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A Lamb—Oseen vortex in a planar straining field is known to be subject t&t@Be-dimensional
short-wave instabilities which are due to the resonance of the straining field and two stationary
Kelvin waves characterized by the same axial wave nhumber and by azimuthal wave numbers equal
to —1 and+1. The linear regime has been described by Moore and Saftetd. In this article,

we extend this analysis to the weakly nonlinear regime. The emerging eigenmode is characterized
by a complex amplitudé\=|A|e'?, whose behavior is governed by an amplitude equation. It is
shown that the unstable perturbation corresponds to an oscillation of the vortex in a plane inclined
at an anglep, while the amplitude of these oscillations is proportiongdl&b The vortex centers are
defined as the points where the velocity of the vortex is zero, which also corresponds to the points
where the pressure is minimum. We show that these instabilities saturate. The saturation amplitudes
are evaluated numerically and expressed in terms of oscillation amplitudes of the vortex centers. If
adenotes the internal radius of the vortex and if the straining field is due to a counter-rotating vortex
of same strength, located at a distabcéhen the maximum amplitudé of the vortex oscillations

is A/b=6.1a%/b%. This result is in agreement with those of the experiments of Leweke and
Williamson (1998 for which a/b=0.2. It also shows that in aeronautical situations, for wiait

is smaller, i.e.a/b<0.1, the considered short-wave instability will saturate at very low amplitude.

© 2000 American Institute of Physids$1070-663000)02607-9

I. INTRODUCTION elliptic stagnation point, with the horizontal vorticity of the
eigenmode lying in the stretching direction of the basic flow
The experiments of Leweke and Williamsoshow two  and the vertical vorticity forming a dipole structure. Such an
counter-rotating vortices subject to two kind of instabilities. eigenmode has been identified in the experiment of Leweke
First, the long wave instability, also called the Crow insta-gnd williamsont
bility, is characterized by symmetric oscillations with an The nonlinearities modify the dynamics of the emerging
axial wavelength comprised betweeh &nd 1M, wherebis  ynstable eigenmode. Different behaviors may be expected,
the distance between the two vortices. The linear regime haé;_g_, a saturation of the linearly unstable eigenmode. Obser-
been described by means of filament vortex methods byations, experiments and simulatidhshow that the Crow
Crow, Moore, Saffman, and Widndif.” Secondly, the short-  instapility does not saturate and that its development leads to
wave instability, for which the axial wavelength is approxi- the formation of vortex rings. This behavior has been ex-
mately equal to the internal radiasof the vortices, has been plained by Klein et al’>® Similarly, the experiments of
analyzed by Moore and Saffmdihese authors considered Leweke and Williamsch as well as the direct numerical
an axisymmetric vortex in a weak planar straining field, sinylations of Orlandiet al” suggest that the short-wave
which models the presence of the other vortex. It is shownsiapilities do not saturate. One observes in both cases that
that linear instability may arise through the resonance of thene yortices are subject to large amplitude oscillations. We
straining field with two stationary Kelvin waves of the same 516 going to prove in this article, that these instabilities ac-
axial wave number and with azimuthal wave numbers 511y saturate, but that the corresponding saturation ampli-

and +1. The case of the Rankine vortex was considered if,4es are very large when the dipole aspect ratio is not
details by Tsai and Widnaliwhile the Lamb—Oseen vortex gq| enough, as in the two references mentioned above. We

was treated by Eloy and Le Dige” In both studies, numeri- i prove that if one considers lower values afb, typi-

cal values of the amplification rates and of the unstable axiaéa"y a/b<0.1, then the saturation amplitudes will be much
wave numbers have been given. These instabilities belong g, 2jer. ’

a more genelral famlizly, called thg elliptic instabilities. |5 the case of a rotating elastic cylinder subject to an
Pierrehumbert! Bayly,"” and Waleffé’ showed that a pla- elliptical distortion, Malku$® observed that unstable waves

nar _flow with constant \_/orticit_y _and elliptic streamline_s Was e seen to grow for some time and then dramatically col-
subject to_broadband |nstab|I|t|es._They ha_1ve exhibited afpse into small-scale disorder. In order to explain such a
unstable eigenmode concentrated in the neighborhood of tr}%havior, Waleff&® achieved a weakly nonlinear analysis of
the elliptic instability developing in a flow in body rotation
dElectronic mail: sipp@onera.fr subject to a weak elliptical distortion. He showed that the

1070-6631/2000/12(7)/1715/15/$17.00 1715 © 2000 American Institute of Physics

Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



1716 Phys. Fluids, Vol. 12, No. 7, July 2000 Denis Sipp

elliptic instability should saturate, which is apparently in bations. We recall briefly how the vortex addjs the pres-
contradiction with the experiment. This paradox has beernce of the straining field and present the essential ideas used
recently explained by Kerswéfland Mason and Kerswelt.  afterwards to construct the amplitude equations. In Sec. llI,
They show by means of direct numerical simulations thatve give these amplitude equations as well as the numerical
one cannot actually observe the weakly nonlinear saturategalues of the involved constants. We only present the results,
states because they are either unstable to secondary instabilie details of the weakly nonlinear analysis being postponed
ties at observable amplitudes or neighboring competitor elto Appendix A. In Sec. IV, we analyze the qualitative dy-
liptical instabilities grow to ultimately disrupt them. Similar namics of the system in the phase space, which is three-
mechanisms are expected in the case of short-wave instabilimensional here. In particular, the well-known features of
ties developing in vortex pairs, but they have not yet beerthe linear short-wave instability will be retrieved and the
observed. The maximum development of the short-wave insaturation process presented by WalEffeill be recalled.
stabilities is thought to be limited either by the nonlinear The results will also be discussed in the light of those ob-
saturation or by the early development of secondary instatained by Guckenheimer and MahafSvSection V is de-
bilities. The present paper is devoted to the evaluation of theoted to the application of these results to the case of a
amplitude of the saturated states and its dependence wittortex pair. In particular, it will be shown that for small
respect to the dipole aspect ratifb. aspect ratio®/b, as obtained in real aircraft wake vortices,
Several studies concerning the weakly nonlinear regimg¢he considered short-wave instability saturates at very low
of the elliptic instability already exist. The first one is due to amplitude.
Waleffe!® who treated the case of a bounded strained but
uniform vortex. The constrgctgq ampl'ltlude equations in thql_ PRESENTATION OF THE WEAKLY NONLINEAR
latter work show that the elliptic instability saturates due to A\NALYSIS
nonlinear phase shifting from the direction of stretching. In
the present paper, which deals with a nonbounded strained We consider an asymptotic expansion of the velocity
vortex with a radial structure, we find similar amplitude field u with two small parameters and « of the form
equations but with different numerical constants. Therefore,
the qualitative features of the weakly nonlinear developmentu=  uy+eu;+---
of the elliptic instability that are described in this paper are
the same as those presented by Waleffe. The two physical
problems—case of a bounded strained but uniform vortex — +@ug+ @’ug+ @’ug+ eauy;+ atug+ ea’upt,
and case of a nonbounded strained vortex with radial h v - d
structure—are actually very similar. Instability occurs in Unsteady 3D perturbation )
both situations because of deformations that reduce the sym-

L e designates the strength of the straining field whiles the
metry of the system. In the context of Hamiltonian systems . . .
. 23 amplitude of the leading-order term of the 3D perturbation.
Guckenheimer and Mahalé®and Knoblochet al?® thor- . ;
. SR is an external control parameter whilehas to be determined
oughly analyzed this generic situation. On grounds of sym- . . .
. . in the course of the analysis as a functioneofThis expan-
metry, these authors have found amplitude equations whose

. jon well he anal ne for the pr re field ar
structure is the same as that found by Waleffe and that founaO as wetl as t © analogous one 1o the p essure eld are
: . . . . Introduced in the incompressible Euler equations. For small
in the present paper. Since the equations of fluid dynamics . : : . :

lay no explicit role in the derivation of their results, it is ande, we obtain a series of equations at various orders in
ipnteyrestin ipn the present paper to discuss their approach wi ‘@', Generally speakingy;; will be determined at order

9 bre Pape L >If app ._€a' by an inhomogeneous linear equation. The homoge-
respect to a true fluid-dynamical situation. Finally, Lebovitz . o X

: neous part of this equation is always the same and describes
and Saldant?4 stressed the fact that all the works mentioned,, . . .
) ) . the linear dynamics of the Lamb—Oseen vortex while the
above only describe local bifurcations. They showed that the " . . .
) L . orcing term involves terms of lower orders, which have
weakly non-linear development of elliptic instability could . . : .
been determined previously. Solving the inhomogeneous

alsollead t.o 9'0?’"?". bifurcations of the system, depending Onequations shows that compatibility conditions for the forcing
the linear instabilities that are considered.

Note that the flow will be considered as inviscid so thatterms have to be fulfilled when the homogeneous operator is

. . : : . ._degenerate. These conditions determine the amplitude equa-
the incompressible Euler equations will be used. Viscosit 9 b 9

. . . . y[ions. Here two characteristic slow time scales will be intro-
does not play an important role in the basic physics of the

L ” o . s duced which are linked to the two basic physical mecha-
elliptic instability. The mV!SC'd analys_|s presente_d n th'.s P& nisms that exist here, i.e. instability developing on the
per actually holds even if the flow is weakly dissipative— characteristic time scale d/and phase dynamics for the
one has to consider sufficiently high Reynolds numbers. Thi elvin waves on the time scale d?. The comparison be-
stems from the fact that no boundaries are considered he{\?veen these two time scales deterr.nines the (E)rder of maani-
and that all velocity profiles are infinitely smooth. ude a of the 3D perturbationa— ye 9

The paper is organized as follows. In Sec. II, we presen% , pertu ' .
i . S : The expansiorfl) is compound of two parts:
the weakly nonlinear analysis, which is based on a multiple
time scale analysis. We consider an expansion for the velodd) The first oneug+ eu,+--- is a 2D flow representing a
ity field, which includes two small parameters, the intensity = Lamb—Oseen vortex in a straining field of strengthn
of the straining fielde and the amplituder of the 3D pertur- a cylindrical basis & ,e,,e,):

Steady 2D strained vortex
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2

25 u Ill. THE AMPLITUDE EQUATIONS
[ We will now proceed along the guidelines given in the
of e preceding section. Here, we give the equations obtained at
- order €a* which determineuy,. We will restrict this study
- to a particular combination of Kelvin waves fag,, that is
15k two stationary Kelvin waves with the same axial wave num-
B \ ber k, and with azimuthal wave numbersl and +1. The
i \ complex amplitudes of these Kelvin waves &randB. The
1 amplitude equations governing and B are given in Sec.
: 111 B, the details of the analysis yielding these equations be-
05 [ ing postponed to Appendix A.
A. Order €’a?
00_ Y B At order €°a!, we obtain the following homogeneous
r linear equation:
FIG. 1. f(r)/r? function. diUgs+ Mugs+Vpe1=0, (6)
diV UOJ_:O, (7)
Ug(r)=[0,rQ(r),0], (2 in which M is the matrix
uq(r,0)=[f/r sin 20,1/2df/dr cos 2,0], 3 Qa, —20 0
Uo(r) represents the velocity field associated with the _
axisymmetrical vortex{)(r) designating the angular ro- M=| 2Q+rdQ/dr - Qd, oI (8)
tation. For a Lamb—Oseen vortex 0 0 04,
Q)= 1-exp(—r?) @) V is the gradient operato¥,u= (d,u,1/ dgv,d,w), and div is
r2 ' the divergence operator, div=u/r+d,u+ 1l dg +d,W.

The velocity fieldu,(r,6) at ordere is a straining field ~The following boundary conditions are consideregi— 0
whose stretching direction lies alorfigz 7/4 and whose Whenr—o andu,, bounded whem —0. The solutions to
direction of contraction is along=— /4. This field de- these equations are the Kelvin waves. Instability may arise
pends on the functiof(r) which is determined so as to Whenug, is compound of two Kelvin waves with the same
obtain a steady 2D basic flow—the vortex adapts to thedxial wave number and frequency but whose azimuthal wave
presence of the external straining field. Following Moorenumbers differ by two. In the case of a Rankine vortex, Tsai

and Saffmar® and Widnal? showed that maximum instability is obtained in
d2F  1df [3dQ/dr+rd2Q/dr? 4 the case where the Kelvin waves are stationary and the azi-
- +—|f=0. (5 muthal wave numbers equal tel and+1. In the following,
dr® rdr rQ r . : )

: . L . we only consider this latter case, so that:
We impose the following normalization condition: o o
f(r)/r?>—1 at infinity. Figure 1 shows the numerically Uoi(r,0,z,t)=Ae %e*?u,(r)+Be " %ek2ug(r) +c.c.,
obtained functionf(r)/r?. This result has already been C)

given by Eloy and Le Diz&° and shows that the Lamb—j which c.c. designates the complex conjugdt@ndB are
Oseen vortex is strained 2.5 times more in its center thag,e complex amplitudes of the two Kelvin waves, whilg
in the outer regions. This value has to be compared withyn gy, are their radial structures. It can easily be shbtiat

the one corresponding to a strained Rankine vortex, fo, . andug have a structure of the typéu(v,w) with
which Moore and Saffmanobtained the value of 2.

The second one consists in a 3D perturbation superposed Ua=(iUa,0a;Wa), Ug=(—iUa,0a,~Wa), (10
to this flow. The terms in', i.e., o1, Ugz, @nd SO ON,  \yhere u,, v,, wy are real functionsu, is determined
describe the weakly nonlinear dynamics of Kelvin through

waves. The results obtained by Greengpafor a

bounded flow in rigid rotation suggests that we will be ~ M_1Ua+V_1,pa=0, (11)
getting a stable phase dynamics here. The ternesdh div_ . Ua=0 12
like uy; or uy,, describe the couplings that may exist TLKEAT
between the straining field and the Kelvin waves. Forwhere M,,, V., and, diy, are the same operators as be-
example, the Widnall instability is obtained at order.  fore except that the derivatives and g, are replaced bym

As shown by Waleffé? an axisymmetric mean flow is andik. The same boundary conditions as those given above
generated at ordes® as the instability develops. This are consideredi,—0 whenr— andu, bounded whem
mean flow allows the energy of the total flow to be con-— 0. This equation has solutions only for specific valuek. of
served at ordee=a?, and is determined at orde®  These solutions correspond to stationary Kelvin waves with
through a compatibility condition. m= —1. In agreement with the results found by Eloy and Le
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o FIG. 3. Created mean floR(r). Casek=2.261, 3.958, 5.612.
FIG. 2. Kelvin wavee "?e’%?u,(r). Casek=2.261.

3.958, 5.612. Physically, it represents a deceleration of the

Dizés,'” the first three occurrences ake=2.261,k=3.958, | amb-Oseen vortex, due to the growing instability which
andk=5.612. The radial structure of the three velocity com-graws its energy from the basic flow.

ponents ofu, as well as the corresponding pressure field are

given in Fig. 2 in the cask=2.261. The numerical method |\, ANALYSIS AND INTERPRETATION OF THE
used to obtain these results is described in Appendix B.  AMPLITUDE EQUATIONS

B. Final amplitude equations A. Structure of the amplitude equations

The details concerning the rest of the weakly nonlinear _ The structure of the amplitude equatiofisgs. (13)—
analysis are postponed to Appendix A. Here we recall thé19] is the same as that found in Waleffein order to

final result, which consists in three amplitude equationd©CoVer the structure obtained on grounds of syrpsmetry by
given in (A56)—(A58) Guckenheimer and Mahalév and Knoblochet al,?® we

eliminate the amplitudeC using the energy conservation:

A 2 2 _ .
S L ieaB—ieA(b|A|2+c|B|2+dC), (13 |A|“+|B|*+2aC=E, [Eqg. (A61)] and make the variable
dt changesz;=A andz,=B, so as to obtain
dB , 5 5 dz; = 2 2
az—leaA+|eB(c|A| +b|B|?*+dC), (14 Hz—|ed’zl+|ea22+|ezl(b’|zl| +c'|z,]%), (16
dC . = = dz, . R ) )
a:ﬂe(AB—AB), (15) H=—|ed’22+|eazl+|ezz(c’|zl| +b'|z,]%), (17

where the bar stands for the conjugate. The various constant¢here b’ =d/2a—b, ¢'=d/2a—c, and d’'=Eyd/2a. As

a, b, ¢, d entering in these equations are given in Table | indone in Knobloctet al,?® we now consider the Hamiltonian
the casek=2.261, 3.958, 5.612A and B are the complex structure of this system. The Hamiltonian structure we use is
amplitudes of the two stationary Kelvin waves introducedthe standard one obtained by taking the real and imaginary
above.C is the amplitude of the axisymmetrical mean flow part of z; as conjugate variables. For example, we wrte
generated at orderas a result of the instability mechanism. =q;+ip; and require dq,/dt=dH/dp,; and dp,/dt

This mean flow is characterized by an azimuthal velocity=—dH/dq,. The Hamiltonian related to the above system
3.(r), which is represented in Fig. 3 in the cdse2.261, is:

TABLE I. Values of the different constantsb, ¢, andd (columns 2, 3, 4, and)%ntering into the amplitude
equations. Columns 6 and 7 indicate the theoretically equal valuég, ¢y and 2a(u, ,ua). The phase shift
due to the mean fiel®,,-=d/a? and that due to the nonlineariti€s, = (b+c)/a are given in columns 8 and
9. The differential phase shifd=Dy:— Dy, between the two values is given in column 10.

k a b c d (Ug,t) 2a(Ua ,Up) Due D D
2.261 1.379 0.151 0.370 2.34 0.9582 0.9582 1.23 0.378 0.852
3.958 1.389 0.111 0.648 4.93 0.5775 0.5775 2.56 0.546 2.01
5.612 1.391 0.0869 1.01 7.64 0.4130 0.4130 3.95 0.789 3.16
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H(zy,2,) = — ea Re(212y) + 3€d’ (|23]2+|25|?)

—zeb’(|z4|*+12z5|*) — 3ec’ 24|72, (18) L
. 1 -
where Re designates the real part of a complex number. The |
quantityH is an integral of Eqs(16) and(17). |00 N
Now, introducing the quantity [ 1122%;;, SOSSEEIIRNgY AN
2 2 A AR 7
\](21122):|Zl| _|22| ) (19 = o} ,:;////\‘:/ A
. . . SR I
one can readily check thatis also a conserved quantity. As A it/% '/”/%?5?:’
a conclusion, the above system displays two conserved quan- BRI/ /1A
tities, the HamiltoniarH and the quantity. Sttt s s AR
- P RV
_ _1 I el et o P A L R
B. Subspace B=A B ettt SRR
In the remainder of this study, we will be restricting I T
ourselves to the case wheB=A, for which Eq.(14) is X
equivalent to Eq(13). This subspace is characterized by
=0. Equationg13) and(15) become 0,(X,Y)
A . _— . 2
aZIeaA—IeA[(b+C)|A| +dC], (20
ac ., =
EZIE(A —A ) (21)

If A=|Ale'?, the leading-order term of the 3D perturbation
field is \euo; where:

Uoi=|Ale'?e~ 1% 2u,(r) +|Ale ' %e'%e*?ug(r) +c.c.
(22)
By determining this term explicitly and taking its curl, we
get the following expressions for the radial vorticity,, the
ortho-radial vorticity g, and the axial vorticityw3, of the
perturbation field:

r __ . _ r FIG. 4. Vorticity structure of the perturbatiany, characterized by the angle
wy(1,0,2,t)=—4|A|sinkzcog §— @) wp(r), (23 4. Casek—2.261,

wgy(r,0,2,t) =+ 4|A|sinkzsin(0— ¢) wa(r), (24)

z _ _ z
wgy(T,0,2,t) = + 4| Alcoskzcos = @) (1), (25 We have used here the fact that we chosg(0)
wherew)y, 04, andw? designate the radial structure of the =(dpa/dr)(0)=1. The physical interpretation ¢A| and of

vorticity field related to the Kelvin wavé ¢ is, therefore, clear: The perturbatiog, corresponds to a
b 8.ikz vortex oscillation in a plane inclined at an angfe with
[Ale e e wA(r) respect to the horizontal, and whose amplitude is propor-
:|A|eilf>e—i0eik2[iw;\(r)'wz(r)’wi(r)]. (26) tional tO|A|

The vorticity field of the 3D perturbation is shown in Fig. 4 C. Weakly nonlinear saturation of the elliptic

for ¢p=n/6 andkz=3x/4. If p=ml4, i.e., if the horizontal instability

vorticity lies in the stretching direc';ion _of the basic flow, By consideringC’ =aC and r= eat, Eqgs.(20) and(21)
then the structure of the perturbation is analogous to th%ec
structure of the elliptical eigenmode given by Waléffin

the case of an unbounded elliptical flow. This perturbation dA

ome

_:'__' 2 ’

field induces a displacement of the vortex center, as shown dr IA—IA(Dyi|A[*+DyeC’), (29
by Leweke and Williamsoh.By defining the vortex center ,
(Xc,Yc) by the zero velocity point or the minimum pressure dizi(Az_Kz) (30)
point (it can be shown that these two definitions give the dr ’
same centgr we obtain in which

Xc=—4\e| Alcoskzcosg, 27 Dy =(b+c)/a, (31)

ye= —4/e|A|coskzsin ¢. (28) Dye=d/a?. (32)
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In polar coordinatesA=|Ale'?, these equations are ex- tive termsD e andDy, . The effect of the mean fieldXy

pressed as term) is, therefore, opposed to the effect of the nonlinearities
dlA| (Dn term). As the results of Table | show, it is the phase
a4 |A|sin 2¢, (33)  shift due to the mean field that prevails over that due to the

nonlinearities Dye>Dy). The value ofD is important in

de the dynamics of the system: The larger the greater the
4, —cos 26— Dy |A|?>—DyeC/, (34  phase shift whepA| becomes large, and, therefore, the faster
the perturbation will leave its direction of maximum instabil-
dc’ - ity ¢=m/4. A limiting case can be imagined whebe=0,
o = " 2lAlsin24. (35 and for which the phase shift of the mean field and that of the

nonlinearities cancel out exactly. The system is then unstable
The constant®y, and Dy are given in Table I. We now at this order and the weakly nonlinear expansion would have
have a clear view of the physical mechanisms at play in thgo be continued at the next order in order to conclude. But
amplitude equationfEgs. (33) and (34)]. is never zero, and so this case does not occur.

The linear short-wave mstablllty is obtained th Let us now make the variable Changﬁé: \/BA and
<1. We then consider only the two term&|sin2¢ and c”=pC’=aDC. We then get

cos 2p. The system is linearly unstable: The unstable direc-

tion, ¢= /4 corresponds to a perturbation whose vorticity in i, = +HiA + iA’(JA"|2=Dy) (41)

the (x,y) plane is aligned with the stretching direction of the dr

basic flow. The directionp=—7/4, on the other hand, is |A"|2+C"=|A)|2 (42)
=|A}?,

stable: The horizontal vorticity of the perturbation is aligned

with the direction of contraction of the straining field. Paral-in which Do=Dyg|Aj|%/D. Guckenheimer and Mahald®,

lel to this amplification—attenuation of the vorticity in the who obtained the Hamiltonian normal forfd1) on grounds
(x,y) plane, the vortex center is subject to a sinusoidal deof symmetry, already studied its dynamics in the full phase
formation in a plane making an anglewith the horizontal. ~ space. Note that some of the results were first described by
The amplitude of these oscillations increases—decreases ewtaleffe® Here we briefly recall the principle ones. In polar

ponentially in a plane set in the directiods= + /4. coordinatesA’ =|A’[e'?, the above system yields
The nonlinear effects are felt when the order of magni- d|A’|
tude of |A| becomes unity. Only Eq(34) governing the T=|A’|sin(2q§), (43
phase of the perturbation is affected by these nonlinear cor-
rections, and not the equation governing the amplit(88z. do¢ o
Equation(34) shows that the nonlinearitiégerm inDy,) as qr - C0s2¢)+ |A’[*=Do. (44)

well as the mean fieldterm in Dy) will phase-shift the di h litude of the initial diti b
system and may prompt the perturbation to leave the unpgpen Ing on the amplitude of the initial conditions, we ob-
stable direction. tain the following structures:

The nonlinearities and the mean field shift the perturbasi) If 0=<Dy<1, there exists an unstable fixed point at

tion phase in opposite directions. Indeed, the system of Egs. A’=0 where the amplification rate is equal to
(29 and (30) conserves the energyA|*+C’'=E,. Here J1-D2. This point corresponds to the linear short-
Eo=|Ao|* since the energy of the mean field at ordet wave instability. Two fixed stable points are located at
=€ iS Supposed to be zero at t|meo C[):O It fO”OWS: A’ =+ij1+ DO and Correspond to a perturbation
dA _ whose horizontal vorticity is aligned with the, di-
E=+iA+iA(D|A|2—D0), (36) rection.
(i) If Dg>1, the fixed point atA’=0 becomes stable.
in which This means that the initial amplitude of the perturba-
tion is sufficiently large to induce a phase shift which
D=Dyr—Dne. (37) prevents the occurrence of the short-wave instability.
Do=DyelAg|2 (39) Two unstable fixed points appear at==*+Dy—1.
) . The horizontal vorticity of the perturbation is aligned
In polar coordinatesA=|A|e'? in these two cases with th@x direction. The ampli-
d|A| . fication rate is equal to ¢Do—1. The two fixed
e |A|sin(2¢), (39 stable points imPA’ = +i 1+ Dy, still exist.
de From now on, we restrict ourselves to the cdse
E:cos(2¢)+D|A|2—D0. (400  =2.261, for whichDy=1.23,D), =0.378, andD =0.852.

In the caséD,=0.1, which corresponds {é\)| = 0.26, Fig. 5
The total phase shift is compound of two terfi§A|? and  represents two trajectories correspondingpe=0, — /2 in
—Dy. The latter term is a measure of the amplitude of thethe phase space, which is three-dimensional here. It can be
initial condition whereas the former term displays a constanseen that the perturbation first gains ener@ystability
D which is the differential phase shift between the two posi-phase, drawing it from the vortex C” becomes negatiye
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D,=0.1, |A,’|=0.26

FIG. 5. Dynamics in the phase space. Clase?2.261.

Weakly nonlinear saturation of short-wave instabilities 1721

The perturbation then returns its energy to the basic flow,
and attenuates until a new linear regime is reached in which
the phase shift terms are negligible. The vortex may even
gain energy C">0), but this phase is transitory because the
linear process will re-select an unstable mode, which will
increase, and so forth. A similar discussion is to be found in
the Ph.D. thesis of Waleffé which deals with the weakly
nonlinear development of elliptic instability in the case of a
bounded strained uniform vortex. In particular, the phenom-
enology with the nonlinear phase shifting has already been
given there.

From now on, instead of representing the trajectories in
the full 3D phase space, we will only give their projection on
a planeC”=cst. Equation42) expressing energy conserva-
tion will allow us to determineC” as a function oA’ at any

Then, as the amplitude of the unstable mode increases, tiigne. The case®,=0.1, 0.75, 1, 2, 10 are analyzed in Fig.

perturbation phase is shifted by th&’|? term. The ampli-
tude of the unstable mode then saturates and the angges
in the direction of contraction of the straining fiedg= — 7/4.

6. Each plot shows the projection of the trajectories on the
planeC”=cst. The circle describes the allowable initial con-
ditions in this plane. These are determined by the relation

| D=0 |A/]=0.26 | D,=0.75 |A1=0.72 _
2f 2f 2f
1F 1F 1F
< < | < |
~ OF ~ O - OF
E I E T E T
At F als
2f 2f 2

| I T I T S T N R R :Il|1|||||||||1|||| :||||1|||||||||;|

. 1 - -
Re(A") Re(A") Re(A")

D,=10 |A,]=2.63

Im(A’)

FIG. 6. Trajectories in the phase space projected on a fldrecte in the caseD,=0.1, 0.75, 1,2, 10. The circle in each figure represents the initial

allowable conditionsA;. Casek=2.261.
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TABLE Il. Saturation amplituded\/b of the short-wave instability for a
A, =1.414 - ‘LA| i few characteristic aspect ratiagh.
10° /\ T a/b ka=2.261 ka=3.958 ka=5.612
i 0.01 0.000 61 0.0004 0.000 32
[ D <<1 | 0.1 0.061 0.04 0.032
o = 13n/4 0.15 0.14 0.09 0.072
| A |<<1 0.20 0.24 0.16 0.13
= / 0.25 0.38 0.25 0.20
< / 1.2 03 0.55 0.36 0.29
107} j n/2 : : : :
7/
- \ /4 the oscillations increase exponentially in a plane inclined at
| an angle¢p=m/4 and that, just before saturation this plane
\' turns rapidly, passes through the vertical direction, and
10'2T — - B 410 settles in the 3/4 direction. The amplitude of the oscilla-
+ + . . .
° "3 ° tions then decreases exponentially again.

The maximum amplitude achieved in Fig. 7 |i&'|,
=1.414. Now, the maximum amplitude of the vortex oscil-
lations over time is equal t(A=max,maxZ\/xC2+ycz where

FIG. 7. Saturation of the Widnall instability in the caBg<1.

Do=DwelAj|%/D that sets|Aj| as a function ofD,. This Xc andy, are given in(27) and(28). Thus
restriction stems from the fact that we are restricting our- A =4/e|A|,,=4e|A’|,,/\D.

selves here for the initial conditions to the pla@é=0. In

other words, at the time origin, the mean field consists exy. APPLICATION OF THE RESULTS TO THE CASE
clusively of the Lamb—Oseen vortex, the mean field at ordeOF A VORTEX PAIR

«? being zero at this time. The fixed points determined

above are also indicated in each figure. These are marked bgt :{Ve \II_V'" govg conS|dert.the C?s.et of a palrf ofdgounter—
the letterSif the fixed point is stable, and the letterif it is rotating Lamb—Oseen vortices of intensibl’, of radiusa

not. We then represent various trajectories whose origins al%nd separated by the distankeln Eq. (45), € and A were

always located on the previously mentioned circle. We Segond|_men|§|orclja£)quanc;|i|_e($|p tg nzorwé /?St?ncez Weire nondi-
that we obtain a stable system for any initial condition, e, mensionalized b and imes by ara ). In order to come
: Qack to dimensional variabled, has to be replaced bi/a

and e by a?/b?. Considering the fact thal’|,,=1.414, we
obtain

A a?
B = 5.7/\/6 F

D is the differential phase shift, the value of which is given

TheDo<1 case is of special importance because it Cory Taple | in the caseka=2.261, 3.958, 5.612. Evaluating
responds to the physical situation where the emerging modgese various terms yields

is completely determined by the linear instability. Physically, A
: ) R a
this corresponds to the case of a perturbation of weak initial 261 for ka=2.261,

(49

phase space. The phase-plane diagrams presented in Fig
are similar to those given in Guckenheimer and Mah&ov
and Knoblochet al?®

(46)

D. Case for which Dy<1

intensity, amplified linearly by the system. The emerging b b? (“47)
mode is then purely in theé=m/4 direction. Figure 7 de- 2

scribes this situation, graphing the amplitudt| and the 524_06‘_2 for ka=3.958 (48)
phase¢ as a function of timer. This figure is valid for all b b ’

casesk=2.261, 3.958, 5.612, because the conditidgi<1 A a2

does not allow us to differentiate these cases. It is only 523'2F for ka=5.612. (49

through the change of variable’ = DA that the differen-
tiation reappears, because the constdntare different in  We note that the cadea=2.261 gives the maximum ampli-
each case. The anglg is initially equal to #/4, and the tudes. A few values of the saturation amplitudéb are
amplitude|Aj| equal to 102. These values are not restric- given in Table Il for typical aspect ratios in the aeronautical
tive because we know that any initial condition such thatfield (a/b<<0.1) and in laboratory experimenta/p= 0.2 for
Do<1 will go through this state. The figure shows that theLeweke and Williamsoh. In the casea/b=0.2, the satura-
amplification rate remains nearly the same until saturationtion amplitude isA/b=0.24 forka=2.261. In their experi-
This is due to the fact that, in E¢43), there is no nonlinear ments, Leweke and Wiliamsdrobserved vortex displace-
correction term. The nonlinearities act exclusively on thements compatible with this value. Note that when large
phase of the mode. The transition from the direction ofamplitude oscillations are obtained, our approach does not
stretch of the basic flowp=m/4 to that of its contraction include the possible interaction with the other vortex, which
occurs very quickly in one or two times This means that may also be subject to strong oscillations. But in the case of
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aircraft vortices, the aspect ratiadb are much smaller tion of contraction of the basic flow. The perturbation then
(typically a/b<<0.1), so that we can infer that the oscillations returns its energy to the basic flow, and attenuates until a
due to the considered short-wave instability will saturate ahew linear regime is reached in which the phase shift terms
very low amplitude. are negligible. The whole proceglinear instability, satura-
tion, attenuationmay start again.
In Sec. V, we have applied these results to the case of a
VI. CONCLUSION vortex pair characterized by the internal radéausf the vor-

In this article, we have achieved a weakly nonlinearticeS, and their separation _dist_arimeWe.have evaluateq the
analysis of the short-wave instabilities occurring in a strainedn@imum value of the oscillation amplitudésas a function
Lamb—Oseen vortex. of the dipole aspect ratia/b. In the caseka=2.261, we

In Sec. Ill, we gave the amplitude equations which in-have shown that/b=6.1a%/b2. In the case of Leweke and

volve two quantities: The complex amplitu@e=|A|ei"’ of Williamson’s experiment, for whicla/b=0.2, our result is
the leading-order term of the 3D perturbation and the reain accordance with the observations. In aeronautical situa-
amplitudeC of the created mean field at ordef=e. The tions, which are characterized by smaller values of the dipole

flow associated t represents a perturbation which induces@SPect ratio, i.e.a/b<0.1, this result also shows that the
a vortex oscillation in a plane inclined at an anghe and considered short-wave instability will saturate at very low
whose amplitude is proportional {é|. The flow associated amplitude. , . : .

to C constitutes a deceleration of the Lamb—Oseen vortex, One has to be cautious, however, in the interpretation of

due to the growing instability which draws its energy from the results presented in this paper. One could conclude that
the basic flow. short-wave instabilities do not play a role in the dispersion of

In Sec. IV, we have analyzed the dynamics of these amaircraft wakes, characterized by very small values of the

plitude equations. We first retrieved the features of the lineafSPeCt-rati@/b. This strong statement does not follow from

short-wave instabilities, exhibited by Moore and Safffhan the work described in this paper since one has to keep in
and Eloy and Le Dize®° i.e., the linear regime selects the mind the two following facts. First, the works of Kerswll

particular perturbationg=1/4, which corresponds to the &nd Mason and Kerswélisuggest that the weakly nonlinear

stretching direction of the basic flow. The non-linear effectsSaturated states are themselves unstable and, therefore, fail to
represent the outcome of the instability. Second, the tech-

as well as those related to the created mean field at artler " ' . . Y - ; )

are then described. We have shown that these two effectgidue used in this article limits consideration to local bifur-
characterized by the constamg, andD,,e, phase shift the catlons1 of the system whereas global bifurcations do also
perturbation out of the stretching directign=7/4 as soon as ©C¢cu’-

the amplitude oA becomes sufficiently large. Their action is

antagonistic and the phase shift due to the mean felg-( ACKNOWLEDGMENT

term) is found to be larger than that due to the nonlinearities
(DyL term). The value of the differential phase shiit
=Dwmr—Dn >0 is, therefore, important in the dynamics of
the system, since it characterizes the total effect of the phase

shift due both to the nonlinearities and the mean field. TheAPPENDIX A: THE AMPLITUDE EQUATIONS

dynamics in the three-dimensional phase space has beﬁr‘Order elal

studied. It turns out that in all cases the trajectories are con-

strained to a bounded domain. A detailed analysis of the case At order e'a*, we get the following inhomogeneous lin-
for which the amplitude of the initial conditions is very small ear equation:

has been given. Here, the linear regime selects a perturbation
whose phase is equal tp=7/4. This eigenmode grows ex-
ponentially until a critical value of the amplitude is obtained.
Then, the nonlinearities and the created mean-field prompt .
the perturbation to leave the unstable direction, and the phase divuy,=0, (A2)
settles in the- /4 direction, which corresponds to the direc- where V' is the matrix

The author would like to thank Laurent Jacquin for fruit-
ful discussions on this problem.

FUg+ Muy+Vp=e?Nug,+e” Z‘GJT/UOL (A1)

i df if if 1 df 1df 2f
rar 2T o ar?? rar 2 0
1 1d%f 1 df idf if if 1 df
N=3 T2ar? arar Trar ety o 0 : (A3)
if 1 df
0 0 To'?r—ﬁaﬁg
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FIG. 8. Velocity and pressure fields ef %e*?s_,(r). Casek=2.261.

and\ the conjugate ofV. Considering Eq(9), we obtain:
f9tU11+MU11+Vpu:Ae“oe‘kzN,luA
+Be 3% N, jug
+Ae 3% N U,
+Be %N, Jugt+c.c.,  (Ad)

where N, and/\_/m represent the same matrices/dand A”
except that the terms ia, are replaced bym.
We then look foruy4 in a separable form:

uy(r,8,z,t)=Aet%*%s  (r)+Be" 3%/ %, 4(r)
+Ae %i0lkzs_ (r)+Be %ik?s_ (1)

+c.c., (A5)

S.1, St3, S_3, ands_; are vectors with three components.

s_, should be defined by
M71571+V71,kp571:-/\_/‘1UBv (A6)
(A7)

with s_;—0 whenr —o ands_,; bounded whem— 0. But

div_ lvks,l: O,

this equation does not admit solutions in general because the
Kelvin waveu, is a solution of the corresponding homoge-
neous equation. A compatibility condition therefore exists
for the forcing term in order for Eq$A6) and (A7) to have

a solution. This compatibility condition requires that the

forcing term be orthogonal ta, .
We consider the following scalar product:

<U1:U2>:J' (UglUp+ 010+ Wyw,)rdr, (A8)
0

and determine the adjoint eigenmadlgcorresponding tais
through
MUz +V _14pa=0, (A9)

div_q,uz=0, (A10)

Denis Sipp
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FIG. 9. Velocity and pressure fields ef 2%e?*?r ,,(r). Casek=2.261.

with uz—0 whenr —o andu, bounded whem— 0. Here

—imQ  2Q+rdQ/dr 0

ME=| —2Q —-imQ 0 (A11)
0 0 —imQ
It can be verified thati; is of the (u,v,w) type
Up=(iUs,Ua,Wp), (A12)

whereuy, , v, W, are real functions.

We then make the amplitudes and B depend on a
slow time scale based on el/so that a new term
—(1/e)(1/B)(dA/dt)u, appears on the right-hand-side of
Eqg. (A6). We then determind A/dt so as to ensure the com-
patibility condition. Hence

dA
T €apB, (A13)
(ux N1Ug)
A: <uJA ,UA> 1 (A14)
s 4 will then be a solution of
— <ui ,./T/+1UB>
M_18 1+ V _1xPps1=NiUg— WUA!
(A15)
diV,lykS,l:O. (A16)

The general solution of this equation is equal to a particular
solution, to which a solution of the homogeneous equation,
Nup where is arbitrary, must be added. This is the Fred-
holm alternative.

An analogous treatment can be appliedfoy and it can
be verified that the compatibility condition is expressed here

by
dB

ot (A17)

= — | é'a.BA,
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(ug ,N_1Up) where all the introduced functions are real. These functions
iag=— W (A18) as well as the corresponding pressure field are displayed in
878 Fig. 8. The constana is given in Table | in the casek
whereug is defined through =2.261, 3.958, 5.612. The numerical values are the same as
. 8 0
M US4V 1 ph=0, (AL9) those given by Eloy and Le Dizé
div, 1 ug=0. (A20) 2. Order €’a”
It can be verifiedl that the following symmetry holds: At order °a?, we obtain the following inhomogeneous
n T N linear equation:
a, andag are two real constants which are equal. This is due JiUozt MUozt V Poz={Uo1, o1 (A23)

to the fact that the matrice& ; and N\, have diagonals
with purely imaginary coefficients, and purely real terms off
the diagonal. Their action on vectors of structure,{,w)
therefore, yields vectors of structura,{v,iw). Now, con-
sidering the explicit expressions afy, ug, Ux, and ug Uy, Up+ (01 /1) (9gUn— 1) + Wy d,Uy
given in (10), (A12), and(A21), the evaluation of the scalar _

products involved in(Al4) and (A18) then shows thaga {ug,u}= ulirUaZ"v;/(il(/r)Ef)QEZV—: lszJr;v\t\;?sz
andag are reals and thai,=ag=a. Also, a careful check 1ol iva i ogiz T Loz (A25)
shows that the following expressions hold for; ands, ;:

div Ugo= O, (A24)

where{u,,u,} designates the term u;-Vu,

In the following, the notatiofu, ,u,,m,k} will designate the
same column, except that tig andd, terms are replaced by
im andik. With (9), Eq. (A23) becomes

S 1=(IUg 1,05 1,Ws 1),

. A22
Si1=(—iUg 1,U5 1,~Ws 1), ( )

Aylgopt Mugp+ Vpo,=A%e21%e?K2lu, un, — 1k} +B%e 2% ug ug,+ 1k} + ABE*?({up ,ug, + 1k}
+{Ug.,Up,— 1K} +AA({UL , Up, + 1,— K} +{Un ,Up, + 1,— k} /24 BB({Ug ,Ug, — 1,— K}

+{Ug,Ug, —1,—k})/2+ABe ™ 2¢({uu,Ug, — 1,— k} +{Ug,Ux, — 1k}) +C.C. (A26)

For ug,, we look for a separable solution of the form Fan=(iUp, o0 W)y Tee=(—iUr, L0p, =W, ),

(A28)
— A2, 2i0/2ik 24+ 2i 6,21k
UgalT, 6,2,t) = A%e 26 r p (1) + B2 %62 rgg(r) rag= (iU, 20 20, Tag=(00;, 0. (A29)

+ABEK7r , 5(1)+ AAr pa(r) + BBrgg(r . . . .
ae(T) An(r) 88(1)  These functions are obtained from the following equations:

+ABe 2% ,5(r)+c.c. (A27)
ael M grant Vpar, = Unslin,— 1KY, (A30)

The only terms that can be resonating in the forcing term are  div_, xraa=0, (A31)
those related t®\A, BB, and their complex conjugates. As
shown in Appendix B, the compatibility condition associated Mol as™ VoaPr,,={Ua,Us, 1K} +{Ug,Up, — 1K},

with these terms requires that they be zerejrande,. Yet (A32)
it can be verified that, ifi; andu, are two vectors of struc- . B
ture (u,v,w) then {u;,u,,mk} will be of structure divo ar as=0, (A33)

(u,iv,iw). The forcing terms related t&A and BB are,
therefore, forced only in the, direction. No compatibility
condition needs to be imposed and we can IS@=rgg

Mot ag+V o Pr, z={Ua Ug,—1,—k}

=0. The amplitude equation is not modified at this order. {Ug,Ua, — 1K}, (A34)
This result is analogous to the one given by Greerspan div_, g a5=0. (A35)
which concerns the case of a confined flow in solid body '

rotation. All the linear operators on the left-hand-side of these equa-

All the vectorsraa, es, r'ag, andrag are of the tions are not degenerate, so that the solutions exist and are
(iu,v,w) type and a careful check shows that the followingunique. These functions are displayed in Figs. 9—-11 in the
symmetries hold: casek=2.261.
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3. Order €°a?®
At order €%, we obtain the following inhomogeneous equation:
ozt Mugz+ VPoa={Uo1,Uozt +{Uoz, Uo1}, (A36)
div upz=0. (A37)
With (9) and (A27), the resonating forcing terms are
diUozt+ MUgs+Vpos=A|A|2e e ?({up,ran, —2,2K} +{r ap,Ua, +1,— k}) +B|B|% " %e™*({Ug, g5, + 2,2k}
+1{res Ug,—1,— kh)+A[B|%™ oeikz({u_BirAB 10,2k} +1{rag Ug,—1,— K}

+{ug,rag,— 2,0 +{rag,ug,+1,k})+B|A|2e" %e*?({u, 7%2 ,O}

+{raBUa, — 1K} +{Ua, T a5, 0, 2K} +{r ag,Un, + 1,—K}) +C.CAH- . (A38)
To ensure the compatibility conditions, we makeandB depend on a slow time based orxd/
dA
v —ia®A(b|A|?+c|B|?), (A39)
B
il +ia?B(c|A|?+Db|B|?), (A40)
where
<UJA_\ ’{u_A1rAA7_212(}+{rAA1u_A1+la_k}>
—ib= (uLA ™ , (A41)
~ (ua 1{uBirAE1_210}+{rAE1UBv+11k}+{u_BvrA81012k}+{rABau_Bv_11_ k)
—ic= RN, . (A42)

We can easily check that the constabtandc are real. The turbation so that the two physical phenoméimstability on
numerical values of these constants are given in Table |. the characteristic time scaleeland phase dynamics for the

Kelvin waves on the time scaled?) act on a common time
4. Determination of the order of magnitude of @ scale:

By grouping the amplitude equatiai®13), (A17) ob- 5 A43
tained at ordere with those(A39), (A40) obtained at order @ =& (A43)
a®, we can determine the order of magnitudef the per- and therefore

N
-

i Pat
15 - = Ugas i I \
\ ———— Vass 0.5 iy
1 Weas [ | \
\ Pras - ; : T — —m ., _
05F -\ OR S
0 —— AW / NV
2y e I ~

L
;oA

1
N

o
o

S
15,
o|||| LI TTT T Rl hdeege TP T TTT rrrryprontd LI’
~
-~
~
/
\
1
' o
- [$)]
L v
\
|
|
=
»
=
@

FIG. 10. Velocity and pressure fields ef*?r ,g(r). Casek=2.261. FIG. 11. Velocity and pressure fields ef 2 ’r ,5(r). Casek=2.261.
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dA . )
a:+|€aB_|AE(b|A|2+C|B|2)1 (A44)
dB . )
Jp = i€aA+iBe(c/A?+b[BJ2). (A45)

5. Mean flow

a. Energy conservation

We will now see that these amplitude equations do not ; ) 5 3 ‘
d metrical term at ordetr“=¢€: a“uc=a“Ct(r). Cis an am-

conserve energy at order The energy of the flow containe

Weakly nonlinear saturation of short-wave instabilities 1727

The compatibility condition entails that the sum of the term
in AB and AB must be zero in the, and e, directions. A

careful check shows that this sum has the following struc-

ture:
fo\ (AB+AB)f,
AB| ifs|+AB| —ifs|=| i(AB—AB)f,|, (A5D)
0 0 0

so that a nonzero term exists in thedirection. We therefore
introduce in expansiofl) the following additional axisym-

in the domain G=z=<2/k, which corresponds to one wave- Plitude varying slowly on a time scale dandt(r) is the

length, is based on the following scalar product:
2zwlk (2w
[ul,uz]:f (uq,uy)ydzde. (A46)
0 0

We thus obtain the following terms for the energy:

E=[w,u]=[ug,ug]+2c[ugy,up]

o(1) o(Je)
+ az[ll(n ,uol] +2€[u0 ,u1]+2a2[u0 ,u02]+ et
\ V J
O(e)

(A47)
The energy is conserved at ord@(1), and atorderO(/e)

since the interaction energy between the axisymmetrical vor-

tex and the Kelvin wave8 andB is zero,[ ug,Ug;]=0, but is
not at ordere. As a matter of fact, the energy at ordeis
E.=€e(K|A]?+K|BJ|?) in which K=8m?/k(ua,Us). Thus

vector

t(r)=(0,%(r),0). (A52)

The termsC andt(r) are real and are determined so as to

make thee, component vanish in the forcing term

dc = — —
— —ie(AB—AB),

T (A53)
S(ry=f,. (A54)
The evaluation of , yields
1
2(r)y=- r—zar[rz(—(f/2r)vrAg+(1/4)urAEdf/dr
_ZUS_IUA‘l‘ ZUAUS_I)]' (A55)

The mean flow2(r) is given in Fig. 3 in the casek
=2.261, 3.958, 5.612.

d/dt E.= — €% (AB— AB)(2aK). This term is not zero, and c. Final amplitude equations

so the energy of this system is not conserved at this order.
Physically speaking, this is due to the fact that the instability
draws its energy from the axisymmetrical mean field. We

The mean field of order of magnitud€ = e introduced
above will modify the amplitude equations at ordet

will now see that we have to add an axisymmetrical mean dA

field term at ordera®= € in the expansior(1) to allow the
total energy to be conserved at orderThe time-evolution
equation of this field will be determined at ordew? by a
compatibility condition.

b. Order €'d?
At order e'a?, we get the following equation:
Flsg+ MUgp+ VP1o= — 0, Ugpt e 2Nyt e~ 2N,
+{Uo1, U1} +{U11,Uoa}, (A48)
(A49)

where7 is the slow timet=(1/e) 7’. According to(9), (A5),
and (A27), only the following term inAB and its conjugate
are likely to resonate here:

diV U12: 0,

dU1p+ MU+ Vg,
:AE[N_erE+{UA ,;1, + 1,_ k}
+{S_1,Up,— 1K} +{Ug,Ss 1, + 1K}

+{S,1,Ug, —1,—K}]+C.CH-- . (A50)

a=+ieaB—iAe(b|A|2+c|B|2+dC), (A56)
dB ,
a=—|eaA+|Be(c|A|2+b|B|2+dC), (A57)
dc = — —
o ~1€(AB—AB), (A58)
with:
Ux ,{Ua,1,0,00+{t,us, — 1k
_d:< A{Ua }+{t,ua }>, (A59)

(Ua Up)
wheret(r) was given in(A52) and (A55). The numerical
values ofd are given in Table | in the cas&s=2.261, 3.958,
5.612. The amplitude equatioid56)—(A58) allow conser-
vation of energy at orde¢ because a new interaction term

exists between the axisymmetrical vortex and the created

mean field: 2¢’[ uy,uc]=(87?/k)(ug,t)@?C. The energy at
ordere is, therefore E = e(K|A|?+K|B|?+KC) in which
Kc=(87%/K){ug,t). Its derivative as a function of time is:
(d/dt)E .= — €% (AB—AB)(2aK—K¢). This is zero when
Ke=2akK, i.e.,,

<U0,t>:2a<UA,UA>. (AGO)
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In Table I, we have given in the cades 2.261, 3.958, 5.612 2. General case

the numerical vgl_ues ofuo. 1) anq bwA’u.A?' we CheCI_( _ Equations(B1) and(B2) reduce to
that these quantities are equal with a precision of four digits.

This allows us to check that the computationtas valid. 1 20+rdQ/dr  K2+m2/r2

The conservation of energy at ordertherefore, reads d (u) ; + ) mQ (u)

|A|?+|B|?+2aC=cst. (A61) drip/~ o, 220+ rdo/dn) 2 p

m r

APPENDIX B: SOME RESULTS ON THE LINEAR
INHOMOGENEOUS EQUATION kf, fy

In this Appendix, we present some results concerning + mQZer , (B10)
the inhomogeneous linear equation mentioned in the course f+ -
of the weakly nonlinear analysis. For any integeand any m
realk, we consider the following problem:

fo—(2Q+rdQ/dr)u—mp/r
Mpu+V i p=1(r), (B1) v= —q : (B11)
div,  u=0, B2
m,k ( ) fz—kp

where M., V., and diy,, are defined in Sec. IIff(r) is wW=—q (B12)
a forcing term whose structure is the following:

f(r)=(f,,ify,if,), (B3) 3. Spatial discretization
where f,, f,, and f, are real functions. The following The space-derivatives are discretized by a spectral collo-

boundary conditions are joined to the probleo(r)—0  cation method with Chebyshev polynomials. The differential
whenr — 4+ andu(r) bounded whem—0. We look for a  equations in(B10) are given on the intervalQr <+, We

solution of the form map this interval on-1<f < +1 with the functioR®
u=(iu,v,w). (B4) 1-%
The homogeneous equation determines the stationary Kelvin r=-Hlog 2 (B13

waves of the axisymmetrical vortex. Depending on the pa-
rameters (n,k), the homogeneous equation can thus be deWWe choose the Gauss collocation points
generate and compatibility conditions for the forcing term .
f(r) must be satisfied in order for the inhomogeneous equa- ’r‘_:COS(ZI +1) -
tion to have a solution. ' 2N+2
In the next section, we examine the particular cese . . -
=0 andk=0. We show that two compatibility conditions for These points d.c.) not ”.‘C'“de the_ .""‘dg?s +1, so that no
the forcing termf arise. In the general case, we then showboundary COI’.IdItIOI’]S.WI|.| be specified in the following. The
that the inhomogeneous linear equatiéB4) and (B2) may chosen function basis, i.e., té+1 Chepyshev pqunoml-
be reduced to a system governing only the radial componerﬁls’ gnd Eq(B10) naturally select the right solutions, i.e.,
of u and the pressung In the last section, we discretize this Solutionsu such thali—0 whenr — andu bounded when
system thanks to a Chebyshev—Gauss collocation methoﬁf’o' . .
The solutions to Eqs(B1) and (B2) are obtained thanks to Numerically, if we |etN=30, H=1, we already get ex-
Lower-Upper(LU) type decompositions. Note that the Samecellent results. We then usédi=100, H=2 to confirm the
methods are used to obtain the adjoint eigenmodes. results.

i=0---N. (B14)

1. Particular case: m=0 and k=0 4. LU decomposition

The equations determining the solutigB4) of Egs. The various problems are solved by constructing a ma-

trix from the discretization of Eq(B10) and breaking it
(BD) and(B2) are down in the LU form.
—2Qu+9,p=*,, (B5) Solutions to the homogeneous equation are sought by
considering the last row from the Gauss pivot. A Newton-
(2Q+rdQ/drju=f,, (B8 type descent method is used to adjlssuch that the last
0=f,, (B7) coefficient from the pivot is zero. This is achieved only for
specific values ok. This method is applied here for deter-
d,(ru)=0. (B8  mining the stationary Kelvin waves.

The inhomogeneous linear equation is also solved by
using the LU decomposition. When the linear operator is
degenerate, the projection of the forcing term on the kernel
fo=1,=0. (B9)  of the linear operator has to be zero. The last row from the

Hence,u=0, so thatf,=0. Two compatibility conditions
exist in this case
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