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Three-dimensional centrifugal-type instabilities of two-dimensional flows
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This paper deals with the stability of incompressible inviscid planar basic flows in a rotating frame.
We give a sufficient condition for such flows to undergo three-dimensional shortwave
centrifugal-type instabilities. This criterion reduces to the Bradshaw–Richardson~1969! or Pedley
~1969! criterion in the specific case of parallel shear flows subject to rotation, to Rayleigh’s
centrifugal criterion ~1916! in the case of axisymmetric vortices in inertial frames, to the
Kloosterziel and van Heijst~1991! criterion in the case of axisymmetric vortices subject to rotation
and to Bayly’s criterion~1988! in the case of general two-dimensional flows in inertial frames. The
criterion states that a steady 2D basic flow subject to rotationV is unstable if there exists a
streamline for which at each point 2(V/R1V)(W12V),0 where W is the vorticity of the
streamline,R is the local algebraic radius of curvature of the streamline andV is the local norm of
the velocity. If this condition is satisfied then the flow is unstable according to the geometrical optics
method introduced by Lifschitz and Hameiri~1991!, which consists in following wave packets
along the flow trajectories using a Wentzel–Kramers–Brillouin formalism. When the streamlines
are closed, it is further shown that a localized unstable normal mode can be constructed in the
vicinity of a streamline. As an application, this new criterion is used to study the centrifugal-type
instabilities in the Stuart vortices, which is a family of exact solutions describing a row of periodic
co-rotating eddies. For each solution of that family and for each rotation parameterf 52V, we give
the unstable streamline interval, according to the criterion of instability. This criterion gives only a
sufficient condition of centrifugal instability. The equations of the geometrical optics method are
therefore numerically solved to obtain the true centrifugally unstable streamline intervals. It turns
out that our criterion gives excellent results for highly concentrated vortices, i.e., the two approaches
yield the same unstable streamline intervals. In less concentrated vortices, some streamlines undergo
centrifugal instability although our criterion is not fulfilled. From these numerical results, another
criterion of centrifugal instability for a flow with closed streamlines is conjectured which reduces to
the change of sign of the absolute vorticityW12V somewhere in the flow. ©2000 American
Institute of Physics.@S1070-6631~00!00107-0#
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I. INTRODUCTION

In this paper, we give a simple criterion of centrifug
instability for inviscid, incompressible, two-dimension
~2D! planar flows in rotating systems. This criterion is
sufficient condition for instability or equivalently a necessa
condition for stability. It is in accordance with the ones th
already exist in some restrictive situations. For parallel sh
flows in rotating systems, it amounts to the Pedley1 or
Bradshaw–Richardson2 criterion. For axisymmetric flows in
inertial frames, it yields the Rayleigh centrifugal criterion3

With axisymmetric flows in rotating frames, we obtain th
criterion given by Kloosterziel and van Heijst4 and Mutabazi
et al.5 And, with general 2D planar flows in inertial frame
we obtain Bayly’s criterion.6

The proof of linear instability will be given by means o
two different approaches. A first proof is based on the g
metrical optics method introduced by Lifschitz and Hamei7

This method, roughly speaking, reduces to following a wa
packet along the flow trajectories, using a~Wentzel–
Kramers–Brillouin! approximation. This wave packet is
1741070-6631/2000/12(7)/1740/9/$17.00
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localized shortwave perturbation characterized by a w
vectork and an amplitude vectora. The flow is unstable if
there exists a streamline on which the amplitudea(t) of a
particular wave packet grows unboundedly ast→`. A sec-
ond proof of instability will be given in terms of unstabl
normal modes. If the flow lies in the~x,y! plane and the
rotation axis is parallel to thez axis, these normal modes ar
sought under the form@u8,p8#(x,y,z,t)5exp(ikz1st)@ũ,p̃#
3(x,y) wherek is the vertical wave number ands the com-
plex amplification rate. The flow is unstable if a norm
mode exhibits a complex amplification rates with a positive
real part. It has been shown in the case of a Taylor–Gr
flow—which is an infinite 2D array of counter-rotatin
vortices8—subject to rotation, that these two approaches
consistent.9,10 In particular, elliptic and centrifugal-type nor
mal modes have been identified whose characteristics~spa-
tial structure and eigenvalues! are in accordance with the
results given by the geometrical optics method.

This paper is an extension to rotating frames of a pa
due to Bayly.6 It is also a continuation of the works of Cam
bon et al.11 and Leblanc and Cambon12 in the search of a
0 © 2000 American Institute of Physics
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generalized criterion for the stability of two-dimension
flows in planes perpendicular to the rotation axis. Lebla
and Cambon12 made a first attempt by suggesting that th
criterion could be the local negativity of the second invaria
of the inertial tensor somewhere in the flow. This effective
accounts for the special cases of Bradshaw–Richardson~or
Pedley!, Rayleigh and Kloosterziel and van Heijst, but it fa
with Bayly’s result.

Our criterion, which accounts for all of the abov
mentioned criteria, is given in Sec. II. Then, as an appli
tion ~Sec. III!, we consider the case of Stuart vortices13

which is a family of nonaxisymmetric eddies whose vortic
concentration can arbitrarily be varied. Using the geome
cal optics method, it is shown that the criterion gives exc
lent results in the case of highly concentrated vortices.
other cases, some regions of the flow are shown to be
trifugally unstable even though our sufficient criterion is n
fulfilled. This leads us to formulate~Sec. III C! a conjecture
about a more general criterion of centrifugal instabili
based only on the change of sign of the absolute vorticity
the basic flow. Note that Leblanc and Cambon14 already gave
some shortwave stability results on the case of Stuart vo
ces in a rotating frame, but their analysis was limited
elliptic and hyperbolic instabilities developing on stagnati
points.

II. A SUFFICIENT CRITERION OF CENTRIFUGAL
INSTABILITY

A. Presentation

We consider an inviscid incompressible flow in a fram
rotating at a constant angular velocityV5V ẑ, whereẑ is the
unit vector in the positivez direction. We use the Euler equa
tions referred to the rotating frame, so that a Coriolis te
2V3u has to be considered. The relative motion of the ba
flow u is supposed to be two dimensional and to lie in
plane perpendicular toẑ, so that there exists a stream fun
tion c(x,y) such asu(x,y)5“3@c(x,y) ẑ# ~see Fig. 1!.
The basic flow is a steady solution of the modified Eu
equations:

u•“u12V3u52“p, “•u50. ~1!

FIG. 1. Flow in the~x,y! plane. One streamlinec is depicted. The flow is
here assumed to be counterclockwise, so that“c andu have the disposition
indicated. We have also shown the center of curvature, the radius of cu
ture uRu, the quadrantQ.
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
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The relative vorticity,W5“3u5Wẑ whereW52“

2c, is
therefore constant on each streamlinec and is a function of
c, W5W(c). In the following, we will consider the loca
algebraic radius of curvatureR at a given point of a stream
line. This quantity is defined at all points of a particle traje
tory @x(t)5x(t) x̂1y(t) ŷ wherex85dx/dt5u# as

R~x,y!5
~x821y82!3/2

y9x82x9y8
5

V3

~“c!•@u•“u#
, ~2!

whereV(x,y)5uu(x,y)u is the norm of the velocity field. In
this formula,“c leads to thex8 and y8 terms whileu•“u
yields the x9 and y9 terms—in a stationary flow field
d2x/dt25du/dt5u•“u. For the reader’s sake, the ter
(“c)•@u•“u# can also be written as~in tensorial notation
with indices and Einstein convention!: (]c/]xi)uj (]ui /]xj ).
Here, R.0 if the flow is locally counterclockwise andR
,0 if the flow is locally clockwise.

Let us introduce the following quantities:

d~x!52S V

R 1V D ~W12V!, ~3!

D~c!5max
c

d~x!, ~4!

where maxc denotes the maximum over the streamlinec.
The flow is unstable if there existsc0 such as

D~c0!,0. ~5!

It will be shown below that instability is achieved both wit
respect to the geometrical optics method~see Sec. II C! and
with respect to a classical normal mode analysis~see Sec.
II D !. The perturbations (u8,p8) are three-dimensional~3D!
in both cases and are governed by the linearized modi
Euler equations:

]u8

]t
1u•“u81u8•“u12V3u852“p8, “•u850.

~6!

The criterionD(c),0 compares the sign of the absolu
angular velocity of the particleV/R1V to the sign of its
absolute vorticityW12V. If these two quantities have op
posite signs along a whole streamlinec0 , then the flow is
unstable. The quantityd(x) is a polynom of the second orde
in V. The two roots of this polynom,2V/R and 2W/2,
have a special importance since ifV is in the interval
bounded by the two roots, thend(x),0. The two roots are
linked since:

V

R 5
W

2
1S, ~7!

whereS5t•@1/2(L1LT)n#. HereL5“u designates the ve
locity gradient tensor. The termS is the nondiagonal term o
the symmetric part of the velocity gradient tensor in t
Serret–Frenet vector basis (t5u/V,n5“c/V). It can there-
fore be referred to as the intrinsic shear—note that in
case of parallel shear flowsU(y), this definition yields twice
the usual shear rate:S52]U/]y. Equation~7! shows that
the relative angular velocity of a fluid particleV/R is the
sum of two terms. The first one,W/2, is due to the vorticity

a-
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of the basic flow and the second one,S, represents the an
gular velocity due to the shear. The criterionD(c),0 can
be satisfied only if the angular velocityV lies at each point
of the streamlinec between2V/R and2W/2. This requires
that the intrinsic shearS5V/R2W/2 be either strictly posi-
tive or strictly negative along a whole streamlinec ~see Fig.
2!. The physical mechanism of instability can therefore
traced back to the stretching of the vorticity of the perturb
tion by the intrinsic shearS.

B. Special cases

In the particular case where the streamlines are circu
the criterion D(c),0 is identical to the one given b
Kloosterziel and van Heijst4 and Mutabaziet al.:5

2S U~r !

r
1V D ~W~r !12V!,0 for some radiusr 0 ,

~8!

whereU(r ) is the orthoradial velocity of the basic flow. If in
addition the background rotation is zero, then we obt
Rayleigh’s3 criterion:

U~r !

r
W~r !,0 for some radiusr 0 . ~9!

If the radius of curvatureR tends to infinity, we are led
to the Pedley1 or Bradshaw–Richardson2 criterion, which
gives sufficient conditions for a parallel shear flowU(y) to
be destabilized:

2VS 2V2
dU

dy D,0 for some y0 . ~10!

In an inertial frame, we also get Bayly’s6 result which
applies to general planar basic flows with convex strea
lines: ‘‘sufficient conditions for centrifugal instability ar
that streamlines be convex closed curves in some regio
the flow, with the magnitude of the circulation decreasi
outward.’’ In our formalism, this can be restated in the fo
lowing manner:

V

R W,0 on a whole streamlinec0 . ~11!

FIG. 2. A streamline is centrifugally unstable if the system rotationV lies in
the interval bounded by2V/R and2W/2 along the whole streamline. Th
width of this interval isuSu. 2W/2 is a fixed bound of the interval since th
vorticity is constant along the streamline whereas2V/R can change along
the streamline. For centrifugal instability,S is required to be either strictly
positive ~as it is in the figure! or strictly negative along the whole stream
line, so thatV can lie in the specified unstable interval all along the strea
line.
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
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C. Proof of instability by means of the geometrical
optics method

1. Presentation of the geometrical optics method

Following Lifschitz and Hameiri,7 the basic flow field
@u(x),p(x)# is perturbed by the following WKB-form
velocity/pressure field:

Fu8
p8G~x,t !5expF i

f~x,t !

e G H F a
p G~x,t !1eF ae

pe
G~x,t !J

1eF ur

p r
G~x,t !, ~12!

wheree is a small parameter andf is a phase field which is
real. In the following,k5“f is the wave vector of the per
turbation field. This perturbation is substituted into the
compressible linearized Euler equations~6!. The resulting
equations contain terms of various orders ine. Equating the
lowest-order terms yieldsp50, the incompressibility condi-
tion k•a50 and the eikonal equation:

~] t1u•“ !f50, ~13!

i.e., the phase fieldf is passively advected. The next-lowes
order terms yield the evolution equation for the velocity e
velope functiona:

~] t1u•“ !a1L~x!a12V3a52 ikpe . ~14!

Projecting this equation in the plane perpendicular tok, i.e.,
multiplying this equation by the operatorI2(k ^ k)/uku2

where I is the identity tensor and̂ the tensor product,
yields

~] t1u•“ !a5S 2k ^ k

uku2
2IDL~x!a

1S k ^ k

uku2 2ID ~2V3a!. ~15!

Equations ~13! and ~15! form a system evolving locally
along particle trajectories. We can therefore write them a

dx

dt
5u~x!, ~16!

dk

dt
52LT~x!k, ~17!

da

dt
5S 2k ^ k

uku2
2IDL~x!a1S k ^ k

uku2
2ID ~2V3a!. ~18!

Herex(t) is the position at timet of a fluid particle and the
superscriptT is the transpose. For the reader’s sake, we g
these three equations, in tensorial notations with indices

dxi

dt
5ui , ~19!

dki

dt
52Lmikm , ~20!

dai

dt
5S 2kikm

uku2
2d imDLmnan12S kikm

uku2
2d imD emnpVnap ,

~21!

-
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whereLmn5]um /]xn is evaluated at a pointx of the trajec-
tory. Lifschitz and Hameiri7 proved that a sufficient criterion
for instability is that the above systems have at least
solution for which the amplitudea(t) increases unboundedl
as t→`.

This WKB method can be considered as an extension
techniques that exist for homogeneous flows—for whichL is
space uniform—to general flows—for whichL(x) is space
dependant. As a matter of fact, Eqs.~17! and ~18! have al-
ready been extensively used with homogeneous flows in
context of stability studies15–19 and in the context of homo
geneous rapid distortion theory20–23~RDT!. Disturbances are
then easily found under time-dependant Fourier mo
a(t)exp@ik(t)•x# with a and k governed by~17! and ~18!.
Then the shortwave asymptotics allows to consider appl
tion to general flows for whichL(x) is space dependan
using a WKB ‘‘mathematical zoom,’’ provided the lengt
scale of the disturbance be smaller than any length scal
the background flow. The parametere in ~12! provides this
scale separation, so that homogeneous stability and R
equations are recovered at the leading order for a w
packet which is convected and distorted following individu
trajectories.

2. Proof of instability

In this section, we prove that if there exists a streaml
c0 such asD(c0),0, then there exists a wave packet f
which the amplitudea(t) increases unboundedly ast→`.

The conditionD(c0),0 can be satisfied in the two fol
lowing cases:

V1W~c0!/2,0 and V1min
c0

V/R.0 ~22!

or

V1W~c0!/2.0 and V1max
c0

V/R,0, ~23!

where minc0
and maxc0

designate the minimum and max
mum over the streamlinec0 . Only the first case~22! will be
treated here, the demonstration of the other case being s
lar. The proofs follow the treatment given by Bayly.6 Here,
we extend his formalism to the rotating case.

Let us consider spanwise perturbations where the w
vector is perpendicular to the flow field (ki ẑ). Equation~18!
therefore reduces to

da

dt
52L~x!a22V3a. ~24!

We now briefly discuss the pressureless nature of such
turbations. It is important to quote that Eq.~18! includes in
general a contribution from pressure through the termk
^ k/uku2. But this contribution disappears for some orien
tions of the wave vector, especially whenk is perpendicular
to the plane of the background 2D flow~and thus aligned
with the angular velocity vectorV!. Hence, Eq.~24! can also
be obtained by throwing out the pressure term in Eqs.~6! and
therefore in Eq.~14!. The primary function of pressure i
shortwave perturbations is to maintain at all times the inco
pressibility of the perturbation field (k'a). Now, for span-
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
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wise perturbations~and only for these perturbations!, if k'a
at t50, thenk'a for all times, without having to invoke the
pressure: considering Eq.~14!, if a lies in the horizontal
plane, then the distortions induced by the velocity gradi
tensor, 2La, and those induced by the Coriolis forc
22V3a, are in the horizontal plane. The pressure field
therefore not necessary for such spanwise perturbation
remain incompressible, so that they can be referred to
pressureless perturbations. The role of the spanwise~and
therefore pressureless! perturbations was analyzed by Leb
lanc and Cambon12,14 for elliptic and hyperbolic instabilities
developing on stagnation points and by Bayly6 for centrifu-
gal instabilities. In the context of shortwave asymptotics, i
important to note that the term pressureless is not a m
ematical artifact as it is in the usual displaced-parti
argument.4,24 In this latter theory, one just throws away pre
sure without justification and one obtains, almost for
itously, the correct criterion. On the other hand, with sho
wave asymptotics, the fact that the unstable perturbations
pressureless is a consequence and stems from the fac
the wave vector of these perturbations is perpendicular to
basic flow field.

Equation~24! yields the following equation for the hori
zontal component ofa:

d

dt S a•u
a•“c D5S 0 W12V

22~V/R1V! 2V8/V
D S a•u

a•“c D ,

~25!

whereV85dV/dt5u•“V. Equation~25! is obtained by us-
ing the relation (“c)•(Lu)5V3/R and the fact that the an
tisymmetric part of the velocity gradient tensor (L2LT)/2
equals the operator (W/2)3( ) where 3 denotes the cross
product.

At each pointx of the streamlinec0 , the vectorsu and
“c divide the plane into four quadrants. The quadrantQ(x)
consists of all vectorsv satisfying v•u.0 and v•“c,0
~see Fig. 1!. We first prove that ifa(t50) lies in the quad-
rantQ(t50), thena(t) remains in the quadrantQ(t) for all
t.0. In other words, we show that ifa•u.0 and a•“c
,0 hold att50 then they continue to hold for allt.0. To
prove this, suppose that this were to be violated. So th
must be some timet.0 when either

a•“c50 with a•u.0 and ~d/dt!~a•“c!>0 ~26!

or

a•u50 with a•“c,0 and ~d/dt!~a•u!<0 ~27!

must hold. We show that neither of these two assumpti
can occur.

First, suppose thata•“c50 occurred witha•u.0 for
some timet. Thereforea5cu for some positive numberc.
Thus, from Eq.~25!, we find

d

dt
~a•“c!522cV2~V/R1V!. ~28!

Now, assumption~22! yields V/R1V.0 alongc0 , so that
(d/dt)(a•“c),0 which contradicts~26!.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Secondly, suppose thata•u50 with a•“c,0 for some
time t. Now, Eq.~25! yields

d

dt
~a•u!5~W12V!~a•“c! ~29!

so that (d/dt)(a•u).0, sinceW12V,0 @assumption~22!#.
This contradicts~27!.

Now, using the fact that the amplitudea(t) remains at all
times in the quadrantQ(t), it can be shown that it grows
exponentially. Consider the angleu(t) betweenu(x(t)) and
a(t). Since~24! is linear in a, u satisfies a first-order ordi
nary differential equation depending only onu itself and
x(t). Equation ~28! shows thatdu/dt(u50) @52(V/R
1V)# is separated by a finite amount from zero. If t
streamlinec0 is closed, it can be deduced that there is
finite angleuc.0 such asdu/dt(u5uc) is greater than or
equal to zero on the whole streamlinec0 . This fact remains
true in the case of parallel shear flows whereR→` andV
5cst. So if u(t50)>uc , thenu(t)>uc . This implies, us-
ing ~29!, that

a~ t !•u~x~ t !!>exp@2t~W12V!tanuc#

3@a~ t50!•u~x~ t50!!#. ~30!

In the case of a closed streamlinec0 ,u(x(t)) is periodic with
a periodT(c0), so thata(nT(c0)) grows exponentially and
monotically ast→`. The same conclusion, i.e., the exp
nential growth ofa(t) as t→`, is reached in the case o
parallel shear flows. The flow is therefore unstable with
spect to the geometrical optics method.

The fact thata(t) always remains in the quadrantQ(t)
for all times means that the perturbation exchanges fl
from the regionc,c0 with fluid from the regionc.c0 .
We thus retrieve one of the basic features of centrifugal
stability.

The general criterion presented by Leblanc a
Cambon12 is also based on the components ofa in the frame
of reference attached to the trajectories~the Serret–Frene
vector basis!, with a system of equations close to~25!. The
difference lies in the fact that they chose a normed frame
that they analyzed the quantities (d/dt)(a•t) and (d/dt)(a
•n) rather than (d/dt)(a•u) and (d/dt)(a•“c). As a result,
their matrix is not triangular but full. Now, it is precisely th
special reduced form of the matrix involved in~25! that en-
ables one to prove a criterion of instability. The matrix
~25! actually combines in a more suitable way advectio
distortion and rotation effects than the matrix does in
paper of Leblanc and Cambon. This explains the failure
the Leblanc and Cambon criterion to account for the c
trifugal instability. Note that Scorer and Wilson25 were the
first to achieve a stability analysis by considering the vor
ity equation in the Serret–Frenet vector basis.

D. Proof of instability by means of a normal mode
analysis

We consider closed streamlinesc with D(c),0. We
show that a localized normal mode can be constructed in
neighborhood of a streamline. We follow Bayly’s formalism6
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
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and extend it to the rotating case which is considered h
Normal modes are sought in the usual way by considerin
vertical wavelengthk and a complex amplification rates:

Fu8
p8G~x,y,z,t !5exp~ ikz1st!F ũ

p̃G~x,y!. ~31!

The main idea is to use a particular vector field basisf i for
the representation of the eigenmodeũ(x,y):

ũ~x,y!5ũ~x,y!f1~x,y!1 ṽ~x,y!f2~x,y!

1w̃~x,y!f3~x,y!, ~32!

f i is constructed using the eigenvaluesmi and the eigenvec-
tors ei of the fundamental Floquet matrix associated to
differential equation~24!. This matrix is A(T(c)) where
T(c) refers to the time period on the streamlinec andA(t)
is obtained from

dA
dt

52L~x!A22V3A, A~0!5I. ~33!

Since the basic flow lies in the~x,y! plane, the eigenvalues
eigenvectors (mi ,ei) can be taken as follows: (m351,e3

5 ẑ) and (e1 ,e2) lie in the ~x,y! plane. From the incompress
ibility of the basic flow, the two corresponding complex e
genvalues (m1 ,m2) where um1u>um2u must multiply to 1 :
m1m251. As D(c),0, there exists in Eq.~24! a perturba-
tion whose amplitudea(t) exponentially increases ast→`
~see Sec. II C 2!. This can be restated here by saying thatm1

andm2 are real and reciprocals, withum1u.1 andum2u,1.
The Floquet exponents, which are the logarithms ofumi u di-
vided by the periodT(c) are therefore as follows:s1

5s, s252s and s350 wheres.0. The vector fieldsf i

are then defined in the following way:f i(x)5exp
@2sit#A(t)ei where x(t) is a particle trajectory. From Sec
II C 2, it follows that f1 lies in the quadrantQ(x). Consider-
ing s as a function ofc, we shall further assume thats(c)
takes a quadratic maximum on a given streamlinec0 , i.e.,
s8(c0)50 and 2s9(c0).0. This streamline, where
s(c0).0, turns out to be the one in whose neighborhood
can construct a localized instability.

In the limit k→`, the eigenmodes are sought with th
following asymptotic behavior ink:

ũ5U, ṽ5k21V, w̃5k21/2W, p̃5k23/2P ~34!

with s5s(c0)2m/k and whereũ, ṽ, andw̃ have been in-
troduced in~32! andm is a constant to be determined. Henc
as k→`, the amplification rates of the constructed eigen
mode~31! converges towards the predicted maximum va
of the geometrical optics methods(c0). The solution~34! is
localized within a region of widthO(k21/2) around the
streamlinec0 . The following rescaled stream function coo
dinate is therefore considered:h5k1/2(c2c0), so thatU, V,
W, P are now functions ofh. Introducing these expansion
in the linearized Euler equations, we are led to the quan
harmonic oscillator:12,26

d2U
dh2 1S m

C~c0!
2l2h2DU50 with U~6`!50, ~35!

where
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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C~c0!5
1

T~c0!
E

0

T~c0!

~ f1
†
•“c!

3Fs~c0!1
d

dtG~ f1•“c!dt, ~36!

l252
s9~c0!

2C~c0!
. ~37!

In these equations,f i
†(x,y) is the adjoint vector field corre

sponding tof i(x,y):f i
†(x,y)•f j (x,y)5d i j .

Now, the conditionD(c0),0 implies thatC(c0).0.
This can be shown by combining the proof given in Bayly
paper6 and the modifications introduced in Sec. II C 2 to co
with the rotating frame. At last,2s9(c0) is positive by
assumption, so thatl2.0. Equation~35! has therefore the
following solution:

U~h!5expS 2
lh2

2 D ~38!

with m5lC(c0). This eigenmode is exponentially conce
trated in the neighborhood of the streamlinec0 on a charac-
teristic length scale 1/Al. It’s amplification rate is s
5s(c0)2m/k with s(c0).0. The flow is therefore un-
stable with respect to a classical normal mode analysis.

From a physical point of view, the constructed unsta
normal mode again reflects the basic physics of the cent
gal instability. The localized modes take the form of high
elongated eddies. The fluid motion in these instabilities
predominantly in the horizontal plane along the unstablef1

direction, which belongs to the quadrantQ(x). This again
shows that an exchange of fluid occurs between the re
c,c0 and the regionc.c0 . This exchange is modulated i
the z direction by the term exp(ikz). In order to preserve
exact incompressibility, a pressure field and az velocity
component are also present in the perturbation, but at hig
order in k21. This again reflects the pressureless nature
the centrifugal instability.

III. CENTRIFUGAL-TYPE INSTABILITIES IN STUART
VORTICES

In this section, we apply the criterionD(c),0 to the
Stuart vortices, which is a particular nonaxisymmetric tw
dimensional steady flow. We compare the unstable stre
line interval given by this criterion to the one given by th
numerical evaluation of the Floquet exponents(c) associ-
ated to Eq.~33!. This comparison shows that the criterio
works well for highly concentrated vortices. We end th
section by a discussion on the case of centrifugal unst
streamlines which do not satisfy the sufficient criterion p
posed above.

A. The Stuart vortices

The Stuart vortices constitute a family of exact solutio
of the Euler equations often used to model 2D mixing laye
The nondimensional stream function is given by

c5 log~coshy2r cosx!, ~39!
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where 0<r<1 is a constant. Ifr50, the hyperbolic-tangen
mixing layer is recovered, whereas forr51, we obtain a
single row of co-rotating point vortices, with circulatio
24p, periodically spaced along thex axis with period 2p. If
0,r,1, the shear-layer exhibits periodic two-dimension
co-rotating eddies with smooth vorticity distribution, each
which has the circulation24p. For a given parameter 0
,r,1, the stream function is minimum in the center of t
vorticesc5cmin5log(12r), increases monotically outwar
and reaches the valuecmax5log(11r) on the streamline tha
separates the eddies. A given streamline will be referred
the following by c̃5(c2cmin)/(cmax2cmin). Thus, 0<c̃

<1 parametrizes the streamlines.c̃50 represents the cente
of the vortices andc̃51 the streamline separating the e
dies. In Fig. 3, we have sketched the isovalues of the stre
function in the particular caser50.5. We consider this flow
in a frame rotating at angular velocityV. In the following,
we usef 52V to specify the level of background rotation.

B. Application and evaluation of the criterion
D„c̃…Ë0

In this section, we apply the criterionD(c̃),0 to obtain
centrifugally unstable streamline intervals in the Stuart v
tices. We compare these intervals to those obtained with
condition s(c̃).0. The Floquet exponents(c̃) associated
to the matrixA(T(c̃)) is numerically obtained by integrat
ing Eq. ~33! using a fourth order Runge–Kutta scheme.

Figure 4 is relative to the caser50.9, f 52. The solid
line with filled circles represents the Floquet exponents(c̃)
and the solid line with empty triangles refers toD(c̃). There
are several unstable zones wheres(c̃).0. We focus on the
one which exactly starts at the streamlinec̃ where D(c̃)
becomes negative. This is the centrifugally unstable reg
The extent of the unstable streamline interval (s(c̃).0)
almost corresponds to the extent of the region whereD(c̃)
,0. In this case, the criterionD(c̃),0 gives excellent re-
sults to predict the centrifugally unstable region. Howev
considering the end of the centrifugally unstable stream
interval, we note thatD(c̃) becomes positive before the en
of the unstable zone is reached. Figure 5 shows the car
50.6, f 51 and Fig. 6 the caser50.3, f 51. We again

FIG. 3. Streamlines of the Stuart vortices forr50.5. The flow is periodic in
the x direction with period 2p.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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consider the unstable intervals (s(c̃).0) which exactly
start at the streamlinec̃ whereD(c̃) becomes negative. W
notice that the smallerr, the worse the agreement betwe
the upper interval bound obtained with thes(c̃).0 condi-
tion and the one given by theD(c̃),0 condition. In Fig. 6,
D(c̃) is even always strictly positive, except on one strea
line c̃0 whereD(c̃0)50. In conclusion, asr decreases, the
criterion D(c̃),0 is less and less efficient to predict th
extent of the centrifugally unstable streamline interval.

At last, an evaluation of the criterionD(c̃),0 with re-
gards to the conditions(c̃).0 for all values ofr and f is
given in Figs. 7 and 8. In Fig. 7, the white region shows
centrifugally unstable domain in the (c̃,r) plane, according
to D(c̃),0. D(c̃),0 is fulfilled if there existsf such as
either 2W/2, f /2,2maxc̃ V/R or 2minc̃ V/R, f /2,

FIG. 4. Caser50.9, f 52: Floquet exponents(c̃) and criterionD(c̃).

FIG. 5. Caser50.6, f 51: Floquet exponents(c̃) and criterionD(c̃).
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
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FIG. 6. Caser50.3, f 51: Floquet exponents(c̃) and criterionD(c̃).

FIG. 7. Unstable (c̃,r) region ~in white! according to the criterionD(c̃)
,0. The solid and dashed lines represent the bounds of the unstablef inter-
vals: f 1

c, f , f 2
c .

FIG. 8. Unstable (c̃,r) region ~the whole plane! according to the criterion

s(c̃).0. The solid and dashed lines represent the bounds of the cen
gally unstablef intervals: f 3

c, f , f 4
c .
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2W/2. Instability requires that eitherW/22maxc̃ V/R.0 or
2W/21minc̃ V/R.0. The last condition is never satisfied
Stuart vortices because, as can easily be shown, on
streamlines there exists points where the shearS52W/2
1V/R is negative. On the other hand, the first condition~S
always negative! is fulfilled in the white region of Fig. 7. The
flow is centrifugally unstable iff lies in the intervalf 1

c, f

, f 2
c wheref 1

c52W(c̃,r) and f 2
c522 maxc̃ V/R. The solid

lines in Fig. 7 representf 1
c and the dashed lines,f 2

c .
In Fig. 8, we have sketched the true centrifugally u

stable f intervals in the (c̃,r) plane, using the condition
s(c̃).0. It turns out that the whole plane (c̃,r) is centrifu-
gally unstable. The solid and dashed lines represent the
boundsf 3

c and f 4
c of the f interval for which instability oc-

curs: f 3
c, f , f 4

c . It is shown thatf 3
c always coincides with

f 1
c , so that the solid lines in Figs. 7 and 8 are identical. A

f 4
c. f 3

c in the whole (c̃,r) plane. Consequently, an unstab
region always begins for values ofc̃ and f such asW(c̃)
1 f 50. The end of the unstable zones,f 4

c , coincides withf 2
c

only for sufficiently peaked vortices~high r!. In this case,
the criterion D(c̃),0 becomes necessary to captu
centrifugal-type instabilities. But, the smallerr, the greater
the differencef 4

c2 f 2
c . For values ofr andc̃ which are in the

shaded region of Fig. 7, centrifugally unstable regions
ways exist althoughD(c̃) is never negative.

C. A conjecture

The above results show that the criterionD(c̃),0 is too
restrictive in the cases wherer is small. On the other hand
the results also show that the streamlinec where the sign of
W(c)1 f changes, always corresponds to the beginning
centrifugally unstable streamline interval. The same phen
enon is observed in Taylor–Green flows.10 This leads us to
conjecture that a general steady two-dimensional flow w
closed streamlines subject to rotationV undergoes
centrifugal-type instabilities if there exists a streamlinec0

where the sign of the absolute vorticity changes, i.e., the s
of the functionc→W(c)12V changes atc0 .

We have not been able to prove this conjecture in
general case but it can be done in axisymmetric flows. In
latter case, the spanwise perturbations are governed by~25!
with V850 andR5r . The matrix in this equation is there
fore constant and the eigenvaluess(r ) verify s(r )21d(r )
50, so that a streamliner is stable ifd(r ).0 and unstable if
d(r ),0. Now, in axisymmetric flows, the absolute vortici
a(r )5W(r )12V and the absolute angular velocityb(r )
5U(r )/r 1V are linked through:

a~r !52b~r !1r
db

dr
. ~40!

Supposing that the sign of the absolute vorticitya(r )
changes at some radiusr 0 and using the above relation an
the Taylor series ofa(r ) andb(r ) at the radiusr 0 , it can be
proved that the absolute angular velocityb(r ) keeps the
same sign in the vicinity ofr 0 . The sign of the quantity
d(r )52a(r )b(r ) therefore changes atr 0 , so thatr 0 sepa-
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rates a stable region from an unstable region. This argum
also proves that in an axisymmetric configuration, spanw
shortwave perturbations can only undergo instabilities of
centrifugal type.

IV. CONCLUSION

In this paper, we have presented a new criterion wh
gives a sufficient condition for centrifugal-type instabilitie
to occur in a general inviscid steady two-dimensional flo
This criterion is a generalization of the Rayleigh, Klooste
iel and van Heijst, Mutabaziet al., Pedley, Bradshaw-
Richardson and Bayly’s criteria. The proof of instability h
been given using both the geometrical optics approach a
classical normal mode analysis. This criterion shows tha
2D basic flow may undergo centrifugal instability only if it
intrinsic shear is either positive or negative along a wh
streamline. In agreement with the basic mechanisms of c
trifugal instability, we have considered spanwise pertur
tions, which are free from pressure effects. These pertu
tions are shown to induce inward/outward exchanges of fl
in a vortex, the fluid motion lying at first order in the hor
zontal plane.

In the second part of this article, we applied the results
the Stuart vortices. We gave for each member of that fam
and for each streamlinec̃, the unstablef 52V interval ac-
cording to the criterionD(c̃),0: f 1

c, f , f 2
c . We found that

only sufficiently peaked vorticity distributions~high r! sat-
isfy the criterion. But, this criterion is only a sufficient con
dition: a streamlinec̃ can undergo centrifugal-type instabil
ties even thoughD(c̃).0. For this purpose, we hav
numerically calculated the real unstablef interval f 3

c, f

, f 4
c by computing the Floquet exponentss(c̃). This analy-

sis showed that for sufficiently peaked vorticity distributio
we obtain the same unstable intervals inf as with the crite-
rion D(c̃),0. For these vorticity distributions, our criterio
becomes therefore necessary to detect centrifugal-type in
bilities. For vorticity distributions which are less conce
trated, the angular rotationf 1

c is still the beginning of an
unstable region. But its extent cannot be predicted by
criterion D(c̃),0.

This led us to suggest another criterion of centrifug
instability, which is based on the change of sign of the a
solute vorticityW12V. A general proof of this statemen
has not been given. But, we have proved that this conjec
is true in the circular case.
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Appl. 4, 629 ~1985!.

23C. Cambon and J. F. Scott, ‘‘Linear and nonlinear models of anisotro
turbulence,’’ Annu. Rev. Fluid Mech.31, 1 ~1999!.

24D. J. Tritton and P. A. Davies, ‘‘Instabilities in geophysical fluid dynam
ics,’’ in Hydrodynamics Instabilities and the Transition to Turbulenc,
edited by H. Swinney and J. Gollub~Springer-Verlag, Berlin, 1981!, p.
229.

25R. S. Scorer and S. D. R. Wilson, ‘‘Secondary instability in steady grav
waves,’’ Q. J. R. Meteorol. Soc.89, 532 ~1963!.

26C. M. Bender and S. A. Orszag,Advanced Mathematical Methods fo
Scientists and Engineers~McGraw-Hill, New York, 1978!.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp


