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In this Letter we deal with 2D direct numerical simulations of concentrated vortex dipoles. We show
that various initial dipolar vorticity distributions evolve towards a specific family of dipoles
parametrized by the dipole aspect ratioa/b, wherea is the radius of the vortices based on the
vorticity polar moment in half a plane andb is the separation between the vortex centroids. This
convergence is achieved through viscous effects. The considered Reynolds numbers Re5G/n are
Re53000 and Re515000. Moreover, all the dipoles of this family are quasi-steady solutions of the
Euler equations. Their scatter plots and drift velocities are given fora/b,0.3. © 2000 American
Institute of Physics.@S1070-6631~00!02602-7#
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Vortex dipoles may be characterized by the dipole asp
ratio a/b, wherea is the radius of the vortices based on t
vorticity polar moment1 in half a plane andb is the separa-
tion between the vortex centroids. Extensive studies
available for large values ofa/b ~typically a/b.0.4; see
Refs. 2,3 and references herein for review!. Studies on more
concentrated dipoles~small a/b) are less documented. A
investigation of this problem has been made by Cantwell
Rott4 using a heuristic model for the dipole, based on
superposition of two Lamb–Oseen vortices. This appro
does not describe the nonlinear self-adaptation of each
tex. Now, Moore and Saffman5 explained how arbitrary axi-
symmetric vorticity structures adapt to an external str
field and Ting and Klein1 showed how viscosity selects pa
ticular vorticity profiles. These two mechanisms concur
the dynamics of concentrated viscous vortex dipoles. In
Letter, we analyze these two basic mechanisms by mean
2D direct numerical simulations of various initial dipola
vorticity distributions.

Flow parameters.Let us consider a vorticity distribution
v(x,y) which is skew-symmetric with respect to the axisy
50. The circulation in the upper half plane isG5^v& where
the brackets denotêf &5**y.0 f dxdy. The position of the
upper vortex is characterized by the vorticity centroids:1 xc

5^xv&/G andyc5^yv&/G. Three characteristic radii can b
defined using polar moments of vorticity:1 ax5@^(x
2xc)

2v&/G#1/2, ay5@^(y2yc)
2v&/G#1/2 and a5@ax

2

1ay
2#1/2. The distance between the two vortices isb52yc .

In a fixed frame, the drift velocity of the dipole isU
5dxc /dt. We consider the following nondimensional qua
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tities: the dipole aspect ratioa/b, the vortex aspect ratioE
5ax /ay , the dipole drift velocityU2pb/G and the Rey-
nolds number Re5G/n. For a small dipole aspect ratioa/b,
only the time scales based ona ~and not those based onb)
have to be considered when considering 2D dynamics. T
are the viscous time scaleTn52pa2/n and the advective
time scaleTa52pa2/G. These time scales are separated
high Reynolds numbers (Tn /Ta5Re@1). The present
analysis has been developed in the view of performing
stability analyses of concentrated dipoles. 3D instabilitie5,6

develop on a time scale based on the separation distanb,
Ta852pb2/G whereTa8@Ta if a/b is small. So, it is required
that Tn@Ta8 , i.e., Re(a/b)2@1, so as to obtain a quas
steady-Euler solution with respect toTa8 .

Three sets of dipole aspect ratiosa0 /b0 and Reynolds
numbers Re05G0 /n are considered~the subscript 0 refers to
time t50): case (a) corresponds to Re053142 anda0 /b0

50.067, case (b) to Re053142 anda0 /b050.134 and case
(g) to Re0515708 anda0 /b050.134. The parameters Re0

and a0 /b0 are typical of experimental7 and numerical
studies.8

Several vorticity profile types have been used to co
struct the initial dipolar vorticity distributions. The first~L!
refers to a Lamb–Oseen vorticity profile, the second~R! is a
Rankine vortex and the third~B! corresponds to a solution
inspired by the works of Betz and Kaden for the vortex sh
roll-up resulting from an elliptically loaded wing.9 In the
latter case, the vorticity is constant up to a first radius, th
decreases asr 21/2 up to a second radius where it vanishe
The fourth case ~C! consists of a Lamb–Chaplygin
© 2000 American Institute of Physics
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dipole10,11 whose individual vortices have been moved ap
by an arbitrary distance.8 Within each case (a), (b) and
(g), the constructed initial dipolar vorticity distribution
(L,C,B,R) have the same circulationG0, the same radiusa0

and the same separationb0 .
Numerical method.The simulations are performed wit

a finite-difference code developed at ONERA.12 The 2D in-
compressible Navier–Stokes equations are discretized
rectangular grid. This code is second order both in space
in time. Time integration is achieved using a semi-impli
method ~explicit Adams–Bashforth and implicit Crank
Nicolson schemes!. The reference frame moves with the d
pole at the drift velocityU, so that the dipole position isxc

50 for all times. We use Dirichlet boundary conditions bo
for the velocity and the pressure. The velocities at the bou
aries are obtained by summing the drift velocityU and the
contribution due to the 2D Biot–Savart integral; the press
is then calculated using the Bernoulli law, the flow bei
irrotational at large distances. The number of grid cells is,
example, 581 in thex direction and 681 in they direction for
cases (b) and (g). The corresponding calculation box
20.9<x/b0<1.4 and 21.7<y/b0<1.7, which has to be
compared to the dipole aspect ratioa0 /b050.134. A similar
grid-resolution is used in case (a). The quality of the simu-
lations is checked by considering the time-evolution of
vortex impulsê yv&(t), which should exactly be conserve
even in viscous situations~see Ref. 1, p. 137!: it turns out
that the error on this quantity remains less than 0.04% in

FIG. 1. Vortex aspect ratioE versus~a! time scaled by the advective time
~b! time scaled by the viscous time. Case~R!.
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simulations. An asymmetric box is used here since the
poles become slightly asymmetric with respect tox50 be-
cause of viscous effects. This asymmetry mainly affects
outer region of the dipoles where the vorticity is very sma
In order to conserve precisely^yv&(t), the computation box
must contain the entire vortical zone so that we had to ext
it downstream from the dipole.

Evolution versus time.On the time scaleTa , each vortex
core is subjected to rapid oscillations due to the nonlin
term of the vorticity equation. This is seen in Fig. 1~a!,
where we have sketched the vortex aspect ratioE versus the
time scaled by the advective time for the Rankine vor
case ~R! using the Reynolds numbers and dipole aspe
ratios (a), (b) and (g) ~see above for a definition!. This
oscillating behavior can be understood by considering
instance the Kirchhoff vortex model, that is a steadily rot
ing elliptic vortex patch of vorticityv0 . If the ellipse is close
to a circle, its angular velocity is13 V5v0/4. This motion
induces an oscillation period ofE equal to TKG0/2pa0

2

54p. This theoretical value corresponds to the one o
served in Fig. 1~a!, as expected.

In Fig. 1~b!, E is sketched versus the time scaled by t
viscous time. The oscillations are subjected to a visc
damping which leads to a quasi-steady solution of the Eu
equations. Let us introduce the Euler-residueN5@^(u

FIG. 2. Euler-residueN versus time scaled by the viscous time. Case~R!.
d.
FIG. 3. Evolution of vorticity distributions along a line through the vorticity peaks of the dipoles. Only the domain 0.25<y/b0<0.75 has been represente
These plots are skew-symmetric with respect toy/b050. Case (a).
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•“v)2&/^v2&#1/2
•2pb2/G, which compares the inviscid

evolution time scale of the vorticity distribution with th
advective timeTa8 based onb. As shown in Fig. 2, this quan
tity which is used to evaluate the steadiness of the flow
the time scaleTa8 , is subjected to a 3 decade decrease, then
stabilizes. This last phase corresponds to an equilibrium
tween two antagonistic effects of the viscosity: on the o
hand, viscosity damps the oscillations of the type shown
Fig. 1~a! and, on the other hand, it continuously modifies t
basic flow.

In Fig. 3, the evolution of the vorticity profiles is show
along a line through the vorticity peaks of the dipoles for t
various initial vorticity profile types (L,C,B,R), given a
Reynolds number and a dipole aspect ratio@case (a)#. It is
seen that all vorticity distributions collapse onto a single o
through viscous effects. The time evolution ofa/b ~not
shown here! is the same for all initial vorticity profile types
(L,C,B,R). This is due to the fact that only concentrat
vorticity distributions are considered here. It can be und
stood by considering the two following arguments. Fir
since the vortex impulsêyv&(t) is constant, the distanc
between the two centroidsb52^yv&/G can only change be

FIG. 4. Peak vorticityvm normalized byG0 anda0 versus time scaled by
the viscous time.
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cause of a modification ofG. For concentrated vorticity dis
tributions, the diffusion of vorticity across the planey50 is
negligible so thatG andb stay almost constant. Secondly, fo
an isolated vortex of circulationG0 and of initial core radius
a0, it can be shown@see Eq. ~1.2.28b! in Ref. 1# that
a(t)/a05(114tn/a0

2)1/2 whatever the initial vorticity profile
type. The same law is observed in our simulations. As
consequence, the same time evolution ofa/b is obtained for
all initial vorticity profile types (L,C,B,R) in each case (a),
(b) and (g). In Fig. 4, we have sketched, for all cases, t
evolution of the dipole peak vorticity versus the time sca
by the viscous time. This figure shows, first, that whate
the aspect ratio and Reynolds number, each type of dip
(L,C,B or R) is characterized by a unique curve. Second
these four curves converge onto a single one. The conclu
is that the dipoles evolve towards a single structure on
time scaleTn .

Evolution versus a/b.We now prove that, whatever th
initial vorticity profile types (L,C,B,R) and parameters
a0 /b0 , Re0 , all flows evolve towards a unique family o
dipoles parametrized bya/b. In Fig. 5~a!, we have sketched
the peak vorticityvm normalized with the currentG and a
versus the current dipole aspect ratioa/b for all simulations.
A comparison between cases (b) and (g) shows that the
different curves do not depend on the Reynolds number~for

FIG. 6. Vorticity distributions of the dipoles fora/b50.153,0.288. The
iso-levels represent the quantityv2pa2/G.
FIG. 5. ~a! Peak vorticityvm normalized byG anda versus the dipole aspect ratioa/b. ~b! DeviationD between (C,B,R) simulations and~L! simulation
versusa/b.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 7. ~a! Scatter plots for the dipoles witha/b
50.0782,0.153,0.288. Only the domainc/cm.0 has
been figured since the plots are odd with respect to
origin. ~b! Drift velocity U2pb/G and vortex aspect
ratio E vs a/b. The circles refer to the Lamb–
Chaplygin steady-Euler solution.
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the considered Reynolds numbers!, so that each curve char
acterizes an initial vorticity profile. All these curves co
verge onto a single one, so that a unique family of dipo
parametrized bya/b is obtained. Note that this convergen
is achieved with anL2-norm of the whole vorticity field, i.e.,
not only the peak vorticity is subjected to convergence,
the whole dipolar vorticity distribution. For example, Fi
5~b! shows for the simulations of case (a), vs a/b, the de-
viation D5@^(v I•2paI

2/G I2vL•2paL
2/GL)2&/^(vL•2paL

2/
GL)2&#1/2 between the vorticity distribution of the~L! simu-
lation ~subscriptL! and those of the (C,B,R) simulations
~subscriptI 5C,B,R). The above family corresponds to d
poles whose normalized peak vorticityv2pa2/G is close to
2 for a/b<0.3. Figure 6 shows examples of vorticity distr
butions belonging to this family. Figure 7~a! gives the scatter
plotsv/vm5 f (c/cm) for the dipoles corresponding to thre
different a/b: three lines are obtained, which confirms th
the dipoles are quasi-steady solutions of the Euler equati
Figure 7~b! shows the drift velocityU2pb/G and the vortex
aspect ratioE versusa/b. The corresponding quantities ob
tained for the Lamb–Chaplygin steady-Euler solution,
which a/b50.4478, are given for reference.

From the presented results we conclude that various
tial dipolar vorticity distributions evolve, through viscous e
fects, towards a specific family of dipoles parametrized
the dipole aspect ratioa/b. All the dipoles of this family are
quasi-steady solutions of the Euler equations and we con
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
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ture that the Lamb–Chaplygin dipole could be a member
this family, even if this is not proved in the present study
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