wave instabilities
H~z1 ,z2!52ea Re~z1z2!1 1
2ed8~ uz1u21uz2u2!

2 1
4eb8~ uz1u41uz2u4!2 1

2ec8uz1u2uz2u2, ~18!

where Re designates the real part of a complex number.
quantityH is an integral of Eqs.~16! and ~17!.

Now, introducing the quantity

J~z1 ,z2!5uz1u22uz2u2, ~19!

one can readily check thatJ is also a conserved quantity. A
a conclusion, the above system displays two conserved q
tities, the HamiltonianH and the quantityJ.

B. Subspace BÄĀ

In the remainder of this study, we will be restrictin
ourselves to the case whereB5Ā, for which Eq. ~14! is
equivalent to Eq.~13!. This subspace is characterized byJ
50. Equations~13! and ~15! become

dA

dt
5 i eaĀ2 i eA@~b1c!uAu21dC#, ~20!

dC

dt
5 i e~A22Ā2!. ~21!

If A5uAueif, the leading-order term of the 3D perturbatio
field is Aeu01 where:

u015uAueife2 iueikzuA~r !1uAue2 ifeiueikzuB~r !1c.c.
~22!

By determining this term explicitly and taking its curl, w
get the following expressions for the radial vorticityv01

r , the
ortho-radial vorticityv01

u and the axial vorticityv01
z of the

perturbation field:

v01
r ~r ,u,z,t !524uAusinkzcos~u2f!vA

r ~r !, ~23!

v01
u ~r ,u,z,t !514uAusinkzsin~u2f!vA

u ~r !, ~24!

v01
z ~r ,u,z,t !514uAucoskzcos~u2f!vA

z ~r !, ~25!

wherevA
r , vA

u , andvA
z designate the radial structure of th

vorticity field related to the Kelvin waveA

uAueife2 iueikzvA~r !

5uAueife2 iueikz@ ivA
r ~r !,vA

u ~r !,vA
z ~r !#. ~26!

The vorticity field of the 3D perturbation is shown in Fig.
for f5p/6 andkz53p/4. If f5p/4, i.e., if the horizontal
vorticity lies in the stretching direction of the basic flow
then the structure of the perturbation is analogous to
structure of the elliptical eigenmode given by Waleffe13 in
the case of an unbounded elliptical flow. This perturbat
field induces a displacement of the vortex center, as sh
by Leweke and Williamson.1 By defining the vortex cente
(xc ,yc) by the zero velocity point or the minimum pressu
point ~it can be shown that these two definitions give t
same center!, we obtain

xc524AeuAucoskzcosf, ~27!

yc524AeuAucoskzsinf. ~28!
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
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We have used here the fact that we choseuA(0)
5(dpA /dr)(0)51. The physical interpretation ofuAu and of
f is, therefore, clear: The perturbationu01 corresponds to a
vortex oscillation in a plane inclined at an anglef with
respect to the horizontal, and whose amplitude is prop
tional to uAu.

C. Weakly nonlinear saturation of the elliptic
instability

By consideringC85aC andt5eat, Eqs.~20! and~21!
become

dA

dt
5 iĀ2 iA~DNLuAu21DMFC8!, ~29!

dC8

dt
5 i ~A22Ā2!, ~30!

in which

DNL5~b1c!/a, ~31!

DMF5d/a2. ~32!

FIG. 4. Vorticity structure of the perturbationu01 characterized by the angle
f. Casek52.261.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1720 Phys. Fluids, Vol. 12, No. 7, July 2000 Denis Sipp
In polar coordinates,A5uAueif, these equations are ex
pressed as

duAu
dt

5uAusin 2f, ~33!

df

dt
5cos 2f2DNLuAu22DMFC8, ~34!

dC8

dt
522uAu2 sin 2f. ~35!

The constantsDNL and DMF are given in Table I. We now
have a clear view of the physical mechanisms at play in
amplitude equations@Eqs.~33! and ~34!#.

The linear short-wave instability is obtained whenuAu
!1. We then consider only the two termsuAusin 2f and
cos 2f. The system is linearly unstable: The unstable dir
tion, f5p/4 corresponds to a perturbation whose vorticity
the (x,y) plane is aligned with the stretching direction of th
basic flow. The directionf52p/4, on the other hand, is
stable: The horizontal vorticity of the perturbation is align
with the direction of contraction of the straining field. Para
lel to this amplification–attenuation of the vorticity in th
(x,y) plane, the vortex center is subject to a sinusoidal
formation in a plane making an anglef with the horizontal.
The amplitude of these oscillations increases–decrease
ponentially in a plane set in the directionsf56p/4.

The nonlinear effects are felt when the order of mag
tude of uAu becomes unity. Only Eq.~34! governing the
phase of the perturbation is affected by these nonlinear
rections, and not the equation governing the amplitude~33!.
Equation~34! shows that the nonlinearities~term inDNL) as
well as the mean field~term in DMF) will phase-shift the
system and may prompt the perturbation to leave the
stable direction.

The nonlinearities and the mean field shift the pertur
tion phase in opposite directions. Indeed, the system of E
~29! and ~30! conserves the energy:uAu21C85E0 . Here
E05uA0u2 since the energy of the mean field at ordera2

5e is supposed to be zero at timet50: C0850. It follows:

dA

dt
51 iĀ1 iA~DuAu22D0!, ~36!

in which

D5DMF2DNL , ~37!

D05DMFuA0u2. ~38!

In polar coordinates,A5uAueif

duAu
dt

5uAusin~2f!, ~39!

df

dt
5cos~2f!1DuAu22D0 . ~40!

The total phase shift is compound of two terms,DuAu2 and
2D0 . The latter term is a measure of the amplitude of
initial condition whereas the former term displays a const
D which is the differential phase shift between the two po
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
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tive termsDMF andDNL . The effect of the mean field (DMF

term! is, therefore, opposed to the effect of the nonlinearit
(DNL term!. As the results of Table I show, it is the pha
shift due to the mean field that prevails over that due to
nonlinearities (DMF.DNL). The value ofD is important in
the dynamics of the system: The largerD, the greater the
phase shift whenuAu becomes large, and, therefore, the fas
the perturbation will leave its direction of maximum instab
ity f5p/4. A limiting case can be imagined whereD50,
and for which the phase shift of the mean field and that of
nonlinearities cancel out exactly. The system is then unsta
at this order and the weakly nonlinear expansion would h
to be continued at the next order in order to conclude. BuD
is never zero, and so this case does not occur.

Let us now make the variable changesA85ADA and
C95DC85aDC. We then get

dA8

dt
51 i A81 iA8~ uA8u22D0!, ~41!

uA8u21C95uA08u
2, ~42!

in which D05DMFuA08u
2/D. Guckenheimer and Mahalov,22

who obtained the Hamiltonian normal form~41! on grounds
of symmetry, already studied its dynamics in the full pha
space. Note that some of the results were first described
Waleffe.19 Here we briefly recall the principle ones. In pola
coordinates,A85uA8ueif, the above system yields

duA8u
dt

5uA8usin~2f!, ~43!

df

dt
5cos~2f!1uA8u22D0 . ~44!

Depending on the amplitude of the initial conditions, we o
tain the following structures:

~i! If 0<D0,1, there exists an unstable fixed point
A850 where the amplification rate is equal
A12D0

2. This point corresponds to the linear sho
wave instability. Two fixed stable points are located
A856 iA11D0 and correspond to a perturbatio
whose horizontal vorticity is aligned with theey di-
rection.

~ii ! If D0.1, the fixed point atA850 becomes stable
This means that the initial amplitude of the perturb
tion is sufficiently large to induce a phase shift whic
prevents the occurrence of the short-wave instabil
Two unstable fixed points appear atA856AD021.
The horizontal vorticity of the perturbation is aligne
in these two cases with theOx direction. The ampli-
fication rate is equal to 2AD021. The two fixed
stable points inA856 iA11D0 still exist.

From now on, we restrict ourselves to the casek
52.261, for whichDMF51.23,DNL50.378, andD50.852.
In the caseD050.1, which corresponds touA08u50.26, Fig. 5
represents two trajectories corresponding tof050, 2p/2 in
the phase space, which is three-dimensional here. It ca
seen that the perturbation first gains energy~instability
phase!, drawing it from the vortex (C9 becomes negative!.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1721Phys. Fluids, Vol. 12, No. 7, July 2000 Weakly nonlinear saturation of short-wave instabilities
Then, as the amplitude of the unstable mode increases
perturbation phase is shifted by theuA8u2 term. The ampli-
tude of the unstable mode then saturates and the anglef sets
in the direction of contraction of the straining fieldf52p/4.

FIG. 5. Dynamics in the phase space. Casek52.261.
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
he

The perturbation then returns its energy to the basic flo
and attenuates until a new linear regime is reached in wh
the phase shift terms are negligible. The vortex may e
gain energy (C9.0), but this phase is transitory because t
linear process will re-select an unstable mode, which w
increase, and so forth. A similar discussion is to be found
the Ph.D. thesis of Waleffe19 which deals with the weakly
nonlinear development of elliptic instability in the case of
bounded strained uniform vortex. In particular, the pheno
enology with the nonlinear phase shifting has already b
given there.

From now on, instead of representing the trajectories
the full 3D phase space, we will only give their projection o
a planeC95cst. Equation~42! expressing energy conserva
tion will allow us to determineC9 as a function ofA8 at any
time. The casesD050.1, 0.75, 1, 2, 10 are analyzed in Fi
6. Each plot shows the projection of the trajectories on
planeC95cst. The circle describes the allowable initial co
ditions in this plane. These are determined by the relat
itial
FIG. 6. Trajectories in the phase space projected on a planeC95cte in the casesD050.1, 0.75, 1,2, 10. The circle in each figure represents the in
allowable conditionsA08 . Casek52.261.
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1722 Phys. Fluids, Vol. 12, No. 7, July 2000 Denis Sipp
D05DMFuA08u
2/D that setsuA08u as a function ofD0 . This

restriction stems from the fact that we are restricting o
selves here for the initial conditions to the planeC950. In
other words, at the time origin, the mean field consists
clusively of the Lamb–Oseen vortex, the mean field at or
a2 being zero at this time. The fixed points determin
above are also indicated in each figure. These are marke
the letterS if the fixed point is stable, and the letterU if it is
not. We then represent various trajectories whose origins
always located on the previously mentioned circle. We
that we obtain a stable system for any initial condition, i.
all trajectories are constrained to a bounded domain in
phase space. The phase-plane diagrams presented in F
are similar to those given in Guckenheimer and Mahalo22

and Knoblochet al.23

D. Case for which D0™1

The D0!1 case is of special importance because it c
responds to the physical situation where the emerging m
is completely determined by the linear instability. Physica
this corresponds to the case of a perturbation of weak in
intensity, amplified linearly by the system. The emergi
mode is then purely in thef5p/4 direction. Figure 7 de-
scribes this situation, graphing the amplitudeuA8u and the
phasef as a function of timet. This figure is valid for all
casesk52.261, 3.958, 5.612, because the conditionD0!1
does not allow us to differentiate these cases. It is o
through the change of variableA85ADA that the differen-
tiation reappears, because the constantsD are different in
each case. The anglef is initially equal to p/4, and the
amplitudeuA08u equal to 1022. These values are not restric
tive because we know that any initial condition such th
D0!1 will go through this state. The figure shows that t
amplification rate remains nearly the same until saturat
This is due to the fact that, in Eq.~43!, there is no nonlinear
correction term. The nonlinearities act exclusively on t
phase of the mode. The transition from the direction
stretch of the basic flowf5p/4 to that of its contraction
occurs very quickly in one or two timest. This means that

FIG. 7. Saturation of the Widnall instability in the caseD0!1.
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
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the oscillations increase exponentially in a plane inclined
an anglef5p/4 and that, just before saturation this pla
turns rapidly, passes through the vertical direction, a
settles in the 3p/4 direction. The amplitude of the oscilla
tions then decreases exponentially again.

The maximum amplitude achieved in Fig. 7 isuA8um
51.414. Now, the maximum amplitude of the vortex osc
lations over time is equal to:D5maxt maxzAxc

21yc
2 where

xc andyc are given in~27! and ~28!. Thus

D54AeuAum54AeuA8um /AD. ~45!

V. APPLICATION OF THE RESULTS TO THE CASE
OF A VORTEX PAIR

We will now consider the case of a pair of counte
rotating Lamb–Oseen vortices of intensity6G, of radiusa
and separated by the distanceb. In Eq. ~45!, e and D were
nondimensional quantities~up to now, distances were nond
mensionalized bya and times by 2pa2/G). In order to come
back to dimensional variables,D has to be replaced byD/a
ande by a2/b2. Considering the fact thatuA8um51.414, we
obtain

D

b
55.7/AD

a2

b2 . ~46!

D is the differential phase shift, the value of which is give
in Table I in the caseska52.261, 3.958, 5.612. Evaluatin
these various terms yields

D

b
56.1

a2

b2 for ka52.261, ~47!

D

b
54.0

a2

b2 for ka53.958, ~48!

D

b
53.2

a2

b2 for ka55.612. ~49!

We note that the caseka52.261 gives the maximum ampli
tudes. A few values of the saturation amplitudeD/b are
given in Table II for typical aspect ratios in the aeronautic
field (a/b,0.1) and in laboratory experiments (a/b50.2 for
Leweke and Williamson1!. In the casea/b50.2, the satura-
tion amplitude isD/b50.24 for ka52.261. In their experi-
ments, Leweke and Williamson1 observed vortex displace
ments compatible with this value. Note that when lar
amplitude oscillations are obtained, our approach does
include the possible interaction with the other vortex, whi
may also be subject to strong oscillations. But in the case

TABLE II. Saturation amplitudesD/b of the short-wave instability for a
few characteristic aspect ratiosa/b.

a/b ka52.261 ka53.958 ka55.612

0.01 0.000 61 0.0004 0.000 32
0.1 0.061 0.04 0.032
0.15 0.14 0.09 0.072
0.20 0.24 0.16 0.13
0.25 0.38 0.25 0.20
0.3 0.55 0.36 0.29
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1723Phys. Fluids, Vol. 12, No. 7, July 2000 Weakly nonlinear saturation of short-wave instabilities
aircraft vortices, the aspect ratiosa/b are much smaller
~typically a/b,0.1), so that we can infer that the oscillatio
due to the considered short-wave instability will saturate
very low amplitude.

VI. CONCLUSION

In this article, we have achieved a weakly nonline
analysis of the short-wave instabilities occurring in a strain
Lamb–Oseen vortex.

In Sec. III, we gave the amplitude equations which
volve two quantities: The complex amplitudeA5uAueif of
the leading-order term of the 3D perturbation and the r
amplitudeC of the created mean field at ordera25e. The
flow associated toA represents a perturbation which induc
a vortex oscillation in a plane inclined at an anglef, and
whose amplitude is proportional touAu. The flow associated
to C constitutes a deceleration of the Lamb–Oseen vor
due to the growing instability which draws its energy fro
the basic flow.

In Sec. IV, we have analyzed the dynamics of these a
plitude equations. We first retrieved the features of the lin
short-wave instabilities, exhibited by Moore and Saffma8

and Eloy and Le Dize`s,10 i.e., the linear regime selects th
particular perturbationf5p/4, which corresponds to th
stretching direction of the basic flow. The non-linear effe
as well as those related to the created mean field at ordea2

are then described. We have shown that these two effe
characterized by the constantsDNL andDMF , phase shift the
perturbation out of the stretching directionf5p/4 as soon as
the amplitude ofA becomes sufficiently large. Their action
antagonistic and the phase shift due to the mean field (DMF

term! is found to be larger than that due to the nonlinearit
(DNL term!. The value of the differential phase shiftD
5DMF2DNL.0 is, therefore, important in the dynamics
the system, since it characterizes the total effect of the ph
shift due both to the nonlinearities and the mean field. T
dynamics in the three-dimensional phase space has
studied. It turns out that in all cases the trajectories are c
strained to a bounded domain. A detailed analysis of the c
for which the amplitude of the initial conditions is very sma
has been given. Here, the linear regime selects a perturb
whose phase is equal tof5p/4. This eigenmode grows ex
ponentially until a critical value of the amplitude is obtaine
Then, the nonlinearities and the created mean-field pro
the perturbation to leave the unstable direction, and the ph
settles in the2p/4 direction, which corresponds to the dire
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
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tion of contraction of the basic flow. The perturbation th
returns its energy to the basic flow, and attenuates unt
new linear regime is reached in which the phase shift te
are negligible. The whole process~linear instability, satura-
tion, attenuation! may start again.

In Sec. V, we have applied these results to the case
vortex pair characterized by the internal radiusa of the vor-
tices and their separation distanceb. We have evaluated the
maximum value of the oscillation amplitudesD as a function
of the dipole aspect ratioa/b. In the caseka52.261, we
have shown thatD/b56.1a2/b2. In the case of Leweke and
Williamson’s experiment, for whicha/b50.2, our result is
in accordance with the observations. In aeronautical sit
tions, which are characterized by smaller values of the dip
aspect ratio, i.e.,a/b,0.1, this result also shows that th
considered short-wave instability will saturate at very lo
amplitude.

One has to be cautious, however, in the interpretation
the results presented in this paper. One could conclude
short-wave instabilities do not play a role in the dispersion
aircraft wakes, characterized by very small values of
aspect-ratioa/b. This strong statement does not follow fro
the work described in this paper since one has to keep
mind the two following facts. First, the works of Kerswell20

and Mason and Kerswell21 suggest that the weakly nonlinea
saturated states are themselves unstable and, therefore,
represent the outcome of the instability. Second, the te
nique used in this article limits consideration to local bifu
cations of the system whereas global bifurcations do a
occur.24

ACKNOWLEDGMENT

The author would like to thank Laurent Jacquin for fru
ful discussions on this problem.

APPENDIX A: THE AMPLITUDE EQUATIONS

1. Order e1a1

At ordere1a1, we get the following inhomogeneous lin
ear equation:

] tu111Mu111¹p115e2iuNu011e22iuN̄u01, ~A1!

div u1150, ~A2!

whereN is the matrix
N5
1

2 S i

r

d f

dr
2

i f

r 2 1
i f

r
] r2

1

2r

d f

dr
]u

1

r

d f

dr
2

2 f

r 2 0

2
1

2

d2f

dr22
1

2r

d f

dr
2

i

r

d f

dr
1

i f

r 2 1
i f

r
] r2

1

2r

d f

dr
]u 0

0 0
i f

r
] r2

1

2r

d f

dr
]u

D , ~A3!
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andN̄ the conjugate ofN. Considering Eq.~9!, we obtain:

] tu111Mu111¹p115Ae1 iueikzN21uA

1Be13iueikzN11uB

1Ae23iueikzN̄21uA

1Be2 iueikzN̄11uB1c.c., ~A4!

whereNm andN̄m represent the same matrices asN andN̄
except that the terms in]u are replaced byim.

We then look foru11 in a separable form:

u11~r ,u,z,t !5Ae1 iueikzs11~r !1Be13iueikzs13~r !

1Ae23iueikzs23~r !1Be2 iueikzs21~r !

1c.c., ~A5!

s11 , s13 , s23 , ands21 are vectors with three component
s21 should be defined by

M21s211¹21,kps215N̄1uB , ~A6!

div21,ks2150, ~A7!

with s21→0 whenr→` ands21 bounded whenr→0. But
this equation does not admit solutions in general because
Kelvin waveuA is a solution of the corresponding homog
neous equation. A compatibility condition therefore exi
for the forcing term in order for Eqs.~A6! and~A7! to have
a solution. This compatibility condition requires that th
forcing term be orthogonal touA .

We consider the following scalar product:

^u1 ,u2&5E
0

`

~u1u21v1v21w1w2!rdr , ~A8!

and determine the adjoint eigenmodeuA
' corresponding touA

through

M21
' uA

'1¹21,kpA
'50, ~A9!

div21,kuA
'50, ~A10!

FIG. 8. Velocity and pressure fields ofe2 iueikzs21(r ). Casek52.261.
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he

s

with uA
'→0 whenr→` anduA

' bounded whenr→0. Here

Mm
'5S 2 imV 2V1rdV/dr 0

22V 2 imV 0

0 0 2 imV
D . ~A11!

It can be verified thatuA
' is of the (iu,v,w) type

uA
'5~ iuA

' ,vA
' ,wA

'!, ~A12!

whereuA
' , vA

' , wA
' are real functions.

We then make the amplitudesA and B depend on a
slow time scale based on 1/e so that a new term
2(1/e)(1/B)(dA/dt)uA appears on the right-hand-side
Eq. ~A6!. We then determinedA/dt so as to ensure the com
patibility condition. Hence

dA

dt
5 i eaAB, ~A13!

iaA5
^uA

' ,N̄1uB&

^uA
' ,uA&

, ~A14!

s21 will then be a solution of

M21s211¹21,kps215N̄1uB2
^uA

' ,N̄11uB&

^uA
' ,uA&

uA ,

~A15!

div21,ks2150. ~A16!

The general solution of this equation is equal to a particu
solution, to which a solution of the homogeneous equati
luA wherel is arbitrary, must be added. This is the Fre
holm alternative.

An analogous treatment can be applied fors11 and it can
be verified that the compatibility condition is expressed h
by

dB

dt
52 i eaBA, ~A17!

FIG. 9. Velocity and pressure fields ofe22iue2ikzrAA(r ). Casek52.261.
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iaB52
^uB

' ,N21uA&

^uB
' ,uB&

, ~A18!

whereuB
' is defined through

M11
' uB

'1¹11,kpB
'50, ~A19!

div11,kuB
'50. ~A20!

It can be verified8 that the following symmetry holds:

uB
'5~2 iuA

' ,vA
' ,2wA

'!, ~A21!

aA andaB are two real constants which are equal. This is d
to the fact that the matricesN21 and N̄11 have diagonals
with purely imaginary coefficients, and purely real terms
the diagonal. Their action on vectors of structure (iu,v,w)
therefore, yields vectors of structure (u,iv,iw). Now, con-
sidering the explicit expressions ofuA , uB , uA

' , and uB
'

given in ~10!, ~A12!, and~A21!, the evaluation of the scala
products involved in~A14! and ~A18! then shows thataA

andaB are reals and thataA5aB5a. Also, a careful check
shows that the following expressions hold fors21 ands11 :

s215~ ius21 ,vs21 ,ws21!,
~A22!s115~2 ius21 ,vs21 ,2ws21!,
a
s
ed

-

er
n
d

ng
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e

f

where all the introduced functions are real. These functi
as well as the corresponding pressure field are displaye
Fig. 8. The constanta is given in Table I in the casesk
52.261, 3.958, 5.612. The numerical values are the sam
those given by Eloy and Le Dize`s.10

2. Order e0a2

At order e0a2, we obtain the following inhomogeneou
linear equation:

] tu021Mu021¹p025$u01,u01%, ~A23!

div u0250, ~A24!

where$u1 ,u2% designates the term2u1•¹u2

$u1 ,u2%52S u1] ru21~v1 /r !~]uu22v2!1w1]zu2

u1] rv21~v1 /r !~]uv21u2!1w1]zv2

u1] rw21~v1 /r !]uw21w1]zw2

D .

~A25!

In the following, the notation$u1 ,u2 ,m,k% will designate the
same column, except that the]u and]z terms are replaced by
im and ik. With ~9!, Eq. ~A23! becomes
] tu021Mu021¹p025A2e22iue2ikz$uA ,uA ,21,k%1B2e12iue2ikz$uB ,uB ,11,k%1ABe2ikz~$uA ,uB ,11,k%

1$uB ,uA ,21,k%!1AĀ~$uA ,uA,11,2k%1$uA ,uA,11,2k%!/21BB̄~$uB ,uB,21,2k%

1$uB ,uB,21,2k%!/21AB̄e22iu~$uA ,uB,21,2k%1$uB,uA ,21,k%!1c.c. ~A26!
s:

ua-
are

the
For u02, we look for a separable solution of the form

u02~r ,u,z,t !5A2e22iue2ikzrAA~r !1B2e12iue2ikzrBB~r !

1ABe2ikzrAB~r !1AĀrAĀ~r !1BB̄rBB̄~r !

1AB̄e22iurAB̄~r !1c.c. ~A27!

The only terms that can be resonating in the forcing term
those related toAĀ, BB̄, and their complex conjugates. A
shown in Appendix B, the compatibility condition associat
with these terms requires that they be zero ineu andez . Yet
it can be verified that, ifu1 andu2 are two vectors of struc
ture (iu,v,w) then $u1 ,u2 ,m,k% will be of structure
(u,iv,iw). The forcing terms related toAĀ and BB̄ are,
therefore, forced only in theer direction. No compatibility
condition needs to be imposed and we can setrAĀ5rBB̄

50. The amplitude equation is not modified at this ord
This result is analogous to the one given by Greenspa25

which concerns the case of a confined flow in solid bo
rotation.

All the vectors rAA , rBB , rAB , and rAB̄ are of the
( iu,v,w) type and a careful check shows that the followi
symmetries hold:
re

.

y

rAA5~ iu rAA
,v rAA

,wrAA
!, rBB5~2 iu rAA

,v rAA
,2wrAA

!,
~A28!

rAB̄5~ iu rAB̄
,v rAB̄

,0!, rAB5~0,v rAB
,0!. ~A29!

These functions are obtained from the following equation

M22rAA1¹22,2kprAA
5$uA ,uA ,21,k%, ~A30!

div22,2krAA50, ~A31!

M0rAB1¹0,2kprAB
5$uA ,uB,1,k%1$uB ,uA ,21,k%,

~A32!

div0,2krAB50, ~A33!

M22rAB̄1¹22,0prAB̄
5$uA ,uB,21,2k%

1$uB,uA ,21,k%, ~A34!

div22,0rAB̄50. ~A35!

All the linear operators on the left-hand-side of these eq
tions are not degenerate, so that the solutions exist and
unique. These functions are displayed in Figs. 9–11 in
casek52.261.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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3. Order e0a3

At order e0a3, we obtain the following inhomogeneous equation:

] tu031Mu031¹p035$u01,u02%1$u02,u01%, ~A36!

div u0350. ~A37!

With ~9! and ~A27!, the resonating forcing terms are

] tu031Mu031¹p035AuAu2e2 iueikz~$uA,rAA ,22,2k%1$rAA ,uA,11,2k%!1BuBu2e1 iueikz~$uB,rBB ,12,2k%

1$rBB ,uB,21,2k%!1AuBu2e2 iueikz~$uB,rAB ,0,2k%1$rAB ,uB,21,2k%

1$uB ,rAB̄ ,22,0%1$rAB̄ ,uB ,11,k%!1BuAu2e1 iueikz~$uA ,rAB̄,2,0%

1$rAB̄,uA ,21,k%1$uA,rAB ,0,2k%1$rAB ,uA,11,2k%!1c.c.1¯ . ~A38!

To ensure the compatibility conditions, we makeA andB depend on a slow time based on 1/a2

dA

dt
52 ia2A~buAu21cuBu2!, ~A39!

dB

dt
51 ia2B~cuAu21buBu2!, ~A40!

where

2 ib5
^uA

' ,$uA,rAA ,22,2k%1$rAA ,uA,11,2k%&

^uA
' ,uA&

, ~A41!

2 ic5
^uA

' ,$uB ,rAB̄ ,22,0%1$rAB̄ ,uB ,11,k%1$uB,rAB,0,2k%1$rAB ,uB,21,2k%&

^uA
' ,uA&

. ~A42!
. e

We can easily check that the constantsb andc are real. The
numerical values of these constants are given in Table I

4. Determination of the order of magnitude of a

By grouping the amplitude equation~A13!, ~A17! ob-
tained at orderae with those~A39!, ~A40! obtained at order
a3, we can determine the order of magnitudea of the per-

FIG. 10. Velocity and pressure fields ofe2ikzrAB(r ). Casek52.261.
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
turbation so that the two physical phenomena~instability on
the characteristic time scale 1/e and phase dynamics for th
Kelvin waves on the time scale 1/a2) act on a common time
scale:

a25e, ~A43!

and therefore

FIG. 11. Velocity and pressure fields ofe22iurAB̄(r ). Casek52.261.
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dA

dt
51 i eaB2 iAe~buAu21cuBu2!, ~A44!

dB

dt
52 i eaA1 iBe~cuAu21buBu2!. ~A45!

5. Mean flow

a. Energy conservation

We will now see that these amplitude equations do
conserve energy at ordere. The energy of the flow containe
in the domain 0<z<2p/k, which corresponds to one wave
length, is based on the following scalar product:

@u1 ,u2#5E
0

2p/kE
0

2p

^u1 ,u2&dzdu. ~A46!

We thus obtain the following terms for the energy:

~A47!

The energy is conserved at orderO(1), and atorderO(Ae)
since the interaction energy between the axisymmetrical
tex and the Kelvin wavesA andB is zero,@u0 ,u01#50, but is
not at ordere. As a matter of fact, the energy at ordere is
Ee5e(KuAu21KuBu2) in which K58p2/k^uA ,uA&. Thus
d/dt Ee52e2i (AB̄2ĀB)(2aK). This term is not zero, and
so the energy of this system is not conserved at this or
Physically speaking, this is due to the fact that the instabi
draws its energy from the axisymmetrical mean field. W
will now see that we have to add an axisymmetrical me
field term at ordera25e in the expansion~1! to allow the
total energy to be conserved at ordere. The time-evolution
equation of this field will be determined at orderea2 by a
compatibility condition.

b. Order e1a2

At order e1a2, we get the following equation:

] tu121Mu121¹p1252]t8 u021e12iuNu021e22iuN̄u02

1$u01,u11%1$u11,u01%, ~A48!

div u1250, ~A49!

wheret8 is the slow timet5(1/e)t8. According to~9!, ~A5!,
and ~A27!, only the following term inAB̄ and its conjugate
are likely to resonate here:

] tu121Mu121¹p12

5AB̄@N22rAB̄1$uA ,s21,11,2k%

1$s21,uA ,21,k%1$uB,s11 ,11,k%

1$s11 ,uB,21,2k%#1c.c.1¯ . ~A50!
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The compatibility condition entails that the sum of the te
in AB̄ and ĀB must be zero in theeu and ez directions. A
careful check shows that this sum has the following str
ture:

AB̄S f r

i f u

0
D 1ĀBS f r

2 i f u

0
D 5S ~AB̄1ĀB! f r

i ~AB̄2ĀB! f u

0
D , ~A51!

so that a nonzero term exists in theeu direction. We therefore
introduce in expansion~1! the following additional axisym-
metrical term at ordera25e: a2uC5a2Ct(r ). C is an am-
plitude varying slowly on a time scale 1/e and t(r ) is the
vector

t~r !5~0,S~r !,0!. ~A52!

The termsC and t(r ) are real and are determined so as
make theeu component vanish in the forcing term

dC

dt
5 i e~AB̄2ĀB!, ~A53!

S~r !5 f u . ~A54!

The evaluation off u yields

S~r !52
1

r 2 ] r@r 2~2~ f /2r !v rAB̄
1~1/4!urAB̄

d f /dr

22us21
vA12uAvs21

!#. ~A55!

The mean flowS(r ) is given in Fig. 3 in the casesk
52.261, 3.958, 5.612.

c. Final amplitude equations

The mean field of order of magnitudea25e introduced
above will modify the amplitude equations at ordera3

dA

dt
51 i eaB2 iAe~buAu21cuBu21dC!, ~A56!

dB

dt
52 i eaA1 iBe~cuAu21buBu21dC!, ~A57!

dC

dt
5 i e~AB̄2ĀB!, ~A58!

with:

2 id5
^uA

' ,$uA ,t,0,0%1$t,uA ,21,k%&

^uA
' ,uA&

, ~A59!

where t(r ) was given in~A52! and ~A55!. The numerical
values ofd are given in Table I in the casesk52.261, 3.958,
5.612. The amplitude equations~A56!–~A58! allow conser-
vation of energy at ordere because a new interaction ter
exists between the axisymmetrical vortex and the crea
mean field: 2a2@u0 ,uC#5(8p2/k)^u0 ,t&a2C. The energy at
ordere is, therefore:Ee5e(KuAu21KuBu21KCC) in which
KC5(8p2/k)^u0 ,t&. Its derivative as a function of time is
(d/dt)Ee52e2i (AB̄2ĀB)(2aK2KC). This is zero when
KC52aK, i.e.,

^u0 ,t&52a^uA ,uA&. ~A60!
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In Table I, we have given in the casesk52.261, 3.958, 5.612
the numerical values of̂u0 ,t& and 2a^uA ,uA&. We check
that these quantities are equal with a precision of four dig
This allows us to check that the computation oft is valid.
The conservation of energy at ordere, therefore, reads

uAu21uBu212aC5cst. ~A61!

APPENDIX B: SOME RESULTS ON THE LINEAR
INHOMOGENEOUS EQUATION

In this Appendix, we present some results concern
the inhomogeneous linear equation mentioned in the co
of the weakly nonlinear analysis. For any integerm and any
real k, we consider the following problem:

Mmu1¹m,kp5f~r !, ~B1!

divm,ku50, ~B2!

whereMm , ¹m,k , and divm,k are defined in Sec. III.f(r ) is
a forcing term whose structure is the following:

f~r !5~ f r ,i f u ,i f z!, ~B3!

where f r , f u , and f z are real functions. The following
boundary conditions are joined to the problem:u(r )→0
whenr→1` andu(r ) bounded whenr→0. We look for a
solution of the form

u5~ iu,v,w!. ~B4!

The homogeneous equation determines the stationary Ke
waves of the axisymmetrical vortex. Depending on the
rameters (m,k), the homogeneous equation can thus be
generate and compatibility conditions for the forcing te
f(r ) must be satisfied in order for the inhomogeneous eq
tion to have a solution.

In the next section, we examine the particular casem
50 andk50. We show that two compatibility conditions fo
the forcing termf arise. In the general case, we then sh
that the inhomogeneous linear equations~B1! and ~B2! may
be reduced to a system governing only the radial compon
of u and the pressurep. In the last section, we discretize th
system thanks to a Chebyshev–Gauss collocation met
The solutions to Eqs.~B1! and ~B2! are obtained thanks to
Lower-Upper~LU! type decompositions. Note that the sam
methods are used to obtain the adjoint eigenmodes.

1. Particular case: mÄ0 and kÄ0

The equations determining the solution~B4! of Eqs.
~B1! and ~B2! are

22Vv1] rp5 f r , ~B5!

~2V1rdV/dr !u5 f u , ~B6!

05 f z , ~B7!

] r~ru !50. ~B8!

Hence,u50, so that f u50. Two compatibility conditions
exist in this case

f u5 f z50. ~B9!
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2. General case

Equations~B1! and ~B2! reduce to

d

dr S u
pD5S 2

1

r
1

2V1rdV/dr

rV

k21m2/r 2

mV

mV2
2~2V1rdV/dr !

m
2

2

r

D S u
pD

1S 2
k fz

mV
2

f u

rV

f r1
2 f u

m

D , ~B10!

v5
f u2~2V1rdV/dr !u2mp/r

mV
, ~B11!

w5
f z2kp

mV
. ~B12!

3. Spatial discretization

The space-derivatives are discretized by a spectral co
cation method with Chebyshev polynomials. The different
equations in~B10! are given on the interval 0,r ,1`. We
map this interval on21, r̂ ,11 with the function26

r 52H log
12 r̂

2
. ~B13!

We choose the Gauss collocation points

r̂ i5cos
~2i 11!

2N12
p, i 50¯N. ~B14!

These points do not include the edgesr̂ 561, so that no
boundary conditions will be specified in the following. Th
chosen function basis, i.e., theN11 Chebyshev polynomi-
als, and Eq.~B10! naturally select the right solutions, i.e
solutionsu such thatu→0 whenr→` andu bounded when
r→0.

Numerically, if we letN530, H51, we already get ex-
cellent results. We then usedN5100, H52 to confirm the
results.

4. LU decomposition

The various problems are solved by constructing a m
trix from the discretization of Eq.~B10! and breaking it
down in the LU form.

Solutions to the homogeneous equation are sought
considering the last row from the Gauss pivot. A Newto
type descent method is used to adjustk such that the last
coefficient from the pivot is zero. This is achieved only f
specific values ofk. This method is applied here for dete
mining the stationary Kelvin waves.

The inhomogeneous linear equation is also solved
using the LU decomposition. When the linear operator
degenerate, the projection of the forcing term on the ker
of the linear operator has to be zero. The last row from
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Gauss pivot therefore has to be zero for the forcing term
order for the compatibility condition to hold. We use this
a numerical check in our computations.
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