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Abstract

This paper is a review on the dynamics of vortices in fluids which get involved in aircraft wakes. Basic notions useful to
appraise their dynamics are: inertial waves, 3D instabilities due to vortex interaction, vortex merging, vortex breakdown and
turbulence. Each one of these topics is illustrated by means of experimental or numericalTesitkthisarticle: L. Jacquin
etal., C. R. Physique 6 (2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Dynamique des sillages tourbillonnaires : instationnarité, instabilité et turbulenceOn effectue une revue des propriétés
dynamiques des tourbillons qui se forment dans les sillages d'ailes d'avions. Les notions importantes permettant d’appréhender
ces écoulements sur un plan physique sont : les ondes d'inertie, les instabilités hydrodynamiques tridimensionnelles résultant
des interactions entre tourbillons, la fusion de tourbillons, I'éclatement tourbillonnaire et la turbulence. Toutes ces notions sont
discutées sur la base de résultats théoriques, expérimentaux ou numéPamuester cet article: L. Jacquin et al., C. R.

Physique 6 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

This paper considers the dynamics of vortices, such as those found behind an aircraft. Important notions, namely inertial
waves, stability of vortex flows, and turbulence in vortices, are discussed and are illustrated by means of experimental or
numerical results. Section 2 is devoted to the so-called Kelvin waves on which the dynamics of vortices strongly depend.
Classical results on the Kelvin waves are recalled and recent results on the properties of these waves in viscous vortices are
detailed. Sections 3 and 4 describe the so-called cooperative instabilities which develop in vortex systems due to interaction
between the vortices. These instabilities concern both short and long wavelengths and are generic to many applications in
fluid mechanics. Indeed, they are largely responsible for the different flow regimes observed in an aircraft wake. For instance,
short-wave cooperative instabilities contribute to the vortex merging phenomenon which leads to a reduction in the number
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of vortices in the near-field behind the aircraft. The physics of vortex merging is detailed in the present issue in the paper by
Meunier et al. [1]. Others cooperative instabilities, which are long-wave instabilities, lead to the collapse of the final vortices
obtained in the far-field. Section 5 scrutinizes the impact of an axial component of the velocity field. This component is always
present in aircraft trailing vortices even if it is usually small. The modifications in the stability properties of the vortex are
described and numerical simulations are then used to discuss turbulent aspects. We show that such flows are very resistant t
turbulence diffusion compared to other shear flows where rotation is absent. The problem of the mixing of a jet with a vortex,
which intervene in the formation of aircraft contrails (see the papers by Paoli and Garnier [2] and by Schumann [3] in the present
issue), provides a good illustration of this resistant nature of vortices to turbulence; this is discussed in Section 7. Before that,
Section 6 contains a short review on vortex breakdown, a fascinating mechanism which occurs in vortices when the axial flow
becomes strong enough. Section 8 is devoted to a phenomenon called ‘vortex meandering’ which still escapes our understanding
in spite of its universal character. The paper ends with a summary of the main results of this review.

2. Waves

Any perturbation in a rotating flow leads to propagation of dispersive waves, called inertia waves. These waves are equivalent
to the gravity waves found in stably stratified flows. Those which propagate in a vortex are named Kelvin waves and they play
a fundamental role in the dynamics of vortices. The case of a basic flow corresponding to a Rankine vortex (with constant
vorticity core) has been extensively described in the literature, see [4,5] for reviews. Recent efforts consider the case of the
Lamb—Oseen vortex which is often used to fit real data. The spatial distribution of tangential velocity of the Lamb—Oseen flow
can be expressed:

r
Vo(r) = % (1 — e,r2/a2) Q)

wherea denotes the vortex radius amd = lim,_, 5 27rVy(r) is the vortex circulation. The Reynolds numberRs =
I'/(2rv). The Kelvin waves in such flows have been described theoretically by following a standard procedure which leads
to linearizing the Navier—Stokes equations around the basic flow (1) and considering small modal perturbations of the velocity
and pressure of the tyge, p) = (8, p) ()€ *¥+m0—wl) \wherew = w, + iw; denotes a complex frequendyis the axial wave

number andr, the azimuthal wave number. This leads to an eigenvalue problem fidris problem admits a countable infinity

of eigenvalues indexed asy , (k) wherek andm are the axial and azimuthal wavenumbers and where the absolute value of
second indeXn| is related to the number of zeros of the eigenfunction (the higher the label, the more radial oscillations the
mode contains). The sign afis used to distinguish different families of waves. The quantjtym corresponds to the angular
velocity of the wave, and allows to distinguish cograde modgg > 1, the mode rotates faster than the vortex core), retro-
grade modes (& w,/m < 1, the mode rotates in the same direction than the vortex core but slower), and counterrotating modes
(wr/m < 0, the mode rotates in the opposite direction than the vortex core). Results are shown in Fig. 1 for the vortex described
by (1). Both the axisymmetric modes= 0 and the helical modes = 1 (left-handed helices) are shown. The frequencies are
made non-dimensional with the rotation rate of the vortex cesgr= I"/2ra?. A complete classification of these waves is
provided by Fabre et al. [6].

2.1. Axisymmetric modes (m = 0)

For axisymmetric modegn = 0), see Fig. 1(a), the waves form two families of branches which propagate in opposite di-
rections. The physical mechanism responsible for the propagation of axisymmetric waves has been explained by Melander and
Hussain [7] and by Arendt et al. [8]. The group velocity,ddk, which corresponds to the slope of the different branches,
decreases with the wavenumber, the fastest waves being on the sgrdh the limit of long wavelengthka — 0). The
group velocity of this wave is found to beug 1(k)/dk ~ 0.63I"/(2ra) which is almost exactly equal to the maximum tan-
gential velocity of the Lamb—Oseen vortex. This means that energy of perturbations propagates with a speed smaller than the
maximum tangential velocity of the vortexewg ,, (k) /dk < Vo max, @ property which also holds for other vortex models. When
Vomax/ Uso < 1, as found in trailing vortices (with/y the freestream velocity ahead of the vortex generator), energy of the per-
turbations is thus convected downstream. This prevents propagation of energy upstream and protects the flow from occurrence
of vortex breakdown, as discussed in Section 6.

2.2. Asymmetric modes (m # 0)

The most robust asymmetric waves are the helical wawg¢s= 1. Due to the symmetries, they satisty , = —w_1,
and they must be considered as pairs, the left-handed nijedesl) propagating along the vortex core in opposite directions
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Fig. 1. Lamb—Oseen vortex—inviscid case. Frequeneiesf the Kelvin waves: (a) axisymmetric modes= 0, (b) helical modes: = 1.
Freguencies are normalized by the vortex rotation fzje= F/2ﬂa2, wherer is the circulation, and, the vortex core radius. The dotted area
is the critical layer region. From [6].
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Fig. 2. Lamb—Oseen vortex—viscous cas@e= 1000. The ‘slow waves'np = 1, w1 o), see Fig. 1(b), for: (aka = 0.1, w/$20 =
—0.012-471075;, (b) ka = 3, w/ 29 = —0.5602-00124 . Iso-levels of the axial vorticity component in tle, y) plane. Eight equally spaced

levels are displayed, and dashed levels correspond to negative values. The dotted circle corresponds to the location of maximum tangential
velocity of the vortex (at = 1.120%). From [6].

to their right-handed counterpart& = —1). The cylindrical modes described above are weakly dependent on the base flow
model. Sensibility to the base flow becomes much more important fgr0 and this is due in particular to the presence of
critical layers. Critical layers develop whenever the angular phase speed of the pertuthationcoincides with the angular
velocity of the vortex2 (r.) at some radius,. In this case, computations show that such waves are datped0): the critical
layers have an important effect on the global vortex dynamics because they filter the perturbation spectrum by eliminating all
co-rotating waves such thatfw, /m < 1. Form = 1, this occurs in a Lamb—Oseen vortex within the dotted area of Fig. 1(b),
where O< w, < £2¢. Outside this interval, the modes are regular and purely oscillgtgry= 0). Two of these branches are of
particular importance in practice:

The branch labeleeh1 g corresponds to the wave with the simplest structure (eigenfunction with no zero). This wave is
counter-rotating, and is called the ‘slow wave’ because both the frequency and the phase wetagityk (and also the group
velocity dw, /dk) tend towards zero wheh goes to zero. This regular wave takes the form of a helical displacement of the
vortex core as a whole and corresponds actually to the self-induced oscillation mode of a filament vortex, see Saffman [4]. As
can be observed in Fig. 2, the eigenmode takes the form of a dipole of vorticity. When superposed onto the base flow, the effect
of this dipole is to increase the vorticity on one half of the vortex and to decrease it in the other half. Therefore, the net effect
corresponds to a displacement of the whole vortex core in a helical way. The mode is weakly dependent on the axial wavenumber
(compare Fig. 2(a) and (b)). Itis also weakly depends upon the vortex core details, and it is generic to all vortex models. It plays
an important role because it is involved in the long-wave cooperative instabilities that will be considered in Section 3.

Other important branches are those labeled ,, n =1, 2, ..., which are counter-rotating neutral waves outside the critical
layer region. The transition, whesg = 0, correspond to steady waves that play an important role because they can be amplified
whenever an external steady strain is imposed on the flow. For a Lamb—Oseen vortex, see Fig. 1(b), the corresponding wavenum:
bers are found to bé.a ~ 2.26,3.96,5.61, etc... Fig. 3(a) shows the eigenmode corresponding to the first steady wave
kea ~ 2.26. It consists in two vorticity dipoles. The steady nature of this particular mode results from cancellation of the opposite
effects by each dipole which, by itself, would displace the core as explained above. The superpositiomotthesaves with
theirm = —1 counterparts leads to steady untwisted perturbations schematized in Fig. 4 (the figure is obtained for a Rankine
vortex for whichw, = 0 iskca ~ 2.5 instead of.a ~ 2.26 for the Lamb—Oseen vortex). Such steady untwisted perturbations
are particularly important because they can be amplified by the straining field imposed by other vortices. This mechanism is re-
sponsible for the short-wave cooperative instability described in Section 4. As shown in Fig. 3(b), when penetrating the critical
region by decreasing and following the branclyy _1, dramatic modifications in the eigenmode structure occur: two spiral
arms develop outside the vortex and wind on with increasing vorticity levels. This spiral structure is the signature of the critical
level phenomenon evoked above. Before such structures are eliminated by viscosity they may establish possible communication
between the vortex core and its periphery. Their importance on the global dynamics of a vortex is not yet understood.

2.3. Theinitial value problem

Another approach to characterize the linear dynamics of an isolated vortex, which is complementary to the modal point
of view presented above, is to study the response to an initially localized perturbation through a solution of the linear initial
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Fig. 3. The bending wavesi(= 1, w1 _1), see Fig. 1(b), foRe = 1000: (a) steady modéu = 2.262,w/$29 = —0.0119, (b) critical layer
mode:ka = 0.8, w/$29 = 0.1560-00433. Same conventions as in Fig. 2. From [6].

Fig. 4. Wave motion produced by the combination of two steady Kelvin wayes; andw_j _1 for ka ~ 2.5 (Rankine vortex). The vortex
core boundary is displayed with an arbitrary amplitude. From [5].

value problem. Such a study was performed by Arendt et al. [8] for the Rankine vortex model. They found that an initially
localized perturbation of the vortex core always gives rise to the propagation of wavepackets which propagate the energy of
the perturbation along the vortex core. Fabre [9] repeated the same kind of analysis for the Lamb—Oseen vortex. He found that
generally, only a part of the initial energy propagates under the form of wavepackets, while another part is rapidly dissipated
through a filamentation mechanism. In Fig. 5, we present the results obtained when the initial perturbation takes the form of
a ‘helical twist’ of the vortex, defined in order to include only helical, left-handed= 1) eigencomponents. The Reynolds
number isRe = 1000. The upper plot shows a three-dimensional view of the axial vorticity component of the initial perturbation.
The dark and light areas correspond to regions of positive and negative values. The middle plot shows the perturbation, with
the same representation, at an instant corresponding to 10 rotation times of the vortex core, and the lower plot shows three
transverse views of the perturbation. As can be observed, this perturbation can be decomposed into three main components. Thi
first one is a twisted perturbation, with a structure essentially similar to that of the initial perturbation, which has propagated
to the left. This structure is recognized as a wavepacket corresponding to the displacement wave evoked above. The seconc
component is a structure characterized by the presence of spiral arms in the periphery of the vortex. This structure stays at
the initial location of the perturbation without propagating, and decays while it is wrapped. From a modal point of view, this
structure is the contribution from the critical layer waves. The third component is a small dipolar structure propagating to the
right, which can be recognized as a wavepacket corresponding to the corotating wavedabelttpection shows that about

half of the energy is propagated to the left within the displacement wavepacket, while another half remains in the spiral structure
and is rapidly dissipated. The small wavepacket propagating to the right only bears a small fraction of the initial energy. Other
kind of initial perturbations were also considered in [9]. For axisymmetric perturbations, all the energy is propagated under the
form of wavepackets. On the other hand, for initial perturbations of double-felix 2) or more complex geometries, all the

energy is rapidly dissipated under the form of a spiral structure, and no propagating wavepacket is observed.
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Fig. 5. Response of a Lamb—Oseen vortex to an initially localised perturbation under the form of a “helical twist”. Upper: initial perturbation.
Middle: final perturbation after 10 rotation times of the vortex centreline. Lower: transverse structure of the final perturbation at three axial
locations. From [9].

3. Long-wave cooperative instabilities

Vortex systems are generally unstable with respect to 3D perturbations. This results from amplification of asymmetric Kelvin
waves under mutual straining of the vortices. If separations between the vortices are large compare with their thickness, a system
of stability equations may be derived by considering a set of parallel vortex filaments with slight sinusoidal perturbations of
their respective positions. The developed expressions of this linear system are given in Crow [10] for the case of a single pair
of counter rotating vortex filaments, and in Crouch [11], Fabre et al. [12] for multiple vortex pairs. The system evolves due to
superposition of three effects:

(i) the straining experienced by each filament when displaced by a perturbation from its mean position in the velocity field
induced by the other undisturbed filaments,
(i) the self induced rotation of the disturbed filament; and
(iii) the velocity field induced on the filament by the other vortices when they are themselves perturbed from their mean
positions, see Crow [10].
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Fig. 6. Long-wave cooperative perturbation in the wake of a wing equipped with flaps: (a) definitions of the four vortex system; (b) optimal
perturbation obtained with the linear theory after one revolution of the inner vortex pair around the outer og (€ase —0.3, b» /b1 = 0.3,

from [12]); (c) towing tank experiment faFy /'y = —0.37,b2/b1 = 0.5. Fig. 6(c) shows the perturbation obtained after an elapsed time close

to that corresponding to Fig. 6(b); from [13].

Mechanism (i) leads to amplification of the asymmetric Kelvin waves when their polarization planes remain close to the exten-
sion planes of the straining field; this mechanism is in balance with the self induced rotation, mechanism (ii), which tends to
shift the perturbation away from these planes. The frequency of this self-induced oscillation is the frequency of the oscillation
mode of the Kelvin displacement wave described in Section 2. This is the mechanism which introduces a dependence of the
solution with respect to a measure of the vortex core radius.

Long-wave cooperative instabilities are of prime importance for applications to aircraft hazard alleviation because one
hopes that the dispersion of a vortex wake may be accelerated by means of this mechanism. The stability properties of a vortex
configuration composed with two vortex pairs of opposite sign, as sketched in Fig. 6(a), has been especially considered. The
vortex pairs may be co-rotating( > 0, I'> > 0) or counter-rotatingI(; > 0, I'> < 0). In the wake of an aircraft, the outer
vortex pair is that produced at the wing tips and the inner one may be produced by flaps or horizontal tail planes. The linear
method evoked above may be applied to the case of Fig. 6a) db < b1, bo, (b1 — b2)/2; the solution depends arp/ Iy
and onbo/bq. Without inner vortices, the classical Crow instability develops on the outer vortex pair. The wave length of
the Crow instability iskb1 ~ 0.8 (wavelength. /b1 &~ 7.85) and its growth rate i&; crow ~ 0.8F1/(2nb%) [10]. Adding the
second vortex pair leads to much higher amplifications [11,12]. Fig. 6(b) shows a result of the linear théoiifoe= —0.3
andbo /by = 0.3 (which may be considered as a limit for an aircraft). The most amplified perturbation has been plotted after
one revolution of the inner vortices around the outer ones. This perturbation, introduced initially, has been amplified by a factor
5700, to be compared to 2.2, the value obtained for the Crow instability (without inner vortices). The towing tank result shown
in Fig. 6(c) confirms that this type of perturbation is effectively selected in a real four vortex wake, see [13] and the paper by
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Savas [14] in the present volume. Differences between the linear solution, Fig. 6(b), and the experiment, Fig. 6(c), are bending
of the loops and local burstings. They are due to non-linearity.

4. Short-wave cooperative instabilities

As said above, the presence of a second vortex leads to imposition of a strain field on the current vortex. In a counter-rotating
vortex pair of circulationt=1I" separated by a distanéethis strain as a rate equal IQ/(anz). If we consider the flow within
the core of each vortex, steady waves such as that described in Fig. 4 are amplified by this strain. When considering the flow
evolution on the length and time scales= a and T = 2ra?/I", the strain amounts to a perturbation at orelet (a/b)?; it
corresponds to the stream-functigiir, 6) = — f (r) cos 3/2, where the functiorf (r) must be determined so that the velocity
field fulfils the steady Euler equations at ordesee Moore and Saffman [15]. More generally, considering 3D perturbations,
i.e., two Kelvin waves with azimuthal wavenumbeg, m» and with an amplitudé <« 1 (normalized by), interaction leading
to instability occurs at the ordérx e and the mechanism is a global resonant interaction between three steady perturbations,
i.e., two Kelvin waves and the strain, which takes place as soon as the triadic resonance wglatiany = 2 is satisfied.
Thanks to the viscous filtering effect of critical layers (see Section 2), for the Lamb—Oseen vortex this only oceyrs-foy
mp = —1. The amplification rates; of these cooperative instabilities, as obtained using the Moore and Saffman method,
corresponds to a narrow band of instability centered around the wave nimbech thatw, 1 , (k) = 0, see Eloy and Le
Dizes [16], Sipp and Jacquin [17]. Fig. 7 shows the amplification rate for the instabilities due to resonance of the straining field
in a dipole of counter-rotating dipoles of aspect ratj = 0.208. Resonance occurs with the steady helical wawgsH0,
m==1,keca~ 226,396,561 ...), see Fig. 1(b). The amplification rate for these instabilities, called Widnall instabilities, is
w; = 1A'/ (2b?), which is comparable to that of the Crow instability, crow ~ 0.8I"/(2b?). The time scales of the two
instabilities are thus equivalent and are of the ordéln@z/l“). Compared with the viscous time scalex az/v, we have
7,/7  (a/b)%Re. As a consequence, df/b = O(0.1) for instance, the cooperative instabilities are free from viscous damping
whenRe > 100.

The short-wave cooperative instabilities are of fundamental importance because they are responsible for the merger of
vortices in the absence of significant turbulence. Merger occurs on a convective timw;&aieanz/F when the vortices
come close enough and when the Reynolds number is sufficiently large to allow development of the short-wave instability
mechanism. Fig. 8 shows results of a direct numerical simulation of a co-rotating dipole of aspegtiratio.2 for Re= 5000,
Le Dizes and Laporte [18] (see the paper by Meunier et al. [1] in the present issue). Contrary to the case of the counter-rotating
vortex pair, the strain is now rotating (with the pair). The resonance mechanism described above still holds and leads to the

—— Moore & Saftman (1975)
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Fig. 7. Amplification rate of the Widnall instabilities for the dipalgb = 0.208 atRe = co. Lines: asymptotic theory, symbols: matrix eigen-
value method. From [17].
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(b)

Fig. 8. Iso-levels of the axial vorticity perturbation component in a direct numerical simulation of a co-rotating dipole of aspe¢b ratib2
for Re=5000: (a) cut in théx, y) plane during the linear regime (compare to Fig. 3(a)), (b) side view during the linear regime, (c) side view
during merging. From [18].

same type of growth mechanism. The complete theory is given in [18]. The two vortex cores deform, see Fig. 8(b), and for
a/b = 0.2 they are sufficiently close to exchange their vorticity; this leads to a strongly non-linear interaction regime during
which the two cores merge, see Fig. 8(c). These numerical results are in fair accordance with experiments conducted in a water
tank by Meunier and Leweke [19]. Merging needs sufficient proximity between the vortices, an approximate criterion being
a/b > 0.25 [19]. This limit is likely due to non-linear saturation of the primary instability: when amplitude of the instability
becomes too large, self induced rotation tilts the perturbation which escapes away from the stretching directions of the strain.
Sipp [20] showed for instance that the walye ~ 2.26 of a counter-rotating dipole is subjected to core displacememihich

cannot exceed\ /b = 6.1(a/b)2. This givesA /b ~ 0.25 for the maximum distance of separation required for the merger of

a pair of counter-rotating vortices with an aspect ratid = 0.2, in excellent agreement with observations made by Leweke

and Williamson [21] in their low Reynolds number experiments conducted in a water-tank. This value seems also to hold in
co-rotating vortices. Importantly, short-wave cooperative instabilities are thus contributors to the fusion of various vortices in
the near-field of an aircraft; they become unimportant in the far-field, whérg 1.

5. Instabilities with axial flow
We consider now the effect of axial flow on a single trailing vortex. Due to the presence of axial shear, instabilities exists

which do not occur in the absence of axial flow. They have been extensively studied for the Batchelor vortex which is very often
used to fit 3D vortices (see Ash and Khorrami [22] for a review). This model corresponds to a Gaussian axial velocity profile:

U(r) = Up+ AUe™/0? @)
superposed on the Lamb—-Oseen vortex (1). The dynamics of this flow are controlled by the swirl number:
r Vo
=——~156— 3
1= 2ranU AU @

whereVy is the peak tangential velocityg = max{Vp}. Linear stability analysis applied to this flow shows three families of in-
stabilities. The first, which are basically inviscid, are short-wave instabilities due to stretching of vorticity perturbations aligned
with the local shear. These instabilities are well described by the asymptotic study of Leibovich and Stewartson [23] which
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Fig. 9. Instabilities in a Batchelor vortex: (a) amplification factor of the inviscid ‘ring modes’ as a function of the radius for diffgff@ninost
amplified ‘ring mode’ forg = 1, Re= 2000 [24], (c) example of unstable ‘centre mode’ o= 2, Re= 10, m=—-1 [25]; axial component

of vorticity fluctuation are plotted in figure (b) and (c); the broken and solid lines correspond to vorticity of opposite sign; the dotted circles
correspond te = a.

leads to a necessary stability criterion generalizing the classical Rayleigh criterion of centrifugal instability. Asymptotic means
that the analysis is conducted in the short-wave liits> 1 and|m| 3> 1. These short-wave criteria gives the amplification
ratec of the most amplified modes (considering perturbatisre§’) as function of the radius. It is plotted in Fig. 9(a) for
different values of the swirl number. When this parameter is positive, the flow is unstable. Fig. 9(a) shows thatfdr5 the

core of the vortex is entirely stabilized% < 0,Vr); itis fully unstable (72 > 0, Vr) for ¢ = 0.7. For intermediate values, e.g.,

q =1, a stable buffer layer where? < 0 is surrounding the flow and prevents radial propagation of perturbations. The instabil-

ity modes in the core take the form of ‘ring-modes’ which exhibit a structure concentrated in an annular region located around
the core. An example of such a mode is shown in Fig. 9(b): this is the most amplified mode foune fbandRe = 2000

(actually ajm| = 6 mode). As said above, these modes develog farl.5 and above this value, the strong rotation stabilizes

all the perturbations. A second instability family is the viscous modes evidenced by Khorrami, see [22]. These modes occur
for ¢ < 1.2, and their growth rates are several orders of magnitude smaller than those of the inviscid modes occurring in this
range. Consequently, they are unlikely to play any role in the dynamics of wake vortices. Finally, a third family are the viscous
‘centre-modes’ recently described by Fabre and Jacquin [25]. These modes exist for very large Reynolds numbers, and for swirl
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Fig. 10. Jet/vortex experiment [26]: vortex generator (a), radial mean velocity profiles (top: open syinhsls, solid symbolsAU/Us) and
circulation (bottom) measured by hot wire in three downstream sections—case of a weak jet (b), case of a strong jet (c).Byyakold5,
W z/c =78, A z/c =109 withc the wing chord length. Radius is normalizeddyFrom [24].

numbers much larger than the other families of instabilities. So, they could be present in any trailing vortices. As illustrated
in Fig. 9(c) they have the particularity to be strongly localized near the vortex axis. Such instabilities could participate to the
‘vortex meandering’ phenomenon discussed in Section 8 but are likely not efficient to promote turbulence and mixing.

An illustration of some of these mechanisms is provided by the experiment by Phillips and Graham [26] which was revisited
by Jacquin and Pantano [24] and which is shown in Fig. 10. This experiment is based on the use of a split wing with a narrow
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central cylindrical body, see Fig. 10(a). This apparatus produces a single vortex whose core may be manipulated by blowing
a jet or by producing a wake with an obstacle placed in the central body region. Several cases were studied in this reference.
Two of them have been selected in Fig. 10. This figure shows radial profiles of the axial velocity diffexéhdde tangential

velocity, Vp, and the angular momentunVy, normalized by the free-stream velocitjy, and by the wing chord length.

Fig. 10(b) corresponds to the case of a weak jet which is suclythat.8 (using (3)) in the first measurement section. In that
caseg > 1.5 and the vortex is linearly stable (no ring modes). The measurements confirm that angular momentum of the vortex
remains frozen. The jet case shown in Fig. 10(c) corresponds to a stronger jet; Kéxd in the first measurement section.

The flow is strongly unstable and it is subjected to a vigorous diffusiolii: decays and: increases (note that af/c = 45,

the vortex core is already twice as large as that of the previous case). The inviscid shear instabilities described above are likely
responsible for this behaviour. As for the ‘centre mode’, they could develop in the weak jet case, but they are too confined,
see Fig. 9(c), to promote diffusion of the core. The angular momentum in Fig. 10(c) shows that spreading of the jet-vortex is
due to a centrifugal instability in the periphery of the vortex. As shown by Jacquin and Pantano [24], this is the results of a
breaking of the stabilizing region which confines the shear induced perturbations created in the core at higher swirl numbers.
The stability of the vortex periphery inhibits radial transport so that a linearly unstable vortex with moderate swirl number (not
too small) becomes turbulent but comes back in a form that is stable without significant changes in the vortex width [24]. Ragab
and Sreedhar [27] were the first to observe this striking stability property of the vortices which will be discussed further in
Section 7.

6. Vortex breakdown

The vortex breakdown phenomenon is a spectacular effect of the Kelvin waves on the global dynamics of a vortex. As advo-
cated by Benjamin [28,29], vortex breakdown results from a transition from a globally stable and supercritical flow supporting
only downstream travelling waves to a subcritical state supporting both upstream and downstream propagating waves. If the
flow is subcritical, the Kelvin waves might transport their energy upstream and disrupt the flow. As pointed out by Gallaire
and Chomaz [30], this condition is close to an absolute/convective instability condition (a base flow is said to be absolutely
or convectively unstable whether amplified disturbances increase in time at any fixed station and extend to the entire domain
of interest or if such perturbations are transported downstream by the flow and if only the base flow remains for large time
in any fixed frame). The complete phenomenon still escapes to our understanding, see Délery [31], Sarkpaya [32], Rusak and
Wang [33] for reviews. Experiments on confined vortices in tubes, e.g., Tsai and Widnall [34], confirm that vortex breakdown
represents a transition from a supercritical to a subcritical flow. This transition also holds for the flow over delta wing at high
angle of incidence, a popular application of vortex breakdown, see Renac and Jacquin [35]. A crude criterion for breakdown
may be obtained by considering that the fastest waves travel at a speéf (see Section 2). Criticality then leads to the
following non-dimensional parameter:

_ Y% g 1

T Uso+ AU~ 1561+ Uso/AU
wheregq is defined in (3). The flow remains supercritical (free from breakdown) i smaller than unity. Note that a super-
critical vortex may remain locally stable, i.e., such that 1.5, thanks to the effect of the drift velocify~ in (4). Note also
that givenI”, breakdown condition critically depends on the core widtfhis may be used to get an estimation of core width
minimums. One may approximate the maximum tangential velocitydy I'/(2ra). In the case of trailing vortices behind
wings, using an elliptic law™ = 2C,Ugbg/(r AR) for the wing loading (see any text book on aerodynamics), one obtains:
_ C; bp U

T ARr2 a Uso + AU
where(; is the lift coefficient AR, the wing aspect ratidy, the wing span and, the vortex width. Typical values for a highly

loaded wing aréAR=7, C, = 2, which givesCZ/(Aan) ~ 0.03. With these approximations, the vortices produced by such a
wing are free from breakdowy. < 1) whenever:

qc 4)

qc )

U
a > 0.03— ==
bo Uso + AU

Experiments show that trailing vortices are usually of the wake typ€ < 0), soa/bg = 3% must be considered again as a
minimum for a trailing wake vortex with no breakdown. This is not incompatible with known data.

The vortex breakdown phenomenon, as described above, must be distinguished from another related phenomenon callec
vortex bursting. Contrary to breakdown, which occurs at a definite position given a source of perturbation, burstings occur
in an unpredictable way in the far-field trailing wakes, sometimes on both vortices, sometimes only on one of them. This

(6)
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phenomenon is not yet completely understood. The collision of axisymmetric wavepackets has been proposed as a possible
explanation by Moet et al. [36]. Other kind of catastrophic events, such as the merging between the main vortices and secondary
vortex filaments, see Fig. 6(c), may also trigger it.

7. Mixing in vortices

In Section 5, we saw that a vortex with mild or large swirl number seems protected from perturbations by a stable region
which develops from its periphery. In a Batchelor vortex, this ‘stabilizing buffer’ develops fyam: 2 for ¢ = 0.7 and cover
the whole core wheg = 1.5, see Fig. 9(a). This contributes to make trailing vortices particularly resistant to diffusion. This was
discussed by considering a jet/vortex experiment revisited in Section 5. Another experiment which gives similar indications will
be commented now. This experiment, described in [37], aimed at characterizing the mixing of jet exhausts with trailing vortices
during formation of contrails behind an aircraft. It is based on the wing and the jet setup shown in Fig. 11(a). The wing span is
50 cm and the jet unit produced two small heated jets with a diameter of 1 cm. Dimensions, mean velocity and temperature are
fixed to approximate similarity with typical transport aircrafts (e.g., the jets are initially 300 K above the ambiance at the exit).
As shown by the iso-levels of relative temperature measured by thermocouples in four sections downstream, see Figs. 11(b)—(e),
the turbulent heated jets roll up around the vortex cores. They are stretched and deform by differential convection but there is
no transport of temperature across the vortex periphery (in the last section temperature is sufficiently low to be considered as
a passive scalar). DNS and LES simulation of this experiment or of equivalent problems have confirmed that the vortex is very
resistant to mixing with the ambient flow, see Paoli and Garnier [2]. Interestingly, numerical results show that when introducing
the hot jet in the vortex center, a strong confinement of the latter takes place, as in Fig. 10(b). Note that when heating the core
of a vortex by this way, its intrinsic stability is reinforced by stabilizing buoyancy effects. Inversion of the temperature gradient
(cold gas in the center) is destabilizing, Sipp et al. [38]. However, DNS have shown that if new instabilities develop, they
quickly saturate and leave the mean vortex almost unchanged, see Coquart et al. [39]. This is another indication that vortices
are very stable and resistant to diffusion.

(a)

Fig. 11. Experiment on the mixing between hot jets and the trailing wake of a wing: (a) apparatus, iso-level of relative tempeyatur© &,
(b) x/b =3, (c)x/b =5, (d)x/b = 8. The broken lines materialize the left wing tip region; the initial temperature of the jet is 600 K; from
[37].
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8. Vortex meandering

Vortices produced in experiments are never steady: even when separation with other vortices is sufficiently large and axial
flow sufficiently weak for discarding the main instability mechanisms discussed above, one observes that vortices are always
subjected to long wave and small amplitude displacements. This universal feature, called vortex meandering, still escapes our
understanding. It contributes to severe measurement errors. The first comprehensive investigation of the problem has been mad
by Devenport et al. [40]. There are several possible causes for the phenomenon:

(i) interference with wind tunnel unsteadiness;
(ii) excitation of perturbations in the vortex cores by turbulence contained in the wake;
(iii) linear co-operative instabilities;
(iv) propagation of unsteadiness through Kelvin waves originating from the vortex generator. This list must now be updated
with two other possible candidates;
(v) viscous core instabilities;
(vi) transient growth.

Meandering could result from a superposition of several mechanisms. Points (i) to (iv) were discussed in [41,42]. These
references provide strong indications that point (i) may be discarded. Point (ii) remains open, especially if we account for
point (vi) which refers to recent findings by Antkoviak and Brancher [43] on the existence of a transient growth mechanism
in Lamb—Oseen vortices. Concerning point (iii), real vortices are rarely isolated and cooperative instabilities are often present
(for instance, slight contributions of a cooperative instability to meandering were detected in [42]). But they do not explain
meandering. Point (v) which refers to the viscous core instabilities find by Fabre and Jacquin [25], see Fig. 9(c), are more inter-
esting because they develop for large swirl numbers, large Reynolds numbers, and they concern long wave lengths and exhibit
acceptable amplification rates, see [25]. Point (iv), namely propagation of neutral Kelvin waves emanating from boundaries
(aircraft), could also contribute.
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Fig. 12. Power density spectra of the axial velocity component measured with a hot wire in the centre of the wing tip and outer flap tip vortices
behind two different high lifted aircraft models: (&)bg = 1 (experiment by ONERA), (b)/b = 5.56 (experiment by the Technical University

of Munchen). The spectral densisy, (/) is multiplied by f and it is plotted versus the frequency normalized with the wing mean ¢hamd

the free-stream velocity. Other scales are arbitrary. See [44].
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The theory of meandering remains a challenge. Fig. 12 shows an example of what must be explained. This is the typical
spectral signature obtained when putting a hot wire on the axis of the vortices formed at the wing tip and at the flap tip of an
aircraft model in a wind tunnel. As found in these experiments, meandering leads to broadband spectra with energy distributed
around frequencies which scale on the wing chord. This result is suggesting that part of the meandering is related to the wing.
Mechanisms (ii), (iv), (v) and (vi) listed above could be concerned.

9. Conclusions

As shown in this review, many results on the physics of trailing vortices are now available and are useful to appraise several
important aspects of the vortex flow produced by an aircraft. Some of these results pave the way to concrete applications. This
is the case of the long-wave cooperative instabilities in vortex systems which have led to propositions for the active control of
aircraft wakes, see Section 3, and in the present issue, Crouch [45], Savas [14] and Winckelmans et al. [46]. Other results, for
instance those on the stability of vortices with respect to small scale perturbations, are supporting modeling strategies which are
used in CFD tools, see Czech et al. [47]. They also help in understanding experimental and CFD results on the mixing between
jets and vortices, as discussed in Section 7 and in the paper of Paoli and Garnier [2]. However, several problems still escape
to our understanding. This is the case for meandering phenomenon, see Section 8, which received special attention due to its
implications for almost all the vortex flows. Research described in this paper only provides a series of possible mechanisms
which could contribute to this unsteady mechanism. Other findings described in this paper (e.g., the critical layer modes or the
centre modes) are very recent and have to be explored further before concluding their possible role in the aircraft wake problem.
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