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This paper deals with the stability of incompressible inviscid planar basic flows in a rotating frame.
We give a sufficient condition for such flows to undergo three-dimensional shortwave
centrifugal-type instabilities. This criterion reduces to the Bradshaw—Richafd968 or Pedley

(1969 criterion in the specific case of parallel shear flows subject to rotation, to Rayleigh’s
centrifugal criterion (1916 in the case of axisymmetric vortices in inertial frames, to the
Kloosterziel and van Heijqt1991]) criterion in the case of axisymmetric vortices subject to rotation
and to Bayly’s criterion(1988 in the case of general two-dimensional flows in inertial frames. The
criterion states that a steady 2D basic flow subject to rotaflois unstable if there exists a
streamline for which at each point 2[R+ Q)(W+2Q)<0 where W is the vorticity of the
streamline;R is the local algebraic radius of curvature of the streamline\aiglthe local norm of

the velocity. If this condition is satisfied then the flow is unstable according to the geometrical optics
method introduced by Lifschitz and Hameidi991), which consists in following wave packets
along the flow trajectories using a Wentzel-Kramers—Brillouin formalism. When the streamlines
are closed, it is further shown that a localized unstable normal mode can be constructed in the
vicinity of a streamline. As an application, this new criterion is used to study the centrifugal-type
instabilities in the Stuart vortices, which is a family of exact solutions describing a row of periodic
co-rotating eddies. For each solution of that family and for each rotation parafme?#), we give

the unstable streamline interval, according to the criterion of instability. This criterion gives only a
sufficient condition of centrifugal instability. The equations of the geometrical optics method are
therefore numerically solved to obtain the true centrifugally unstable streamline intervals. It turns
out that our criterion gives excellent results for highly concentrated vortices, i.e., the two approaches
yield the same unstable streamline intervals. In less concentrated vortices, some streamlines undergo
centrifugal instability although our criterion is not fulfilled. From these numerical results, another
criterion of centrifugal instability for a flow with closed streamlines is conjectured which reduces to
the change of sign of the absolute vorticity+2Q somewhere in the flow. €000 American
Institute of Physicg.S1070-663100)00107-0

I. INTRODUCTION localized shortwave perturbation characterized by a wave
vectork and an amplitude vecta. The flow is unstable if

In this paper, we give a simple criterion of centrifugal there exists a streamline on which the amplitege) of a
instability for inviscid, incompressible, two-dimensional particular wave packet grows unboundedlytase. A sec-
(2D) planar flows in rotating systems. This criterion is aond proof of instability will be given in terms of unstable
sufficient condition for instability or equivalently a necessarynormal modes. If the flow lies in théx,y) plane and the
condition for stability. It is in accordance with the ones thatrotation axis is parallel to the axis, these normal modes are
already exist in some restrictive situations. For parallel sheagought under the fornhu’,p’](x,y,z,t) =expikz+si)[T,P]
flows in rotating systems, it amounts to the Pellley  x(x,y) wherek is the vertical wave number arsthe com-
Bradshaw—Richards@reriterion. For axisymmetric flows in  plex amplification rate. The flow is unstable if a normal
inertial frames, it yields the Rayleigh centrifugal criterion. mode exhibits a complex amplification ratevith a positive
With axisymmetric flows in rotating frames, we obtain the real part. It has been shown in the case of a Taylor—Green
criterion given by Kloosterziel and van Hefjsind Mutabazi  flom—which is an infinite 2D array of counter-rotating
et al® And, with general 2D planar flows in inertial frames, vortice$—subject to rotation, that these two approaches are
we obtain Bayly’s criterioff. consisten?:’® In particular, elliptic and centrifugal-type nor-

The proof of linear instability will be given by means of mal modes have been identified whose characterissica-
two different approaches. A first proof is based on the geotial structure and eigenvaluesre in accordance with the
metrical optics method introduced by Lifschitz and Hamgiri. results given by the geometrical optics method.
This method, roughly speaking, reduces to following a wave  This paper is an extension to rotating frames of a paper
packet along the flow trajectories, using (#entzel- due to Bayly® It is also a continuation of the works of Cam-
Kramers—Brillouin approximation. This wave packet is a bon et al!! and Leblanc and Cambbhin the search of a
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The relative vorticity, W=V X u=W2 whereW= —V?y, is
therefore constant on each streamlif@nd is a function of
¥, W=W(4). In the following, we will consider the local
algebraic radius of curvatur® at a given point of a stream-
line. This quantity is defined at all points of a particle trajec-
tory [x(t) =x(t)X+y(t)y wherex’ =dx/dt=u] as

(X/2+y/2)3/2 V3
Ty XY (V) fu- vl

whereV(x,y)=|u(x,y)| is the norm of the velocity field. In
this formula, V¢ leads to thex’ andy’ terms whileu-Vu
yields the x” and y” terms—in a stationary flow field
. o _ d>/dt?=du/dt=u-Vu. For the readers sake, the term

FIG. 1. Flow in the(x,y) plane. One streamling is depicted. The flow is v v | b . . ial .
here assumed to be counterclockwise, so Yhaiandu have the disposition ( ' w)[u u] Can_ asq e W”tten ain tensorial notation
indicated. We have also shown the center of curvature, the radius of curva¥ith indices and Einstein conventipr{dy/ dx;) u;(du; / 9x;).
ture[R], the quadran@. Here, R>0 if the flow is locally counterclockwise an®
<0 if the flow is locally clockwise.

Let us introduce the following quantities:

R(X,Y) 2

generalized criterion for the stability of two-dimensional
flows in planes perpendicular to the rotation axis. Leblanc
and Cambotf made a first attempt by suggesting that this
criterion could be the local negativity of the second invariant
of the inertial tensor somewhere in the flow. This effectively ~ A(¥)=maxa(x), 4
accounts for the special cases of Bradshaw—Richar@son v
Pedley, Rayleigh and Kloosterziel and van Heijst, but it fails where may, denotes the maximum over the streamlipie
with Bayly’s result. The flow is unstable if there exisig such as

Our criterion, which accounts for all of the above-
mentioned criteria, is given in Sec. Il. Then, as an applica- A(%0)<0. ®)
tion (Sec. I, we consider the case of Stuart vortites It will be shown below that instability is achieved both with
which is a family of nonaxisymmetric eddies whose vorticity respect to the geometrical optics methsde Sec. Il Cand
concentration can arbitrarily be varied. Using the geometriwith respect to a classical normal mode analysise Sec.
cal optics method, it is shown that the criterion gives excelHI D). The perturbationsu’,p’) are three-dimensiondBD)
lent results in the case of highly concentrated vortices. Irin both cases and are governed by the linearized modified
other cases, some regions of the flow are shown to be cefuler equations:
trifugally unstable even though our sufficient criterion is not

S(x)=2 (W+20Q), 3)

V-I—Q
R

fulfilled. This leads us to formulatéSec. 111G a conjecture a—w+u-Vu’+u’-Vu+29><u’=—Vp’ V.u' =0.
about a more general criterion of centrifugal instability, ot ’

based only on the change of sign of the absolute vorticity of (6)
the basic flow. Note that Leblanc and Cambtadready gave The criterionA () <0 compares the sign of the absolute

some shortwave stability results on the case of Stuart vortiangular velocity of the particl&//R+Q to the sign of its
ces in a rotating frame, but their analysis was limited toabsolute vorticityW-+2(). If these two quantities have op-
elliptic and hyperbolic instabilities developing on stagnationposite signs along a whole streamligg, then the flow is

points. unstable. The quantity(x) is a polynom of the second order
in Q). The two roots of this polynom;-V/R and —W/2,
Il. A SUFFICIENT CRITERION OF CENTRIFUGAL have a special importance since @I is in the interval
INSTABILITY bounded by the two roots, the#(x)<0. The two roots are
A. Presentation linked since:
We consider an inviscid incompressible flow in a frame v _ V—V+S @
rotating at a constant angular veloct®= )z, wherez is the R 2 '

unit vector in the positive direction. We use the Euler equa-

tions referred to the r_otating frame, S0 that a Coriolis termlocity gradient tensor. The teriis the nondiagonal term of
20X u has to be considered. The relative motion of the basqhe symmetric part of the velocity gradient tensor in the

flow u is supp.osed t? be two dlmenspnal and to lie in 3Serret—Frenet vector basis{(u/V,n=V /V). It can there-
plane perpendicular td, so that there exists a stream func- S .
fore be referred to as the intrinsic shear—note that in the

tion ¢(x,y) such asu(x,y)=VX[#(x,y)2] (see Fig. L . o . .
! : . o case of parallel shear flows(y), this definition yields twice
The basic flow is a steady solution of the modified Eulerthe usual shear ratei=24U/dy. Equation(7) shows that

equations: the relative angular velocity of a fluid partic/R is the
u-Vu+2QXxXu=-Vp, V-u=0. (1) sum of two terms. The first on&Y/2, is due to the vorticity

whereS=t-[1/2(L+ £")n]. Here£= Vu designates the ve-
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S C. Proof of instability by means of the geometrical
—_—— optics method
-V/R -W/2 1. Presentation of the geometrical optics method
t t > Q Following Lifschitz and Hameirf, the basic flow field
stable unstable stable [u(x),p(x)] is perturbed by the following WKB-form

FIG. 2. A streamline is centrifugally unstable if the system rotafioies in ~ vVelocity/pressure field:
the interval bounded by V/R and —W/2 along the whole streamline. The

width of this interval is|S|. —W/2 is a fixed bound of the interval since the u’ (xt)=exq i d(x.H|fla (x)+ a (x)

vorticity is constant along the streamline wherea¥/R can change along p’ i € | € me|

the streamline. For centrifugal instability, is required to be either strictly

positive (as it is in the figurg or strictly negative along the whole stream- U,

line, so that() can lie in the specified unstable interval all along the stream- + € - (x,1), (12)
line. r

wheree is a small parameter andl is a phase field which is
real. In the followingk=V ¢ is the wave vector of the per-
turbation field. This perturbation is substituted into the in-
compressible linearized Euler equatiof®. The resulting
equations contain terms of various orderssirEquating the
lowest-order terms yields =0, the incompressibility condi-
tion k-a=0 and the eikonal equation:

of the basic flow and the second org, represents the an-
gular velocity due to the shear. The criteridrf) <0 can
be satisfied only if the angular velocify lies at each point
of the streamlines between—V/R and—W/2. This requires
that the intrinsic sheaf=V/R—W/2 be either strictly posi-
tive or strictly negative along a whole streamligigsee Fig. (6i+u-V)¢p=0, (13
e S o o oty ot e ;1 Dhse s pssielyavectd. T nert ovest
. o order terms yield the evolution equation for the velocity en-
tion by the intrinsic shea&.

velope functiona:
B. Special cases (di+u-Vyat+ L(x)at+t2QXa=—ikm,. (14

In the particular case where the streamlines are circulafrojecting this equation in the plane perpendiculak tae.,
the criterion A(4)<0 is identical to the one given by multiplying this equation by the operat@— (k®k)/|k|?

Kloosterziel and van Heij$tand Mutabazet al..® where Z is the identity tensor anc the tensor product,
yields
2 uar) Q(W(r)+2Q)<0 f di 2kok
T+ (W(r)+2Q) or some radiusrg, (34 u-V)a= . —I)L(x)a
) K|
. . . . . kok
whereU (r) is the orthoradial velocity of the basic flow. If in +| o —I|(2QXa). (15
addition the background rotation is zero, then we obtain K
Rayleigh’s criterion: Equations(13) and (15 form a system evolving locally
along particle trajectories. We can therefore write them as
u(r
LW(r)<0 for some radiusry. 9 dx
r T =u(x), (16)
dt
If the radius of curvatur& tends to infinity, we are led K
to the Pedley or Bradshaw—Richardséreriterion, which e — LT(x)k, (17)
gives sufficient conditions for a parallel shear flaijy) to t
be destabilized: da [2k®k ko k
5 a: W —I> L(X)a+ W —I)(ZQXEI). (18
20| 20— d_y) <0 for someys. (100 Herex(t) is the position at time of a fluid particle and the

superscripfl is the transpose. For the reader’s sake, we give
In an inertial frame, we also get Bayl{’'sesult which  these three equations, in tensorial notations with indices:

applies to general planar basic flows with convex streamgy,
lines: “sufficient conditions for centrifugal instability are — =u;, (19
that streamlines be convex closed curves in some region o
the flow, with the magnitude of the circulation decreasingdk;
outward.” In our formalism, this can be restated in the fol- 57 =~ LmiKm. (20
lowing manner:

da

dt

2kiKn
k[

ikm

Kk
W - 5im) Emannap )
(21)

—Oim| Lmn@nt2

\Y
§W<O on a whole streamling/,. (11
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where Ly,,= duy, /X, is evaluated at a point of the trajec-  wise perturbationgand only for these perturbationsf k. a
tory. Lifschitz and Hameifiproved that a sufficient criterion att=0, thenk L a for all times, without having to invoke the
for instability is that the above systems have at least ongressure: considering Eq14), if a lies in the horizontal
solution for which the amplitude(t) increases unboundedly plane, then the distortions induced by the velocity gradient
ast—oo. tensor, — La, and those induced by the Coriolis force,
This WKB method can be considered as an extension of- 20 x a, are in the horizontal plane. The pressure field is
techniques that exist for homogeneous flows—for whids  therefore not necessary for such spanwise perturbations to
space uniform—to general flows—for whiof(x) is space remain incompressible, so that they can be referred to as
dependant. As a matter of fact, Eq47) and (18) have al-  pressureless perturbations. The role of the spanasel
ready been extensively used with homogeneous flows in thgherefore pressurelésperturbations was analyzed by Leb-
context of stability studi¢S™*°and in the context of homo- |anc and Cambd#*for elliptic and hyperbolic instabilities
geneous rapid distortion thedfy**(RDT). Disturbances are developing on stagnation points and by Béylgr centrifu-
then easily found under time-dependant Fourier modegal instabilities. In the context of shortwave asymptotics, it is
a(t)exdik(t)-x] with a andk governed by(17) and (18).  important to note that the term pressureless is not a math-
Then the shortwave asymptotics allows to consider applicaematical artifact as it is in the usual displaced-particle
tion to general flows for whichZ(x) is space dependant, argument:?*In this latter theory, one just throws away pres-
using a WKB “mathematical zoom,” provided the length sure without justification and one obtains, almost fortu-
scale of the disturbance be smaller than any length scale @&busly, the correct criterion. On the other hand, with short-
the background flow. The parametein (12) provides this wave asymptotics, the fact that the unstable perturbations are
scale separation, so that homogeneous stability and RDpressureless is a consequence and stems from the fact that
equations are recovered at the leading order for a wavghe wave vector of these perturbations is perpendicular to the
packet which is convected and distorted following individual pasic flow field.
trajectories. Equation(24) yields the following equation for the hori-

zontal component od:
2. Proof of instability

In this section, we prove that if there exists a streamline i a-u :( 0 W20 a-u
o such asA () <0, then there exists a wave packet for ~ dtia V¢ | —2(VIR+Q) 2V'/v [la V]’
which the amplitudea(t) increases unboundedly &s>o. (25
_The conditionA (i) <0 can be satisfied in the two fol- |\ harev’ =dVv/di=u-VV. Equation(25) is obtained by us-
lowing cases: ing the relation ¥ ) - (Lu)=V3/R and the fact that the an-
Q+W(ip)/2<0 and Q+minV/R>0 (22 tisymmetric part of the velocity gradient tensof € £7)/2
¥o equals the operatoy/2)x () where X denotes the cross
or product.
At each pointx of the streamling/,, the vectorau and
Q+W(i)/2>0 and Q+maxV/R<O0, (23 Vy divide the plane into four quadrants. The quadi@(x)
Yo consists of all vectory satisfyingv-u>0 andv-V#<0

where min, and may, designate the minimum and maxi- (see Fig. 1 We first prove t_hat _ifa(t=0) lies in the quad-

mum over the streamling,. Only the first cas¢22) will be ~ rantQ(t=0), thena(t) remains in the quadrai(t) for all

treated here, the demonstration of the other case being sinfi=" 0 In other words, we show that #-u>0 anda-V

lar. The proofs follow the treatment given by Baylydere, <0 hold att=0 then they continue to hold for al>0. To

we extend his formalism to the rotating case. prove this, suppose that this were to be violated. So there
Let us consider spanwise perturbations where the wavBUst be some time>0 when either

vector is perpendicular to the flow fiel#l(Z). Equation(18) e , . _
therefore reduces to a-Vy¢y=0 with a-u>0 and (d/dt)(a-V#)=0 (26)
or

da
—=—-L(X)a—2QXa. (24 ]
dt a-u=0 with a-V¢<0 and (d/dt)(a-u)<0 (27

We now briefly discuss the pressureless nature of such pegs ot hoiq, we show that neither of these two assumptions
turbations. It is important to quote that E{.8) includes in can occur

general a contribution from pressure through the tekms First, suppose thad- V=0 occurred witha. u>0 for
®k/|k|?. But this contribution disappears for some orienta-¢ ) o tirﬁet Thereforea=cu for some positive numbet

tions of the wave vector, especially whiris perpendicular Thus from.Eq.(25) we find '

to the plane of the background 2D flo@nd thus aligned ' ’

with the angular velocity vectd®). Hence, Eq(24) can also d )

be obtained by throwing out the pressure term in Egjsand gi(@ Vi) =—2cVA(VIR+Q). (28)

therefore in Eq.(14). The primary function of pressure in

shortwave perturbations is to maintain at all times the incomNow, assumptior{22) yields V/R+ Q>0 along,, so that
pressibility of the perturbation fieldk(. a). Now, for span- (d/dt)(a-V ¢)<0 which contradict$26).

Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



1744 Phys. Fluids, Vol. 12, No. 7, July 2000 D. Sipp and L. Jacquin

Secondly, suppose thatu=0 with a- V<0 for some and extend it to the rotating case which is considered here.
time t. Now, Eq.(25) yields Normal modes are sought in the usual way by considering a
vertical wavelengttk and a complex amplification rate
' U
p’ P
The main idea is to use a particular vector field bdisi®r
the representation of the eigenmdile,y):

d
&(a~u)=(W+ZQ)(a-Vzﬁ) (29

(x,y,z,t)=expikz+st)|~ |(X,y). (31

so that @/dt)(a-u)>0, sinceW+ 202 <0 [assumptior{22)].
This contradictg27).

Now, using the fact that the amplitudét) remains at all
times in the quadran®(t), it can be shown that it grows U(X,y)=TU(x,y)f1(X,y) +T (X, y)fa(X,y)
exponentially. Consider the angtt) betweenu(x(t)) and ~
a(t). Since(24) is linear ina, # satisfies a first-order ordi- FWY)T(x.Y), (32
nary differential equation depending only ahitself and f; is constructed using the eigenvaluasand the eigenvec-
x(t). Equation (28) shows thatde/dt(6=0) [=2(V/R  torse of the fundamental Floquet matrix associated to the
+Q)] is separated by a finite amount from zero. If thedifferential equation(24). This matrix is A(T(i)) where
streamliney, is closed, it can be deduced that there is aT(y) refers to the time period on the streamliieaand A(t)
finite angle .>0 such asd6/dt(6=6.) is greater than or is obtained from
equal to zero on the whole streamlilg. This fact remains

true in the case of parallel shear flows wh&e-c andV j: —L(X)A-20Qx A, A0)=T. (33
=cst So if (t=0)=6,, thend(t)=6.. This implies, us- dt
ing (29), that Since the basic flow lies in the,y) plane, the eigenvalues/

B eigenvectors 1y, ,g) can be taken as follows:n(z;=1,e;
a(t) - u(x(t))=exd —t(W+2Q)tan6] =2%) and (e,&,) lie in the (x,y) plane. From the incompress-
X[a(t=0)-u(x(t=0))]. (30) ibility of the basic flow, the two corresponding complex ei-
genvalues 1f; ,m,) where|m;|=|m,| must multiply to 1 :
In the case of a closed streamliig, u(x(t)) is periodic with ~ m;m,=1. As A()<O0, there exists in Eq(24) a perturba-
a periodT (), so thata(nT(¢o)) grows exponentially and tion whose amplitude(t) exponentially increases ds-
monotically ast—. The same conclusion, i.e., the expo- (see Sec. Il CR This can be restated here by saying timat
nential growth ofa(t) ast—o, is reached in the case of andm, are real and reciprocals, witim,|>1 and|m,|<1.
parallel shear flows. The flow is therefore unstable with re-The Floquet exponents, which are the logarithmsnaf di-
spect to the geometrical optics method. vided by the periodT(y) are therefore as followss,;
The fact thata(t) always remains in the quadra@(t) =0, S,=—0 ands;=0 wherec>0. The vector fields,
for all times means that the perturbation exchanges fluiire then defined in the following wayf;(x)=exp
from the regiony<y, with fluid from the regiony> .  [—st]A(t)g wherex(t) is a particle trajectory. From Sec.
We thus retrieve one of the basic features of centrifugal in{| C 2, it follows thatf; lies in the quadran®(x). Consider-
stability. ing o as a function ofy, we shall further assume thai )
The general criterion presented by Leblanc andiakes a quadratic maximum on a given streamiipg i.e.,
Cambori? is also based on the componentsadfi the frame  ¢/(y4,)=0 and —o”(io)>0. This streamline, where
of reference attached to the trajectorigise Serret—Frenet o(4,)>0, turns out to be the one in whose neighborhood we
vector basis with a system of equations close (®5). The  can construct a localized instability.
difference lies in the fact that they chose a normed frame, so In the limit k—o, the eigenmodes are sought with the
that they analyzed the quantitied/@t)(a-t) and d/dt)(a  following asymptotic behavior itk:
-n) rather than ¢/dt)(a-u) and d/dt)(a- V). As a result, ~ — —1y e 11/ ~  L—3
their matrix is not triangular but full. Now, it is precisely the U=, o=k7V, W=k""W, P=k""P (34)
special reduced form of the matrix involved (25) that en-  with s= (i) — u/k and wherdli, 7, andW have been in-
ables one to prove a criterion of instability. The matrix in troduced in(32) andu is a constant to be determined. Hence,
(25) actually combines in a more suitable way advection,ask—, the amplification rates of the constructed eigen-
distortion and rotation effects than the matrix does in themode(31) converges towards the predicted maximum value
paper of Leblanc and Cambon. This explains the failure obf the geometrical optics methax ;). The solution(34) is
the Leblanc and Cambon criterion to account for the centocalized within a region of widthO(k *?) around the
trifugal instability. Note that Scorer and Wilsthwere the streamliney,. The following rescaled stream function coor-
first to achieve a stability analysis by considering the vortic-dinate is therefore considereg=k?(¢— i), so that/, V,

ity equation in the Serret—Frenet vector basis. W, P are now functions ofy. Introducing these expansions
in the linearized Euler equations, we are led to the quantum
D. Proof of instability by means of a normal mode harmonic oscillator-2:26
analysis
d2u M

We consider closed streamlingswith A(y)<0. We —+ —xznz)uzo with U(+»)=0, (35)
) . d
show that a localized normal mode can be constructed in the

neighborhood of a streamline. We follow Bayly’s formalfsm where

C(#o)

Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 12, No. 7, July 2000 Three-dimensional centrifugal-type instabilities . . . 1745

p=0.5

_ 1 T(o) fT
C(l//o)—mfo (f1-Vy)

d
x| ayo) + 57| (f2- Vg, (36)
>
2. 9"
TS S

In these equationsffr(x,y) is the adjoint vector field corre-
sponding tofi(x,y):fiT(x,y)~f]-(x,y)= Sij -

Now, the conditionA () <0 implies thatC(iy)>0.
This can be Shown. l?y qomb_mmg the pr_OOf given in Bayly's FIG. 3. Streamlines of the Stuart vortices for 0.5. The flow is periodic in
papef and the modifications introduced in Sec. I C 2 to copethe x direction with period .
with the rotating frame. At last—o" (i) is positive by
assumption, so that?>0. Equation(35) has therefore the

following solution: where G<p=<1 is a constant. |p=0, the hyperbolic-tangent
N2 mixing layer is recovered, whereas fpr=1, we obtain a
U 7;)=exp( _ _77) (38) single row of co-rotating point vortices, with circulation
2 —4, periodically spaced along theaxis with period 2r. If

with x=\C(i). This eigenmode is exponentially concen- 0<p<1_, the shear—l_ayer exhibits p.elriodi.c tyvo—giimensional
trated in the neighborhood of the streamlifgon a charac- co-.rotatlng eddle§ with .smooth vorticity Filstrlbutlon, each of
teristic length scale UN. It's amplification rate iss  Which has the circulation-4m. For a given parameter O
= (o) — /K With o(14)>0. The flow is therefore un- <p_< 1, the stream functlon_ls minimum in th_e center of the
stable with respect to a classical normal mode analysis.  VOrlice€S¥=¢imin=10g(1~p), increases monotically outward
From a physical point of view, the constructed unstable?Nd réaches the valugn.,=log(1+p) on the streamline that -
normal mode again reflects the basic physics of the centrifiSeParates the eddies. A given streamline will be referred in
gal instability. The localized modes take the form of highly the following by = (4= ¥min)/ (Ymax— Ymin)- Thus, Oy
elongated eddies. The fluid motion in these instabilities is<1 parametrizes the streamlines=0 represents the center
predominantly in the horizontal plane along the unstdble of the vortices andj=1 the streamline separating the ed-
direction, which belongs to the quadra@(x). This again dies. In Fig. 3, we have sketched the isovalues of the stream
shows that an exchange of fluid occurs between the regiofunction in the particular case=0.5. We consider this flow
<o and the regions> i, . This exchange is modulated in in a frame rotating at angular velocif). In the following,

the z direction by the term exj2). In order to preserve we usef=20Q to specify the level of background rotation.
exact incompressibility, a pressure field andz avelocity

component are also present in the perturbation, but at highe. Application and evaluation of the criterion
order ink™ . This again reflects the pressureless nature OB(J,)<0

the centrifugal instability. -
In this section, we apply the criterial( /) <O to obtain

centrifugally unstable streamline intervals in the Stuart vor-
I1l. CENTRIFUGAL-TYPE INSTABILITIES IN STUART tices. We compare these intervals to those obtained with the
VORTICES condition o-(¥)>0. The Floquet exponent(y) associated

In this section, we apply the criteriot()<0 to the j[o the matrixA(T(w)) is numerically obtained by integrat-
Stuart vortices, which is a particular nonaxisymmetric two-'"9 E_CI' (33 u;mg a fourth order Runge—Kutta scheme..
dimensional steady flow. We compare the unstable stream- Figure 4 is relative to the cage=0.9, f=2. The solid
line interval given by this criterion to the one given by the line with filled circles represents the Floquet expone()
numerical evaluation of the Floquet exponex(ty) associ- and the solid line with empty triangles refersAgy). There
ated to Eq.(33). This comparison shows that the criterion are several unstable zones whetg))>0. We focus on the
works well for highly concentrated vortices. We end this gne which exactly starts at the streamliiewhere A (%)

section by a discussion on the case of centrifugal unstablgecomes negative. This is the centrifugally unstable region.
streamlines which do not satisfy the sufficient criterion PrO-The extent of the unstable streamline intervai(#)>0)

osed above. ) ~
P almost corresponds to the extent of the region whefe)

A. The Stuart vortices <0. In this case, the criterioA () <0 gives excellent re-
sults to predict the centrifugally unstable region. However,

The Stuart vortices constitute a family of exact solutionsgynsidering the end of the centrifugally unstable streamline

of the Eulgr equ.at|ons often used FO modgl 2D mixing Iayersinterval, we note thaA(Tp) becomes positive before the end
The nondimensional stream function is given by

of the unstable zone is reached. Figure 5 shows the gase
r=log(coshy — p cosx), (39 =0.6, f=1 and Fig. 6 the casp=0.3, f=1. We again
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FIG. 4. Case=0.9, f=2: Floquet exponent(¢) and criterionA (7). FIG. 6. Case=0.3, f=1: Floquet exponenir(y}) and criterionA ().

consider the unstable intervalsr()>0) which exactly

start at the streamling whereA () becomes negative. We
notice that the smallep, the worse the agreement between

the upper interval bound obtained with th€)>0 condi-
tion and the one given by th&(1)<0 condition. In Fig. 6,
A(%) is even always strictly positive, except on one stream-
line ¥, whereA () =0. In conclusion, ap decreases, the

criterion A(¥)<0 is less and less efficient to predict the
extent of the centrifugally unstable streamline interval.

At last, an evaluation of the criteriaf () <0 with re-
gards to the conditiorr()>0 for all values ofp andf is
given in Figs. 7 and 8. In Fig. 7, the white region shows the
centrifugally unstable domain in thej(p) plane, according
to A(¥)<0. A(¥)<0 is fulfilled if there existsf such as
either —W/2<f2<—max,VIR or —min,V/R<f/2<

FIG. 7. Unstable §,p) region (in white) according to the criterior ()
<0. The solid and dashed lines represent the bounds of the untatde-
vals: f§<f<fS.

—— o(y) p=0.6 f=1
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lTI FIG. 8. Unstable §,p) region(the whole plangaccording to the criterion
~ ~ U(Tp)>0. The solid and dashed lines represent the bounds of the centrifu-
FIG. 5. Casep=0.6, f=1: Floquet exponentr() and criterionA (). gally unstablef intervals: f§<f<fj.
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—W/2. Instability requires that eithét/2—max;, V/R>0 or rates a stable region from an unstable region. This argument
—W/2+miny, V/R>0. The last condition is never satisfied in also proves that in an axisymmetric configuration, spanwise
Stuart vortices because, as can easily be shown, on ghortwave perturbations can only undergo instabilities of the
streamlines there exists points where the sh@ar—W/2  centrifugal type.

+ VIR is negative. On the other hand, the first condit{éh

always negativeis fulfilled in the white region of Fig. 7. The V. CONCLUSION

flow is centrifugally~unstable if lies in the intervalf§<-1c In this paper, we have presented a new criterion which
<f3 wheref{=—W(i,p) andf;=—2 max;V/IR. The solid  gives a sufficient condition for centrifugal-type instabilities
lines in Fig. 7 represertt; and the dashed lines; . to occur in a general inviscid steady two-dimensional flow.
In Fig. 8, we have sketched the true centrifugally un-This criterion is a generalization of the Rayleigh, Kloosterz-
stablef intervals in the {,p) plane, using the condition iel and van Heijst, Mutabaziet al, Pedley, Bradshaw-
a()>0. It turns out that the whole planes(p) is centrifu-  Richardson and Bayly’s criteria. The proof of instability has
gally unstable. The solid and dashed lines represent the twiseen given using both the geometrical optics approach and a
boundsf§ and f§ of the f interval for which instability oc-  classical normal mode analysis. This criterion shows that a
curs: f§<f<f3. It is shown thatf§ always coincides with 2D basic flow may undergo centrifugal instability only if its
¢, so that the solid lines in Figs. 7 and 8 are identical. Alsointrinsic shear is either positive or negative along a whole
fS>£S in the whole {,p) plane. Consequently, an unstable st_reamli_ne. In agreement with the_t basic mecha_nisms of cen-
region always begins for values @ andf such asw(#) trifugal instability, we have considered spanwise perturba-

+f=0. The end of the unstable zoné$§, coincides withfS tions, which are free from pressure effects. These perturba-
only fdr sufficiently peaked vorticeehig;h p). In this casze tions are shown to induce inward/outward exchanges of fluid

L ~ in a vortex, the fluid motion lying at first order in the hori-
the criterion A(¢¥)<0 becomes necessary to capture

trifugal-type instabilities. But, the smallef the greater 20 2 Piane.
centritugal-type instabiiities. but, the smailer the greater In the second part of this article, we applied the results to

the differencef7 —f5. For values op andy which are inthe  the Stuart vortices. We gave for each member of that family
shaded region of Fig. 7, centrifugally unstable regions al'and for each streamling, the unstable =20 interval ac-

ways exist althougih () is never negative. cording to the criteriom () <0: fS<f<fS. We found that
only sufficiently peaked vorticity distributionéigh p) sat-
isfy the criterion. But, this criterion is only a sufficient con-

The above results show that the criter'm(fp)<0 istoo  dition: a streamlingy can undergo centrifugal-type instabili-

restrictive in the cases whegeis small. On the other hand, ties even thoughA(%)>0. For this purpose, we have
the results also show that the streamlinehere the sign of numerically calculated the real unstableinterval f§<f
W(¢)+f changes, always corresponds to the beginning of ¢ hy computing the Floquet exponents). This analy-

centrifugally unstable streamline interval. The same phenomgjs showed that for sufficiently peaked vorticity distributions
enon is observed in Taylor—Green roWsThls leads us 0 \ye ghtain the same unstable intervalsf ias with the crite-
conjecture that a general 'steady two-d|men3|onal flow Wlthrion A(Tp)<0. For these vorticity distributions, our criterion
close'd streamh.nes .s'u'bjegt to rotgtlom underg.oes becomes therefore necessary to detect centrifugal-type insta-
centrifugal-type instabilities if there exists a streamlipg

: . . ._bilities. For vorticity distributions which are less concen-
where the sign of the absolute vorticity changes, i.e., the SI90 ted. the angular rotatiof¢ is still the beginning of an

of the functiony— W( ) +2Q changes atl. ) : ;
We have not been able to prove this conjecture in theur?sta?ble region. But its extent cannot be predicted by the
terion A () <O.

general case but it can be done in axisymmetric flows. In th&" : . )
latter case, the spanwise perturbations are governg@®y This led us to suggest another criterion of centrifugal
instability, which is based on the change of sign of the ab-

with V' =0 andR=r. The matrix in this equation is there- e >
solute vorticity W+2(. A general proof of this statement

fore constant and the eigenvaluegr) verify o(r)?+ 8(r) ; ; |
=0, so that a streamlineis stable if5(r)>0 and unstable if 1as not been given. But, we have proved that this conjecture
is true in the circular case.

8(r)<0. Now, in axisymmetric flows, the absolute vorticity
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