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Widnall instabilities in vortex pairs
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In this article we analyze the cooperative three-dimensional short-wave instabilities developing on
concentrated vortex dipoles that have been obtained by means of two-dimensional direct numerical
simulations. These dipoles are characterized by their aspect ratioa/b wherea is the radius of the
vortices based on the polar moments of vorticity andb is the separation between the vortex
centroids. In the inviscid case, we show that the selection of the antisymmetric eigenmode smoothly
increases witha/b: for a/b50.208, the amplification rate of the antisymmetric eigenmode is only
1.4% larger than the amplification rate of the symmetric eigenmode. Whena/b50.288, this
difference increases up to 7%. The results of the normal mode analysis may be compared to those
of an asymptotic stability analysis of a Lamb–Oseen vortex subjected to a weak straining field,
following Moore and Saffman@Proc. R. Soc. London, Ser. A346, 413 ~1975!#. This theory shows
that the instability may occur whenever two Kelvin waves exist with the same frequencyv, the
same axial wavenumberk and with azimuthal wavenumbersm andm12. Contrary to the case of
a Rankine vortex@Tsai and Widnall, J. Fluid Mech.73, 721 ~1976!#, the presence of critical layers
in a Lamb–Oseen vortex prevents a large number of possible resonances. For example, resonances
betweenm522 and m50 modes lead to damped modes. The only resonances that occur are
related to the stationary (v50) bending waves (m561) obtained for specific values of the axial
wavenumber. All these predictions are found to be in good agreement with the results obtained by
the stability analysis of the considered vortex pairs. At last, we present a nonautonomous amplitude
equation which takes into account all effects of viscosity, i.e., the viscous damping of the
amplification rate of the perturbation but also the increase of the dipole aspect ratioa/b due to the
viscous diffusion of the basic flowfield. The low-Reynolds number experiment of Leweke and
Williamson @J. Fluid Mech.360, 85 ~1998!# is revisited under the light of these theoretical results.
We show that these theoretical results yield predictions for the amplification rate and for the
wavenumber that agree with the experimental observations. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1575752#
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I. INTRODUCTION

In this article, we analyze three-dimensional linear ins
bilities of the family of concentrated two-dimensional vort
dipoles given in Ref. 1. These dipoles are parametrized
their dipole aspect ratioa/b where a is the radius of the
vortices based on the polar moments of vorticity andb is the
separation between the vortex centroids.

The results presented in this paper may be helpfu
explain some of the features obtained in the Leweke
Williamson experiment.2 Here, we focus on the short-wav
perturbation leaving aside the long-wave instability.3 These
authors observed the selection and the growth of a sh
wave antisymmetric eigenmode characterized by the no
mensional wavenumberkb58.16 and the nondimensiona
amplification rates2pb2/G50.94 whereG stands for the
circulation magnitude of each vortex. One of the objectiv
of the present paper is to give theoretical support to th
observations.

The short-wave instability has been fully described
the inviscid case by Moore and Saffman4 for a weakly
stretched vortex. Using a multiple time scale analysis ba
on the small parametera2/b2, these authors showed that in
stability may arise through a resonance of the straining fi
1861070-6631/2003/15(7)/1861/14/$20.00
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with two Kelvin waves of the same axial wavenumberk, of
the same frequencyv and with the azimuthal wavenumbe
m and m12. Tsai and Widnall5 showed, in the case of a
Rankine vortex, that several resonances of this kind oc
This happens, for instance, for Kelvin waves wi
(m521,m1151) but also when (m522,m1250) or
(m51,m1253). For a vortex with a smooth vorticity dis
tribution like the Lamb–Oseen vortex, one has to account
the existence of critical layers where the azimuthal speed
the wave equals the angular rotation of the axisymme
vortex. Widnall, Bliss and Tsai6 apparently overlooked thes
aspects since they concluded that the case of smooth vo
ity distributions is qualitatively equivalent to the case of
Rankine vortex. In the present article we aim at showing
differences between a Lamb–Oseen and a Rankine vorte
terms of inertial waves and short-wave perturbations.
also aim at understanding if this simplified model, i.e.,
weakly stretched Lamb–Oseen vortex, is able to capture
essential physics of the development of a short-wave per
bation in a complex flowfield like a vortex pair.

The effect of viscosity has been analyzed in the case
short-wave perturbation developing on a homogeneous e
tical flow. Landman and Saffman7 gave a correction term fo
1 © 2003 American Institute of Physics
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1862 Phys. Fluids, Vol. 15, No. 7, July 2003 D. Sipp and L. Jacquin
the amplification rate taking into account the viscous dam
ing effect on the perturbation. Note that the basic flowfield
not affected by viscosity in this case since velocity gradie
in homogeneous flows are constant. In the present article
thoroughly analyze the effects of viscosity in the case o
short-wave perturbation developing on vortex dipoles.
recall that viscosity affects both the basic flowfield throu
the increase of the aspect ratioa/b and the perturbation
through the modification of the amplification rate.

The selection of the antisymmetric eigenmode as
served in the Leweke and Williamson experiment escape
the asymptotic method used by Moore and Saffman4 since
the theory only accounts for the dynamics of one vortex,
other being simply modeled by the presence of the strain
field. Note that Leweke and Williamson2 showed on the basi
of a qualitative argument that the antisymmetric eigenm
should be favored. But a quantitative result still lacks to s
tain their argument. Hence, one of the objectives of this
per is to achieve a normal mode analysis of vortex dipo
that are characteristic of the Leweke and Williamson exp
ment in order to investigate the properties of the symme
and antisymmetric eigenmodes. Billant, Brancher a
Chomaz8 achieved that work in the case of the Lamb
Chaplygin dipole.8–10 Their results confirmed that the ant
symmetric mode is promoted but their basic flowfield
characterized1 by an aspect ratioa/b50.4478 much thicker
than that obtained in the experiment wherea/b;0.25.

Note also that the weakly nonlinear regime of the W
nall instability has been described in Ref. 11. It was sho
that these instabilities saturate, as observed in the experim
of Leweke and Williamson.

The present paper is organized as follows. In Sec. II,
present the dipole family obtained in Ref. 1. In Sec. III, w
analyze the inviscid stability of two vortex pairs of the dipo
family, which are characterized by aspect ratiosa/b equal to
0.208 and 0.288. In Sec. IV, we focus on the inviscid stabi
of a stretched Lamb–Oseen vortex. We show that this s
plified model explains well the results obtained in Sec.
Section V is dedicated to the influence of viscosity. We w
present a nonautonomous amplitude equation taking into
count both the effect of viscosity on the basic flow and on
perturbation. We will show that these predictions are fu
compatible with the experimental observations of Lewe
and Williamson.

II. PRESENTATION OF THE BASIC FLOWFIELD

In Ref. 1, it was shown using 2-D direct numerical sim
lations that various initial dipolar vorticity distribution
evolve towards a specific family of dipoles parametrized
the dipole aspect ratioa/b. This convergence was achieve
through viscous effects. Nevertheless, viscosity is su
ciently small so that we can consider these solutions
steady on the time scales considered here. The vorticity
tributions of two vortex pairs belonging to this dipole fami
and characterized bya/b50.208 anda/b50.288 are shown
in Fig. 1.

We first show that these basic flows exhibit weak
stretched Lamb–Oseen type vortices. Figure 2 represe
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
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versusa/b, the levels of vorticityWL2pa2/G and strain
eL2pb2/G obtained in the center of the vortices in two dire
numerical simulations presented in Ref. 1 and labeled~a!
and ~b!. In both simulations, the initial flowfield consists o
two counter-rotating Lamb–Oseen vortices and the Reyno
number is given by Re5G/n53142. At t50, the aspect ratio
a/b of the dipoles is equal to 0.067 in simulation~a! and
0.134 in simulation~b!. The straineL2pb2/G is equal to 1 at
t50 in both simulations due to the choice of the initial flow
fields. Since the initial flowfields are not steady solutions
the Euler equations, the flowfields quickly evolve on the a
vective time scaleTa52pa2/G. This can be observed in
Fig. 2 with the large oscillations of the straineL2pb2/G as a
function of a/b. The dipole then rapidly adapts to a quas
steady solution of the Euler equations where the str
eL2pb2/G and the vorticityWL2pa2/G are close to 2.5 and
2, respectively. Following Eloy and Le Dize`s,12 these values
are characteristic of weakly stretched Lamb–Oseen vorti

Second, we show that the flowfield obtained in the e
periment of Leweke and Williamson2 is very close to the
vortex pairs which belong to the family of vortex dipole
presented in Ref. 1. It was shown in Ref. 1 that various ini

FIG. 1. Vorticity distributions of the dipoles fora/b50.208,0.288. The
isolevels represent the vorticityW2pa2/G. Dashed lines represen
negative values. These dipoles are steady solutions of the Euler equa
~see Ref. 1!.

FIG. 2. Vorticity and strain in the center of the vortices versusa/b in the
direct numerical simulations.WL and eL characterize, respectively, th
strength of the symmetric and the antisymmetric part of the velocity grad
tensor in the center of the vortices.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1863Phys. Fluids, Vol. 15, No. 7, July 2003 Widnall instabilities in vortex pairs
dipolar vorticity distributions evolve through viscous diffu
sion towards a specific family of dipoles parametrized
a/b. In particular, Fig. 5 in this article shows that all vortic
ity distributions characterized bya/b50.134 at the begin-
ning of the simulation converged towards this family~for
Re53142 and Re515708) when the dipole aspect rat
reacheda/b50.20. Now, Leweke and Williamson showe
that shortly after the stopping of the plate motion the veloc
profile of the flowfield can be fitted by the superposition
two counter-rotating Lamb–Oseen vortices witha/b50.15.
The Reynolds number of the experiment being quite sm
(Re5G/n52750), this aspect ratio then progressively
creases due to the viscous diffusion of the basic flowfie
For instance, the instability starts to be visible whena/b
50.24 and the linear regime holds on at least untila/b
50.285. Hence, it seems obvious that the experimental
dipole structures remain very close to the structures of
dipole family vortex pairs presented in Ref. 1.

III. INVISCID STABILITY ANALYSIS OF THE VORTEX
PAIRS

Linearizing the Navier–Stokes equations around
steady basic flow, we look for unstable normal modes.
the basic flow lying in the (x,y) plane, the normal modes ar
sought under the form esteikzf(x,y), where f
5u8,v8,w8,p8 stands for the velocity and pressure perturb
tions. k is the realOz wavenumber ands is the complex
amplification rate. The vorticity field being skew-symmetr
with respect toy50, the eigenmodes can be decompos
into two independent subsets:

~1! the antisymmetric modes whereu8 is odd andv8 is even
with respect toy50;

~2! the symmetric modes whereu8 is even andv8 is odd
with respect toy50.

The numerical procedure used to obtain these nor
modes is based on a matrix eigenvalue method. A spe
Chebyshev–Gauss collocation method is used to discre
the (x,y) derivatives. More details are given in Appendix A

We first achieve inviscid stability analyses leaving as
the influence of the Reynolds number which will be tho
oughly investigated in Sec. V.

The results of the inviscid stability analyses (Re5G/n
5`) are given in Fig. 3 fora/b50.208 and in Fig. 4
for a/b50.288. Each plot gives the amplification ra
s2pb2/G of the symmetric~filled triangles! and antisym-
metric ~empty circles! unstable eigenmodes versuska. All
unstable eigenmodes are nonoscillating~the imaginary part
of s is zero!.

In the casea/b50.208, we obtain several distinc
unstableka intervals where the symmetric and antisymm
ric amplification rates are very close. For example,
ka52.26, the amplification rate of the antisymmetr
eigenmode is 1.4% larger than the amplification rate of
symmetric eigenmode. This shows that the Widnall instab
ties may develop independently on each vortex and that t
is almost no linear selection of the antisymmetric mode. T
results of the casea/b50.288 show that the amplificatio
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
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rates of the antisymmetric modes for 1.2<ka<3.2 are ap-
proximately 7% larger than those of the symmetric modes
the case of a Lamb–Chaplygin dipole, characterized
a/b50.4478, Billant et al.8 found that the amplification
rates of the corresponding antisymmetric eigenmodes w
approximately 18% larger than those of the symme
modes. Thus, the selection process of the antisymmetric
stabilities smoothly increases witha/b. One gets:11.4%
when a/b50.208, 17% when a/b50.288 and 118%
whena/b50.4478.

In Fig. 5, we give theOz vorticity of the antisymmetric
unstable eigenmode corresponding toa/b50.208 andka
52.26. It represents a symmetric plot with respect toy50
~an antisymmetric mode is characterized by a symmetric
for the vertical vorticity! and is compound of dipoles, cha
acteristic of the elliptic instabilities found in Refs. 13–15.

IV. STABILITY ANALYSIS OF A STRETCHED
LAMB–OSEEN VORTEX

Moore and Saffman explained4 how a vortex column in
a weak straining field could be destabilized. The stabi
analysis of the Rankine vortex in a weak straining field h
been given by Tsai and Widnall.5 Here, we show that con
trary to what was argued by Widnallet al.,6 a Lamb–Oseen
vortex is quite different from a Rankine vortex as far as t

FIG. 3. Widnall instabilities for the dipole characterized bya/b50.208 and
Re51`.

FIG. 4. Widnall instabilities for the dipole characterized bya/b50.288 and
Re51`.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1864 Phys. Fluids, Vol. 15, No. 7, July 2003 D. Sipp and L. Jacquin
Widnall instabilities are concerned. Note that some par
results have been given for the Lamb–Oseen vortex by E
and Le Dizès.12

We consider a Lamb–Oseen vortex of circulationG and
radius a in a weak straining field of strengthe5G/2pb2.
The angular rotationV(r ) of the Lamb–Oseen vortex read
as

V~r !5
G

2pr 2 @12e2r 2/a2
#. ~1!

The strain is characterized by the streamfunct
c521/2e f (r )cos 2u. As shown by Moore and Saffman,4 the
radial structure of the functionf (r ) is determined so as to
obtain a steady flow on theO(1/e) time scale. One obtains

f 91
f 8

r
2S 3V81rV9

rV
1

4

r 2D f 50, ~2!

with the following normalization condition:f (r )/r 2→1 as
r→`. A representation of the functionf (r )/r 2 has been
given in Fig. 1 of Ref. 12. The straining field is 2.5 time
stronger in the center of the Lamb–Oseen vortex than
infinity. As mentioned in Sec. II, this value has been
trieved ~see Fig. 2! in the direct numerical simulations pe
formed in Ref. 1, showing that the dipole family exhibi
vortices that are close to the theoretical model presente
this section.

A. The Widnall instability mechanism

We consider a flowfield constituted of the axisymmet
Lamb–Oseen vortex, the above defined straining field
strengthe and a small perturbation. We substitute this dev
opment in the incompressible Euler equations and linea
into the disturbance field. We then perform a multiple tim
scale analysis based on the time scales 2pa2/G and 1/e ~we
suppose that 2pa2/G!1/e).

~1! On the time scale 2pa2/G, we obtain a linear oscillato
which selects the Kelvin waves. The numerical proc
dure to obtain these Kelvin waves is given in Sec. IV
We now suppose that there exists two Kelvin waves
and B with the same nondimensional frequen

FIG. 5. Vertical vorticity of antisymmetric unstable eigenmode fora/b
50.208, Re51` andka52.26. Dashed lines represent negative values
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
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(v2pa2/G)c , the same nondimensional axial wavenum
ber (ka)c and with azimuthal wavenumbersm and m
12. The perturbation is then chosen as a particular lin
combination of the two spatial (r ,u) structures of the
Kelvin waves A and B. The axial wavenumberka of this
perturbation is chosen to be close to (ka)c :

G

2pa2e
@ka2~ka!c#5O~1!. ~3!

~2! On the time scale 1/e, we obtain the same linear oscilla
tor as before with a forcing term on the right hand si
~rhs!. Removing the resonant part of this forcing ter
yields the following equation for the complex amplifica
tion rates of the perturbation:

Fse 1 iaA

G

2pa2e
@ka2~ka!c#G

3Fse 2 iaB

G

2pa2e
@ka2~ka!c#G5bAbB , ~4!

whereaA , bA , aB andbB are complex constants that can b
computed numerically.

If the resulting real part ofs is positive, then the flow is
unstable. In the general case@(v2pa2/G)c ,(ka)c ,m#, one
has to evaluate numerically all the constants to determins.

In the particular case (m521,m1251), there exists
stationary (v2pa2/G)c50 Kelvin waves for fixed values o
(ka)c . Here, due to the symmetries of the basic flow, o
can show that:aA5aB5a and bA5bB5b are real num-
bers. Thus

s

e
5bA12S a

b

G

2pa2e
@ka2~ka!c# D 2

. ~5!

A narrow band of instability exists. Its width isuka
2(ka)cu,b/a2pa2e/G and the peak of instability is
reached forka5(ka)c ~in which cases5eb).

B. Kelvin waves of a Lamb–Oseen vortex

In this section, we study the Kelvin waves on the Lam
Oseen vortex, in order to determine the values of (v,m,k)
where there exists two Kelvin waves of the same freque
v, of the same axial wavenumberk and with azimuthal
wavenumbersm andm12.

We use a shooting method to solve the eigenvalue pr
lem of a Lamb–Oseen vortex form50, m561 and
m562 Kelvin waves.

1. Method

We linearize the incompressible Euler equations arou
the Lamb–Oseen vortex and introduce the following sm
perturbations:

~v r8 ,vu8 ,vz8 ,p8!5„iF ~r !,G~r !,H~r !,P~r !…ei (kz1mu1vt),
~6!

where v r8 , vu8 and vz8 , are the radial, azimuthal and axia
components of the velocity andp8 is the pressure.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 6. Resonances withm561 modes. Left: frequenciesv r2pa2/G vs ka. Center: frequenciesv r2pa2/G in the critical layer zone versuska. Right:
damping ratesv i2pa2/G versus the wavenumberka. The solid line labeled with an empty square represents formula~10!.
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Following Refs. 16 and 17 we are led to the followin
second order equation:

Z91S 1

r
1

2g8

g
2

2k2r

m21k2r 2DZ82S k21
m2

r 2 1
2mV8

gr

2
4mk2V

g~m21k2r 2!
2

2k2V

g2r
~r 2V!8DZ50, ~7!

where a prime denotes the operatord/dr and

Z~r !5
rF ~r !

g~r !
, ~8!

g~r !5v1mV~r !. ~9!

This equation along with the boundary conditionsZ(0)
5Z(`)50 constitutes an eigenvalue problem forv.

The solutions are obtained by the following procedur

~1! We transform the second order differential equation
Z(r ) ~7! into a first order differential equation o
„Z(r ),Z8(r )….

~2! We consider the asymptotic behavior for„Z(r ),Z8(r )… at
r 50 andr 5`.

~3! Starting from these asymptotic values, the solution of~7!
is obtained at a given radiusr f . This leads to two
couples:„Z1(r f),Z18 (r f)… and „Z2(r f),Z28 (r f)…. Typi-
cally, we start withr /a50.1 andr /a520. Integration is
achieved with a classical fourth order Runge–Ku
scheme.

~4! We search values ofv such as the Wronskian
Z1(r f)Z28 (r f)2Z2(r f)Z18 (r f) is zero. The iterative
scheme is performed via a Newton–Raphson metho
the complexv plane. A guess value is therefore need
to start this process.

~5! At the critical pointsg(r c)50, the integration path is
modified according to the criterion given in Ref. 18.

2. Resonances with m ÄÁ1 modes

The oscillation frequencies of the modesm561 are
given in the left plot of Fig. 6. We compare these results w
those obtained for the Rankine vortex~see Ref. 19, Fig.
12.1-4, p. 233!. Eigenfunctions corresponding to variou
modes are identified, as in the Sturm–Liouville theory,
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
f

in
d

the number of their zerosn in the radial direction~the pri-
mary mode, labeledn50 has no zeros, the mode labeledn
51 has one zero, etc.!.

The results are similar to those of a Rankine vortex wh
v r2pa2/G.0 or v r2pa2/G,21, i.e., when no critical lay-
ers are present. In this case, the modes are purely oscilla
i.e. v i50. The asymptotic behavior, forka→0, of the
branch labeled 0, was given in Refs. 20 and 21:

v
2pa2

G
5

~ka!2

2 S ln
1

ka
1

ln 22g

2 D , ~10!

whereg50.577215 is Euler’s constant. This branch is call
the slow branch since both the frequencyv and the phase
speedc5v/k tend towards zero as the wavenumberk goes
to zero. On the other hand, the branches labeled 08, 18, 28,
etc., are called fast branches becausec5v/k→` as k→0
@see formula~56a! in Ref. 21#. We can see that resonanc
may occur for specific values of the nondimensional wa
numberka wherev50.

Now, the linear dynamics of the Lamb–Oseen vort
completely differs from that of the Rankine vortex whe
21,v r2pa2/G,0, i.e., when critical layers are present.
the central and right plots of Fig. 6, we have sketch
v r2pa2/G andv i2pa2/G against the vertical wavenumbe
ka in this region. We see that the modes are no longer pu
oscillatory but are damped. This is due to the presence
critical layers in the eigenmode. In critical layers, the a
muthal speed of the wave equals the angular rotation of
axisymmetric vortex. Regularization of the critical layer
achieved by viscosity thanks to the criterion given by Lin18

Shortly speaking, this criterion states that the inviscid c
should be an asymptotic limit of the viscous case when v
cosity tends to zero. More details are given in Appendix

The main consequence here is that, contrary to the c
of the Rankine vortex, there is no resonance between thn
50 branch and then51,2,... branches. The conclusion
that the only possible resonances are those which occu
v50, i.e., (v50,m561,ka52.26), (v50,m561,ka
53.96), (v50,m561,ka55.61), etc.

Note that critical layers may also be regularized than
to nonlinearities.22–24 In this case, the Kelvin waves in th
critical layer zone could be purely oscillatory again. Actual
the nature of the critical layer~viscous or nonlinear! depends
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 7. Resonances withm50 andm52 modes. Left: frequenciesv r2pa2/G of m50 modes versuska. Center: frequenciesv r2pa2/G of m522 modes
in the critical layer zone versuska. Right: damping ratesv i2pa2/G of m522 modes versuska. The empty squares represent the values obtained by
Dizès ~Ref. 24! in the two-dimensional case.
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on a parameter~the so-called Haberman parameter in t
two-dimensional case!, which compares the effect of viscos
ity to the effect of nonlinearities~the amplitude of the Kelvin
waves! in the critical layer.

3. Resonances between m Ä0 and m ÄÀ2 modes

The oscillation frequencies of the modesm50 are given
in the left plot of Fig. 7. A comparison with the case of
Rankine vortex given in Ref. 19, Fig. 12.1-2, p. 231, sho
that the dynamics of the two vortex models are similar. T
is due to the fact that there is no critical layer in the ca
m50.

The casem522 is similar to the casem51. The criti-
cal layer zone corresponds now to the region
,v r2pa2/G,2. As seen in the central and right plots
Fig. 7 where we have represented the first four co-rota
Kelvin waves, the modes become quickly damped aska de-
creases. Hence, a resonance with them50 modes leads to
damped modes. This is different from the case of the Ra
ine vortex,5 for which resonances withm50 and m522
Kelvin waves exist.

C. Stability analysis of a stretched Lamb–Oseen
vortex

In this section, we consider the values of (v,m,k) where
there exists two Kelvin waves of the same frequencyv, of
the same axial wavenumberk and with azimuthal wavenum
bersm andm12. These values have been determined in
previous section. Indeed, we have shown that the only p
sible resonances are the following:@v50,m561,(ka)c

52.26#, @v50,m561,(ka)c53.96# and @v50,m
561,(ka)c55.61#, etc. In each case, we apply the multip
time scale analysis presented in Sec. IV A and determine
amplification rates. Sincee5G/2pb2, the unstable ampli-
fication rate reads as

s2pb2/G5bA12„@ka2~ka!c#a/bb2/a2
…

2, ~11!

wherea andb are real constants. A narrow band of instab
ity exists. Its width isuka2(ka)cu,b/aa2/b2 and the peak
of instability is reached forka5(ka)c in which case
s2pb2/G5b.
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We have the following numerical results for the bendi
wave labeled 1. Maximum instability occurs for (ka)c

52.26 with an amplification rate equal tos2pb2/G51.38.
The width of the unstable band isuka2(ka)cu,8.68a2/b2.
For the bending waves labeled 2 and 3, the unstable ba
are centered at (ka)c53.96 and (ka)c55.61, respectively,
the corresponding maximum amplification ratess2pb2/G
being 1.39 in both cases. The width of the unstable ba
uka2(ka)cu are 14.4a2/b2 and 20.1a2/b2, respectively. The
same results were found by Eloy and le Dize`s.12

D. Comparison between the stability analyses
of the vortex pairs and the stretched Lamb–Oseen
vortex

The solid lines in Figs. 3 and 4 represent the results
the asymptotic stability analysis. In the casea/b50.208, we
see that the symmetric and antisymmetric amplification ra
collapse on the three curves given by the asymptotic stab
analysis. Note also that no resonances betweenm50 and
m522 modes have been found in the normal mode ana
ses. This is in accordance with the conclusions of Sec. IV
This is different from the case of the Lamb–Chaplyg
dipole,8 which exhibits an unstable band corresponding
this resonance.

V. EFFECT OF VISCOSITY

A. Introduction

The dipole aspect ratio in the experiment of Leweke a
Williamson2 is found to be equal toa/b50.15 just after the
stopping of the plate motion attG/(2pb2)51. This quantity
then evolves slowly through viscous diffusion, the Reyno
number being equal to Re5G/n'2750. In Ref. 2, p. 91, the
authors claim that the shortwave antisymmetric instabi
starts to be visible aroundt57s, i.e., attG/2pb254.9, when
the dipole aspect ratio is equal toa/b50.24. According to
Fig. 14 in the paper of Leweke and Williamson, this line
regime holds on at least untiltG/2pb257.5, wherea/b
50.285. The observed eigenmode is antisymmetric and
wavenumber is found to bekb58.16. The observed ampli
fication rate is equal tos2pb2/G50.94.

These results have to be compared to those of the in
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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cid stability analyses achieved in Sec. III. Fora/b50.208
anda/b50.288, maximum amplifications were obtained f
ka52.26, wheres2pb2/G51.38. These discrepancies ma
be explained.

For the amplification rate, we have to account for t
effect of viscosity on the perturbation. Landman a
Saffman7 showed that for a perturbation developing on
elliptical homogeneous flow this viscous correction term w
24nk2. Hence, in the present case, the amplification r
when Re52750 should read as s2pb2/G51.38
28pk2b2/Re50.78. This viscous correction seems t
strong since the observed amplification rate iss2pb2/G
50.94.

For the wavenumber, as suggested by Laporte
Corjon25 and Laporte and Leweke,26 one has to take into
account the viscous diffusion of the basic flow. The co
radius increases froma/b50.15 at the beginning of the ex
periment up toa/b50.285 at the end. Consequently, a p
turbation such askb58.16 corresponds toka51.60 when
a/b50.196,ka52.26 whena/b50.277 andka52.33 when
a/b50.285. Hence, the stability analysis results seem to
recovered if the selection process is established whena/b
50.277. The above reasoning, which was suggested
Laporte and Corjon,25 is erroneous since the instability star
to be visible whena/b50.24, so that the perturbation grow
for wavenumbers that satisfyka,8.1630.2451.96. This
result remains unexplained by the stability analysis wh
predictska52.26.

In order to give a correct interpretation of the experime
of Leweke and Williamson, we now present a linear non
tonomous amplitude equation that takes into account the
cous effects that affect both the basic flowfield~an increase
of the core radiusa) and the amplification rate of the pertu
bation ~the viscous correction ofs2pb2/G).

Note that this approach of an elliptic instability develo
ing in a slowly diffusing Lamb–Oseen vortex has alrea
been analyzed by Eloy and Le Dize`s12 for cases wherea/b
;l/Re1/4 with Re@1, l being a given constant. This scalin
corresponds to vortices with high values of the aspect r
a/b. In this case, the basic flow slowly evolves through v
cous diffusion (a slowly increases!, but the unstable eigen
mode does not feel the viscosity. Indeed, using the visc
correction introduced by Landman and Saffman7 and the
above introduced scalinga/b;l/Re1/4, the ratio between
the viscous correction and the inviscid maximum amplific
tion rate obtained forka52.26 reads as 4nk2/@G/(2pb2)#
58p(kb)2/Re;8p(ka)2/(l2 Re1/2);128/(l2 Re1/2) which is
zero in the limit Re@1.

Now, the experiment of Leweke and Williamson, cha
acterized bya/b;0.25 and Re;2750, suggests the scalin
a/b;x/Re1/2, x being a given constant. This corresponds
lower values of the aspect ratioa/b. In this case, as observe
in the experiment, the viscous evolution time scale of
dipole Tn52pa2/n becomes equivalent to the instabili
time scale Ts52pb2/G. Besides, viscosity now has a
impact on the amplification rate of the perturbati
since 4nk2/@G/(2pb2)# 5 8p(kb)2/Re;8p(ka)2/x2

;128/x2;cst as Re@1.
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B. A nonautonomous amplitude equation

1. Introduction

We consider the perturbation flowfieldeikzu(x,y,t) with
u5(u,v)T where u and v stand for thex-component and
y-component velocity perturbation. Thez-component veloc-
ity perturbationw is related tou andv thanks to the incom-
pressibility of the flowfield]xu1]yv1 ikw50.

We choose the following scalar product:27 if u1

5(u1 ,v1)T andu25(u2 ,v2)T,

^u1 ,u2&5E
2`

1`E
2`

1`

~u1* u21v1* v2!dxdy, ~12!

where the star denotes the complex conjugate. The norm
perturbation is therefore related to the kinetik energy ba
on thex andy velocity components of the perturbation.

In the experiment of Leweke and Williamson, we ha
concentrated vortex dipoles with small values ofa/b. Hence,
in the following we assume that

da

dt
5

2n

a
, ~13!

db

dt
50, ~14!

dG

dt
50. ~15!

Note that Eq.~13! characterizes the time evolution of
single Lamb–Oseen vortex but one can show1,2 that this re-
lation holds in vortex pairs whena/b remains small.

Choosing,L5b and T52pb2/G as length and time
scales, the eigenmodes and eigenvalues depend on thre
rameters:a/b, kb and Re5G/n. Remind that time depen
dance is achieved through the time evolution of the c
radiusa only.

In the following, v(a/b,kb,G/n) and w(a/b,kb,G/n)
correspond to the unstable eigenmode and adjoint m
relative to the eigenvalue@s2pb2/G#(a/b,kb,G/n). The
eigenmode and the adjoint mode are normed in the follow
way: ^v,v&51 and^w,v&51.

In Appendix A 3, we show that

d

dS t
G

2pb2D F ln
A

A0
G5s

2pb2

G
2

4p

Re

b

a K w,
]v

]~a/b!L , ~16!

where A5^w,u& and A0 is the initial amplitude of the
eigenmode.

The first term on the rhs of this equation represents
amplification rate of a perturbation characterized by a wa
numberkb and a Reynolds number Re developing on a f
zen basic flowfield with aspect ratioa/b. This term evolves
in time because of the diffusion of the basic flowfield whi
results in an increase ofa/b. This term also takes into ac
count the effect of viscosity on the perturbation.

The second term on the rhs represents a correction t
of the amplification rate due to the change in time of t
unstable eigenmode shape which is due to the diffusion
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1868 Phys. Fluids, Vol. 15, No. 7, July 2003 D. Sipp and L. Jacquin
the basic flowfield. Indeed, the shape of the unsta
eigenmode characterized by a fixed wavenumberkb changes
slowly asa/b increases. Physically speaking, this correct
term takes into account the re-projection at any time of
unstable eigenmode on the new unstable eigenmode.
that a finite difference approach has been used to eval
numerically the derivative]v/](a/b). Note also that the ad
joint modew depends on the choice of the scalar produ
But, the term^w,•& is independent of that choice so that th
correction term as well as relation~16! hold whatever the
choice of the scalar product~12!.

In the following sections, we numerically evaluate the
two quantities as functions ofa/b andkb for Re52750.

2. Eigenmodes, adjoint modes and eigenvalues

The spectral Chebyshev–Gauss collocation method
sented in Sec. III is used to obtain the eigenvalu
@s2pb2/G#(a/b,kb,G/n), the eigenmodesv(a/b,kb,G/n)
and the adjoint modesw(a/b,kb,G/n). An example of
eigenmodes and adjoint modes is given in Fig. 8 forkb
57.99, a/b50.288 and Re52750. The antisymmetric an
symmetric eigenmodes~respectively, adjoint modes! are
given on the two upper plots~respectively, lower plots!. The
antisymmetric and symmetric adjoint modes are quite diff
ent: the antisymmetric adjoint mode has a significant con
bution on the right hyperbolic stagnation point whereas
symmetric adjoint mode has a significant contribution on
point situated at the middle of the two counter-rotating v
tices. This proves that the receptivity of the antisymme
and symmetric eigenmodes is different.

The norm of the adjoint mode versuskb is given in the
upper plot of Fig. 9 for Re52750 and three values of th
aspect ratio (a/b50.213,0.251,0.284). The overall value
around ^w,w&1/2'2 are quite small, showing that non
normality is weak in the case of Widnall instabilities. Not

FIG. 8. Unstable eigenmodes and adjoint modes obtained forkb57.99,
a/b50.288 and Re52750. Upper plots: eigenmodes, lower plots: adjo
modes. Left plots: antisymmetric modes, right plots: symmetric modes.
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however, that the values of the antisymmetric eigenmo
are higher than those of the symmetric ones. This indica
that a non-normal behavior is more likely to appear in an
symmetric eigenmodes than in symmetric ones. For each
pect ratio a/b, the norm of the adjoint mode is smalle
when the amplification rate is maximum. This can be se
when we compare the present plot to the middle plot of F
9 showing the correponding unstable eigenvalues. He
non-normal features are more likely to appear when the
stable eigenvalues are small.

The middle and lower plots of Fig. 9 give the first an
second term of the rhs of Eq.~16!. In the middle plot of Fig.
9, it is shown that the amplification rates of the unsta
antisymmetric eigenmodes are 14% larger than those of
symmetric ones in the casea/b50.288. This value should be

FIG. 9. Upper plot: Norm of adjoint mode versuskb. Middle plot: First
term of the rhs of Eq.~16! versuskb. Lower plot: Second term of the rhs o
Eq. ~16! versuskb. Case: Re52750 and different values of aspect ratioa/b.
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1869Phys. Fluids, Vol. 15, No. 7, July 2003 Widnall instabilities in vortex pairs
compared to the 7% obtained in the inviscid case. Fora/b
50.208, the antisymmetric and symmetric amplificati
rates are the same. It also appears that the viscous dam
given by Landman and Saffman, obtained in the case o
instability developing in a homogeneous elliptical flow,
too strong here. As a matter of fact, Landman and Saffm
give, for the viscous correction term,s2pb2/G
528pk2b2/Re whereas the computations for the casea/b
50.208 yield s2pb2/G524.5pk2b2/Re which is nearly
two times smaller in amplitude.

In the lower plot of Fig. 9, we can see that the value
the correction term accounting for the slow evolution of t
core radiusa of the vortices is around 0.1. This value repr
sents typically a loss of 10% of the initial value of the vi
cous amplification rate. Note also that for small values
a/b and high values ofkb the correction term can be neg
tive indicating a possible acceleration of the instability due
non-normality.

3. Interpolation of the different terms

In order to integrate numerically Eq.~16!, we give ana-
lytical formulas which interpolate the results obtained in t
middle and lower plots of Fig. 9. We do not distinguish he
the antisymmetric and the symmetric eigenmodes.

The first and second terms of the rhs of Eq.~16! as
functions of a/b and kb are interpolated in the following
way:

s
2pb2

G
5bA12Fab S kb

a

b
22.26D 1

~a/b!2G2

2
2p

Re
~kb!226.33

2p

Re

1

~a/b!2 , ~17!

4p

Re

b

a K w,
]v

]~a/b!L 5
0.0046

a/b F42S kb2
2.26

a/b D
3S 2086S a

bD 2

21152S a

bD1162D G .
~18!

Note that the viscous damping term acting on the amplifi
tion rate has been adjusted to fit the results fora/b50.208.
These interpolations are valid roughly for 0.18,a/b,0.30
and Re52750. They are shown in the middle and lower plo
of Fig. 9 in dashed, dotted and dashed–dotted lines. We
that the curves fit correctly the numerical results.

4. Results

We now integrate in time relation~16! in order to obtain
the total growth of the pertubation as a function of time:

ln
A

A0
5E Fs 2pb2

G
2

4p

Re

b

a K w,
]v

]~a/b!L GdS t
G

2pb2D . ~19!

Be reminded that the interpolations are valid for 0.18,a/b
,0.3, i.e., 2.2,tG/(2pb2),8.5 in the experiment.

In the upper plot of Fig. 10, we have sketched as a fu
tion of time the wavenumberk of the perturbation nondimen
sionalized by the core radiusa. Three curves are displaye
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for three different values ofkb. For each curve characterize
by kb, ka increases as (ka)(t)5kb3a(t)/b wherek, b are
constants anda(t) evolves following Eq.~13!. The dotted
lines represent, for Re52750 and kb58.16, the neutral
curves corresponding to the annulation of the rhs of Eq.~16!,
and which have been obtained from Eqs.~17! and~18!. Note
that the neutral curves obtained in the caseskb56 andkb
510 are not displayed since they are nearly not distingu
able from the neutral curves obtained in the casekb58.16.

The amplitude of the perturbation grows whenka(t) is
located in the area enclosed by the two neutral curves
decays outside. Hence, at the beginning of the experim
„tG/(2pb2)50…, perturbations are damped in all consider
cases (kb56,8.16,10). Forkb510, the amplitude of the
perturbation grows from time tG/(2pb2)53 until
tG/(2pb2)58.5 where it starts decaying. The perturbati
experiences a transient growth. The same behavior is
served forkb58.16 andkb56 but the perturbation ampli
tudes characterized, respectively, bykb58.16 andkb56
start growing later, i.e., attG/(2pb2)54.2 andtG/(2pb2)
56.8, respectively.

In the lower plot of Fig. 10, we have sketched vers
time the growth of the perturbation amplitude. Seve
curves obtained for various wavenumbers ranging fromkb
56 to kb510 are shown. All these perturbations experien
a transient growth: each perturbation characterized b
given value ofkb appears at some time, grows exponentia
with constant growth, then saturates before decaying ag

Following Leweke and Williamson, the observed pertu
bation in the experiment is characterized bykb58.16 and
starts to be visible attG/(2pb2)54.9. The linear regime
with constant growth rate equal tos2pb2/G50.94 then

FIG. 10. Upper plot: Evolution ofka as a function of time for perturbations
characterized by different values ofkb. The dotted line corresponds to th
neutral curve where the rhs of Eq.~16! is zero. Lower plot: Evolution of the
growth of the perturbation as a function of time for different values ofkb.
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holds on at least untiltG/(2pb2)57.5. In our model, only
the curves withkb58.16 andkb59 are compatible with
these observations. Indeed, the perturbation obtained
kb510 should appear earlier and the linear regime with c
stant growth rate should hold on only untiltG/(2pb2)56.
As well, the perturbations obtained forkb56 and kb57
should appear later, i.e.,tG/(2pb2).6. The growth rate of
the perturbation characterized bykb58.16 is found to be
s2pb2/G50.99, which has to be compared to the expe
mental value ofs2pb2/G50.94. This prediction is quite
good.

As a conclusion, this model shows that the experim
tally observed wavenumber and growth rate of the pertur
tion are compatible with a model based on a linear nona
nomous amplitude equation that takes into account both
effect of viscosity on the perturbation and on the basic flo
It also helps understanding the selection of the antisymme
eigenmode. Indeed, as mentioned earlier, the difference
tween the amplification rates of antisymmetric and symm
ric eigenmodes reaches 14% forkb57.5 in the casea/b
50.288 and Re52750.

VI. CONCLUSION

In the inviscid case, we have achieved a complete th
dimensional linear analysis of the Lamb–Oseen vortex
Kelvin waves characterized bym50, m561 andm562.
We have shown that the presence of critical layers dam
large number of co-rotating waves. As a consequence,
the stationary bending waves„v50,m561,(ka)c… may lead
to Widnall instabilities. A weakly stretched Lamb–Ose
vortex is therefore not equivalent to a Rankine vortex, wh
displays additional oscillating Widnall instabilities resultin
from the interaction of generalm and m12 Kelvin waves.
We numerically calculated the amplification rates related
the resonances that occur for the stationary bending wa
associated to the branches labeled 1, 2 and 3, following
asymptotic analysis of Moore and Saffman4 and found the
same results as Eloy and Le Dize`s.12 This asymptotic stabil-
ity analysis is used as a reference problem for the nor
mode analysis of the dipole family presented in Ref.
which are quasisteady solutions of the Euler equations. T
dipole aspect ratios have been considered. In the casea/b
50.208, the amplification rates of the symmetric and a
symmetric Widnall instabilities are very close. This mea
that the corresponding unstable eigenmodes may develo
dependently on each vortex. This result also shows tha
dipoles of aspect ratio equal toa/b50.2, the linear regime
is unable to promote the antisymmetric eigenmode. T
amplification rates of the symmetric and antisymmet
eigenmodes collapse on the curves obtained by
asymptotic stability analysis of a weakly stretched Lam
Oseen vortex. For higher dipole aspect ratiosa/b50.288,
the amplification rates of the antisymmetric eigenmodes
come 7% larger than those of the symmetric ones in
resonance region of the bending wave labeled 1.

In the viscous case, a linear nonautonomous amplit
equation for the development of a perturbation on a ba
flowfield has been presented which takes into account b
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the effect of viscosity on the basic flowfield and on the p
turbation. It was shown that this approach yields predictio
for the amplification rate and for the wavenumber that ag
with the experimental observations of Leweke and Willia
son. Viscosity increases up to 14%, the difference betw
antisymmetric and symmetric eigenmode amplificati
rates in the casea/b50.288 and Re52750. We have also
shown that the receptivity of antisymmetric and symmet
eigenmodes is quite different: the antisymmetric adjo
mode has a significant contribution on one of the two hyp
bolic stagnation points of the vortex pair whereas the sy
metric adjoint mode has a significant contribution on t
point situated at the middle of the two counter-rotating v
tices. However, the small values of the norm of the adjo
modes show that non-normality is weak in the case of W
nall instabilities.

APPENDIX A: LINEAR DYNAMICS OF THE VORTEX
PAIR

In this appendix we present the equations of the norm
mode analysis for a plane basic flowfield and the numer
method which is used to solve these equations.

1. Normal mode approach

The Cartesian components of the velocity of the ba
flow are

u5cy , v52cx , w50,

wherec(x,y) is the streamfunction and the subscriptsx and
y denote partial spatial derivatives. The normal modes
sought in the formesteikzf(x,y) where f5u8,v8,w8,p8
stands for the velocity and pressure perturbations.k is the
realOz wavenumber ands is the complex amplification rate

By linearizing the full incompressible Navier–Stoke
equations around this basic flowfield, we obtain the follo
ing equations:

F ~s2nD!S 0 D

V WD 2S Q R
S T D G S u8

v8 D50, ~A1!

with the following linear operators:

D5]xx1]yy2k2, ~A2!

V5]xx2k2, ~A3!

W5]xy , ~A4!

Q5cxx~]xx2]yy2k2!12cxy]xy22Wx]x2Wxx , ~A5!

R52~cy]x2cx]y2cxy!D22cxy]xx12cxx]xy

2Wx]y2Wy]x2Wxy , ~A6!

S52~cy]x2cx]y1cxy!~]xx2k2!1cxx]xy , ~A7!

T52~cy]x2cx]y1cxy!]xy1cxx~]yy1k2!2k2W.
~A8!

In these expressions,]xy5]2/]x]y, etc., andW is the Oz
vorticity of the basic flowfield:W52(cxx1cyy). n is the
kinematic viscosity.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2. Spectral Chebyshev–Gauss collocation method

We use a spectral Chebyshev–Gauss collocation me
to discretize the remainingx andy derivatives~see Ref. 28!.

First, we map the infinite domain2`,x,y,` on 21
,jx ,jy,1:

x5 f ~jx!, where ujxu,1 and uxu,`;
~A9!

y5g~jy!, where ujyu,1 and uyu,`;

f ~jx!5Hx tanh21 jx1Lx erf~jx /Yx!; ~A10!

g~jy!5Hy tanh21 jy1Ly erf~jy /Yy!. ~A11!

Hx , Hy , Lx , Ly , Yx and Yy are constants and erf is th
standard error function.

We use the exponential mapping in~A9! because eigen
modes decrease exponentially at large distances. An a
tional term, built with the standard error function, has be
introduced for better localization of the collocation points
the vortices. The contribution of this term vanishes at la
distances so that the asymptotic properties of the tan21

function is preserved.
The unknownsf5u8,v8 are then expanded in a doub

truncated Chebyshev series:

f~x,y!5(
i 50

Nx

(
j 50

Ny

f̂ i , jTi~jx!Tj~jy!, ~A12!

with Nx11 and Ny11 Chebyshev polynomialsTn(j) in
each direction.

The unknownsf̂ i , j5ûi , j8 ,v̂ i , j8 are then determined by en
forcing Eqs.~A1! at (Nx11)(Ny11) points in the square
21,jx ,jy,1. This method is particularly efficient if we
take the Chebyshev–Gauss points:

j i5cosS 2i 11

2Nx12
p D , i 50¯Nx and

j j5cosS 2 j 11

2Ny12
p D , j 50¯Ny .

Calculations are performed in physical space so that the
knowns are the values of„u8(j i ,j j ),v8(j i ,j j )… at each node
of the grid in physical space. We are thus led to a general
eigenvalue problem of the formBv5sCv whereB and C
are two matrices,s is the complex eigenvalue andv is the
eigenvector which contains the values ofu8 and v8 at all
nodes. Eigenvalues and eigenvectors are determined
standardQR method.

3. A nonautonomous amplitude equation

We now consider a basic flowfield that evolves w
time, so that from now on the matrixB depends on time. The
perturbation flowfieldeikzu(x,y,t) with u5(u,v)T is gov-
erned by the following equation:

]u~ t !

]t
5D~ t !u~ t !, ~A13!

whereD(t)5C21B(t).
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If u15(u1 ,v1)T and u25(u2 ,v2)T, the scalar product
introduced in~12! reads as

^u1 ,u2&5
p2

~Nx11!~Ny11! (i 50

Nx

(
j 50

Ny

@u1* ~j i ,j j !u2~j i ,j j !

1v1* ~j i ,j j !v2~j i ,j j !# f 8~j i !g8~j j !, ~A14!

5u1
HNu2 , ~A15!

whereN is a positive definite diagonal matrix, so thatNH

5N. Here the superscriptH designates the Hermitian.
We therefore consider the following generalize

eigenvalue problem:

M ~ t !v5sNv, ~A16!

whereM (t)5ND(t) with MH5MT. Herev is an eigenvec-
tor associated to the eigenvalues.

The eigenmodesvi(t), adjoint modes wi(t) and
eigenvaluess i(t) of this generalized eigenvalue problem
parametrized by time, verify

M ~ t !vi~ t !5s i~ t !Nvi~ t !, ~A17!

MT~ t !wi~ t !5s i* ~ t !Nwi~ t !, ~A18!

vi
H~ t !Nvi~ t !51, ~A19!

wi
H~ t !Nvi~ t !51. ~A20!

At any time,u(t) can be expressed in the basis form
by the eigenvectorsvi(t) following

u~ t !5(
i

@wi
H~ t !Nu~ t !#vi~ t !. ~A21!

We now consider one particular eigenvectorv(t), ad-
joint mode w(t) and eigenvalues(t). We are interested
in the time evolution ofA(t)5wH(t)Nu(t), which corre-
sponds to the projection of the perturbation fieldu(t) on the
eigenvectorv(t).

Equation ~A13! yields the following relation:
wH(t)N„]u(t)/]t…5wH(t)M (t)u(t) so that

d

dt
@wH~ t !Nu~ t !#

5@MT~ t !w~ t !#Hu~ t !1F]w~ t !

]t GH

Nu~ t !, ~A22!

5@s* ~ t !Nw~ t !#Hu~ t !

1F]w~ t !

]t GH

N(
i

vi~ t !@wi
H~ t !Nu~ t !#, ~A23!

5s~ t !@wH~ t !Nu~ t !#

1(
i

F F]w~ t !

]t GH

Nvi~ t !G@wi
H~ t !Nu~ t !#, ~A24!

's~ t !@wH~ t !Nu~ t !#1F F]w~ t !

]t GH

Nv~ t !G@wH~ t !Nu~ t !#.

~A25!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



t,
on

on
o

r-

lu
al

ch

re

tr
ti

ng
v
l

e
ho
ig

the
nd-
es
nd-

ode
r-

ra-
s to
he

re-

lex
not
hese
r is

n
ble
la-

es 2
cilla-

ose
es:

tes

one
is-
e
g

th
n

la-
so-

1872 Phys. Fluids, Vol. 15, No. 7, July 2003 D. Sipp and L. Jacquin
In order to obtain this last result, we have assumed tha
any time, nearly all the energy of the perturbati
eikzu(x,y,t) is in the unstable eigenmodev. This is likely to
be the case in the experiment of Leweke and Williams2

where only one identified smooth perturbation emerges fr
the basic flow at some given wavelength.

One can then easily deduce that

d

dt S ln
A

A0
D5s~ t !2wH~ t !N

]v~ t !

]t
, ~A26!

whereA(t)5wH(t)Nu(t) andA05A(t50).
The basic flowfield which evolves in time is characte

ized at any time by the dipole aspect ratioa/b.
The eigenmode, the adjoint mode and the eigenva
therefore depend ona/b. They also depend on the spati
structure of the perturbation in thez direction which is
given by the nondimensional wavenumberkb and the
level of viscosity acting on the perturbation and whi
is measured here by the Reynolds number Re5G/n. Hence,
we note @s2pb2/G#(a/b,kb,G/n), v(a/b,kb,G/n) and
w(a/b,kb,G/n). The dependence on time is then recove
using Eqs.~13!, ~14! and ~15!. It is then easy to show that

]v~ t !

]t
5

1

b

da

dt

]v

]~a/b!
5

G

2pb2

4p

Re

b

a

]v

]~a/b!
. ~A27!

With Eq. ~A26!, we obtain the following final result:

d

dS t
G

2pb2D F ln
A

A0
G5s

2pb2

G
2

4p

Re

b

a FwHN
]v

]~a/b!G .
~A28!

4. Comparisons between the shooting method
and the spectral Chebyshev–Gauss collocation
method for a single Lamb–Oseen vortex

The eigenvalues/eigenvectors given by the spec
Gauss collocation method are compared here to the shoo
method in the case of a single Lamb–Oseen vortex.

The computation has been performed with the followi
parameters:ka52.6764054, Re5`. We use 36 Chebyshe
polynomials in thex and y directions and the exponentia
mapping was chosen withHx5Hy51.4548, Yx5Yy51,
Lx5Ly50. Comparisons between eigenvalues obtain
with this code and eigenvalues given by the shooting met
are listed in Table I for bending modes. Only significant d

TABLE I. Bending modes: a comparison between values given by
shooting method~second column! and values given by the 2-D collocatio
method~third column!. Only significant digits have been retained.

Mode label Shooting method 2-D collocation method

0 0.52769697 0.52769697
1 0.057086548 0.0570865
08 21.6340331 21.634033
18 21.4052029 21.40520
28 21.2852558 21.28
38 21.2135359 ??
Downloaded 23 Mar 2005 to 144.204.65.4. Redistribution subject to AIP
at

m

e

d

al
ng

d
d

-

its have been given and the question mark means that
spatial resolution is not sufficient to capture the correspo
ing eigenfunction. Agreement is excellent for eigenmod
which have a simple spatial structure. For example, the be
ing mode labeled 08, with no zero in the radial direction, is
obtained with a precision of seven digits whereas the m
labeled 28, with two zeros in the radial direction, is dete
mined with a precision of only three digits.

Examples of eigenvectors are given in Fig. 11. The
dial and azimuthal structure of the eigenmodes enable u
build a strict relation with the eigenmodes given by t
shooting method.

As explained in Sec. IV B 2, bending waves whose f
quencies lie in the range21,v r2pa2/G,0 exhibit critical
layers. Therefore, integration should cope with the comp
plane in order to capture these Kelvin waves. But this is
the case here and our code can therefore not extract t
modes. Nevertheless when the corresponding critical laye
located at large distances from the vortex center~compared
to the core radius!, the viscous layer has little influence o
the spatial structure of the normal mode and our code is a
to extract it. This is what happened with the present calcu
tion since eigenmodes corresponding to the bending wav
and 3 have been obtained. These modes are purely os
tory and the frequenciesv2pa2/G are, respectively, 0.1094
and 0.1437. These values have to be compared with th
given by the shooting method which are complex valu
0.10950410.0001441i and 0.146710.0002684i . The corre-
sponding critical layers are located atr c/a53.3870
10.002231i and r c/a52.889410.2639i . We can notice a
deterioration of the precision as the critical point penetra
in the vortex.

5. Computations with the vortex pairs

The normal mode analyses of the vortex pairs are d
using the following parameter settings. In the case of inv
cid calculations, we use 34 Chebyshev polynomials in thx
direction and 70 in they direction. The exponential mappin
was chosen withHx50.3134, Yx50, Lx51, Hy50.3106,

e

FIG. 11. One Lamb–Oseen vortex: eigenfunction of the bending mode
beled 1 in the caseka52.6764054. Dashed lines represent negative i
values. The location of the collocation points is given for Im(v8(x,y)). Re~ !
and Im~ ! here designate real and imaginary parts of a complex.
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FIG. 12. Bending wave labeled 2 in
them51 case: evolution of the eigen
frequencyv2pa2/G in the complexv
plane ~left! and of the corresponding
critical pointr c in the complexr plane
~right!, for ka varying from 5.35 to 0.
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Yy50.2937 andLy51.5620. In the case of viscous calcul
tions, we use 70 Chebyshev polynomials in thex and y di-
rections. The exponential mapping was chosen withHx

50.50, Yx50.45, Lx51.50, Hy50.65, Yy50.2937 and
Ly51.5620.

APPENDIX B: CRITICAL LAYERS

In this appendix, we discuss briefly the critical layers
the Kelvin waves. We focus on the Kelvin wave labeled 2
the m51 case~see Fig. 6!. In the left plot of Fig. 12, we
gave the locus of the eigenvaluesv2pa2/G in the complex
v plane, for ka varying from 5.35 to 0. We see that th
eigenmodes are purely oscillatory ifka.3.958. When the
wavenumberka further diminishes, the frequencyv be-
comes complex with a positive imaginary part, which mea
that the mode is damped. In the right plot of Fig. 12, we ha
sketched the locus of the corresponding critical pointsr c ,
defined asg(r c)50, for ka varying from 3.958 to 0. Now,
r c(v) involves the classical Lambert function which is
multi-valued complex function. Therefore, there exists an
finite number of critical points. The filled triangles represe
the principal~or zero! branch whereas the empty circles re
resent the first branch. Following Refs. 18 and 29, the in
gration path has to lie above the critical point defined by
zero branch in order to select the valid eigenval
eigenvector when introducing viscosity. It also has to p
below the critical point defined by the first branch. As t
wavenumberka decreases, the viscous sector on the real a
penetrates into the vortex. This viscous sector is appr
mately centered at the real part ofr c and is located at infinity

FIG. 13. A typical configuration for a damped bending wave: the four p
represent the integration path and position of the critical pointr c for
the different eigenvalues (v,m), (2v* ,2m), (2v,2m) and (v* ,m).
The two modes which have to be removed when introducing visco
are scored out.
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whenka53.958. Finally, whenka→0 we have the follow-
ing behavior: v2pa2/G→20.047410.1144i and r c /a
→2.5111.88i which corresponds to the point where th
critical point given by the zero and the first branch coincid
This property is valid for all branches.

The eigenvalue problem~7! exhibits the following sym-
metries: if (v,m) is an eigenvalue, then (2v,2m), (v* ,m)
and (2v* ,2m) are also eigenvalues. Now, when we co
sider the inviscid case as an asymptotic limit of the visco
case whenn→0, two out of four solutions have to be re
moved and only the symmetryv and2v* remains. In Fig.
13, we have sketched the critical point and the integrat
path of a typical quadruplet of solutionsv56d6 im where
d.0 andm.0. The two eigenvalues that must be remov
are scored out in accordance with Ref. 18.
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