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The direct numerical simulationsDNSd of a two-dimensional Lamb–Oseen vortex with a heavy
internal core has been performed. Linear stability theory predicts the existence of Rayleigh–Taylor
sRTd instabilities due to the destabilizing effect of the centrifugal force on the radial flow
nonhomogeneities. The DNS first exhibits wavy azimuthal perturbations which are nonlinearly
distorted into bubble-like patterns, characteristic of the standard development of the RT instabilities,
i.e., instabilities obtained in a planar nonhomogeneous flow in the presence of gravity. Nevertheless,
important differences may be observed in the late stage development of the instability: contrary to
the standard case, the bubbles are then stretched in the azimuthal direction leading to a strong radial
filamentation of the flow. ©2005 American Institute of Physics. fDOI: 10.1063/1.1852580g

Stabilizing mechanisms associated to rotation usually
make a vortex very resistant to radial momentum diffusion.1,2

The present Letter is considering possible density variation
effects to achieve this goal. If density effects were signifi-
cant, vortex control by means of injection of heated or
cooled air could be considered, for example, in the applica-
tion of aircraft wakes.3 The goal of this Letter is, precisely, to
evaluate the potential of such density effects on the dynamics
of vortex cores.

The linear stability of a compressible two-dimensional
s2Dd Lamb–Oseen vortex with a heavy core predicts the ex-
istence of 2D temporally oscillating unstable modes.4 These
unstable modes are of the Rayleigh–TaylorsRTd type. As a
matter of fact, heavy fluid inside light fluid in a vortex core is
equivalent to light fluid below heavy fluid in the presence of
gravity. The gravity force is replaced here by the centrifugal
force. In both cases, the unstable situation corresponds to the
force sgravity or centrifugald directed towards the light fluid.
In this Letter, we study the linear and nonlinear development
of these instabilities thanks to a 2D direct numerical simula-
tion sDNSd. The main objective of this Letter is to character-
ize possible differences that may exist in the development of
RT instabilities between the standard case with the gravity
force and the present situation with the centrifugal force.

Let Lref, uref, rref andTref be the reference length, veloc-
ity, density, and temperature scales of the problem. These
reference scales will be precised below. The compressible
Navier–Stokes equations read in nondimensional form

]tr + ]isruid = 0, s1d

]tsruid + ] jsruiujd = − ]ip +
] jti j

R , s2d

]tE + ]ifsE + pduig =
]isti jujd

R +
]i]iT

sg − 1dPM2R , s3d

whereui, r, T, p are the velocity, density, temperature, and
pressure of the fluid,ti j =] jui +]iuj −2di j]kuk/3 is the viscous
stress tensor andE=p/ sg−1d+ruiui /2 is the total energy.
The flow is supposed to behave like a perfect gas:gM2p
=rT. Several nondimensional parameters appear: the Rey-
nolds numberR=urefLrefrref /m wherem is the viscosity, the
Mach numberM=uref / sgRTrefd1/2 where R is the constant
of perfect gas, the specific heat ratiog, the Prandtl number
P=mcp/k, wherecp andk designate the specific heat at con-
stant pressure and the thermal conductivity. The simulation is
performed at a low Mach number so that the static tempera-
ture variations are small. This allows us to make the assump-
tion of constant viscosity, constant thermal conductivity and
constant specific heats.

These equations are solved on a Cartesian grid mesh.
Time integration of the equations is decoupled from spatial
discretization and is perfomed by a third order Runge–Kutta
scheme with the numerical coefficients of Lowery and
Reynolds.5 The convective terms are discretized with a sixth-
order compact finite differences scheme.6 To minimize the
aliasing errors, the nonlinear terms are written in the skew
symmetric form.7 Diffusive terms are evaluated with a sixth-
order accurate scheme, except the diagonal terms that are
discretized by using a scheme introducing enough numerical
dissipation to avoid oscillations.8 Nonreflecting boundary
conditions are prescribed at the lateral boundaries.9

The flow field is initialized by the superposition of a
basic flow and a perturbation. The basic flow is an axisym-
metric vortex with radial variations of the density profile.
Hence, ifur anduu designate the radial and azimuthal veloc-
ity components in cylindricalsr ,ud coordinates, the basic
flow reads: fur ,uu ,p,rg=f0,Vsrd ,Psrd ,Rsrdg. The velocity
field Vsrd is chosen to be the azimuthal velocity profile of the
Lamb–Oseen vortex:
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V =
1 − exps− r2d

r
. s4d

The reference length and velocity scalesLref anduref there-
fore designate the characteristic radius and velocity of the
Lamb–Oseen vortex. In addition, for the definition of the
Mach numberM, we choose the static temperature of the
fluid at infinity as the reference temperature scaleTref. The
density distributionRsrd is prescribed as

R= 1 +sexps− r2/b2d, s5d

where s and b designate the amplitude and width of the
heavy internal core. The reference density scalerref is there-
fore equal to the density at infinity. The pressurePsrd is
obtained by integrating the radial momentum equation:

P =
1

gM2 −E
r

` RV2

r
dr. s6d

This flow field is a steady solution of the Euler equations
while it slightly diffuses in time in the presence of viscosity.

The perturbation is constituted of a small amplitude
eigenmode of the linearized Navier–Stokes equations around
the basic flows4d–s6d. This eigenmode is calculated thanks
to a matrix eigenvalue–eigenvector method based on a spec-
tral Chebyshev collocation. If Re designates the real part of a
complex, the unstable eigenmode may be written as

fur8,uu8,p8,r8,T8g

= ResAfûrsrd,ûusrd,p̂srd,r̂srd,T̂srdgeismu−vtdd, s7d

where m is the azimuthal wavenumber,v is the complex
frequencyv=vr + is, and A is the amplitude of the eigen-
mode. A Lamb–Oseen vortex with a heavy internal coress
.0d is generically unstable to RT instabilities. The involved
physical mechanims are incompressible and inviscid. In the
following, we therefore choose a low value for the Mach
number and a high value for the Reynolds number. More
precisely, the case investigated in this Letter corresponds to
b=0.3, s=0.2, M=0.1, g=1.4, R=10 000, andP=0.7. It
appears that the most unstable eigenmode in this situation
corresponds to anm=3 eigenmode withss=0.20,vr =2.82d.
The associated eigenfunctionsr̂srd, ûrsrd and ûusrd are rep-
resented in Fig. 1. For the initialization of the simulation, the
amplitudeA of the eigenmode in Eq.s7d is adjusted so as to
have maxhr8j=0.02maxhRj.

The computational domain is represented in Fig. 2. Its
dimensions are: −30øx, yø30. The grid is uniform in the
domain −3øx, yø3 and is stretched using a monotonic tanh
law up to the boundaries. The mesh hasNx=681 andNy

=681 points. The density peak is described with 30 points
and the core of the vortex with 100 points.10 The time step is
Dt=5·10−4, which corresponds to CFL=0.55.

At each time step, we evaluate the mean density and
azimuthal velocity profiles by averaging overu. For instance,

FIG. 1. Modulus of the eigenfunctionsr̂srd, ûrsrd, and ûusrd associated to
the eigenmode characterized byss=0.20,vr =2.82d, m=3, b=0.3, s=0.2,
M=0.1, g=1.4,R=10 000, andP=0.7.

FIG. 2. Computational domain and grid mesh.

FIG. 3. Evolution ofsad r̄sr ,td and sbd ūusr ,td as a function of the radiusr for t=0.157;t=10.969;t=14.103;t=20.37;t=34.47.
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r̄sr ,td=s1/2pde0
2prsr ,u ,tddu. Figures 3sad and 3sbd repre-

sent these two quantities, i.e.,r̄sr ,td andūusr ,td as functions
of the radiusr at various timest. We can see that the Gauss-
ian density peak collapses as time evolves while the azi-
muthal velocity field of the vortex remains nearly un-
changed. Hence, as the instability develops, the nonlinear
interactions destroy the density peak of the mean flow, which
renders the flow stable to RT instabilities.

The density fluctuations are then evaluated following
r8sr ,u ,td=rsr ,u ,td− r̄sr ,td. The overall amplitude of the
perturbation may be obtained from an integral over the cal-
culation box of the square of the density fluctuations:
r82std=e0

`e0
2pfr8sr ,u ,tdg2rdrdu. Figure 4 shows this quantity

as a function of timet. Its growth rate may be compared to

the amplification rate obtained from the linear stability
analysis. Agreement is very good in the linear phase, i.e., up
to t.5. Then, the mean amplitude of the perturbation satu-
rates att.10 before decreasing slowly with time. Fort
.20, as shown before, the density peak of the mean flow
collapses as time evolves. Hence, the driving force of the
instability vanishes which induces the loss of the perturba-
tion source. The density fluctuations therefore die out and the
vortex flow becomes laminar.

Figure 5 shows the density fluctuationsr8sr ,u ,td ob-
tained atsx=0.289,y=0d as a function of timet. In the linear
regime, i.e., fortø5, the signal exhibits a time period equal
to Dt=2.2. This value is compatible with the linear stability

FIG. 4. Amplitude of the perturbationr82std as a function of timet. FIG. 5. Density fluctuationsr8sr ,u ,td at sx=0.289,y=0d as a function of
time t.

FIG. 6. sColord. Densityrsr ,u ,td at different times:sad t=0.157;sbd t=10.969;scd t=20.37;sdd t=34.47.
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analysis which predicts a time period equal toDt=2p /vr

=2.2. In the nonlinear regime, the signal becomes more
abrupt and decreases in amplitude.

Figure 6 presents density isovalues at four distinct times.
In Fig. 6sad, the RT instability starts growing linearly. In Fig.
6sbd, we enter the nonlinear regime: the flow exhibits the
mushroom-like patterns characteristic of the nonlinear devel-
opment of the RT instability.11 In Fig. 6scd, which corre-
sponds to the late stage development of the instability, we
observe nonstandard features. Usually, i.e., in the case of
standard nonhomogeneous flows with gravity, the RT
mushroom-like patterns just continue to spread while new
secondary instabilities complexify the overall flow structure.
In the case of a vortex with a heavy internal core, the
mushroom-like patterns are strongly stretched in the azi-
muthal direction and subject to filamentation.These differ-
ences are due to the azimuthal velocity of the vortex which is
not present in the standard case. Comparing Fig. 6sbd to Fig.
6scd, it can also be observed that the intensity of the pertur-
bations decreases with time. As shown in Fig. 6sdd, a com-
plex lamellar structure is finally obtained in the vortex core.

To conclude, we have performed a 2D DNS of the RT
instability which develops in a vortex with a heavy internal
core. The results show that after a phase of linear growth, the
amplitude of the perturbation saturates and finally decreases.
The nonlinear interactions destroy the density peak of the
mean flow, which is precisely the driving force of the insta-
bility. Hence, the mean flow becomes stable to RT instabili-
ties, which leads to the loss of the perturbation source. Also,
in the late stage development of the nonlinear regime, we
have shown that the azimuthal velocity of the vortex vio-
lently stretches the perturbations in the azimuthal direction

leading to a strong radial filamentation of the flow. Hence,
the nonlinear evolution of the RT instabilities obtained here
is radically different from the standard case of RT instabili-
ties developing in a planar nonhomogeneous flow in the
presence of gravity. This shows that differential rotation may
deeply affect the development of RT instabilities. Consider-
ing practical applications, the potential of density effects on
the momentum diffusion of a vortex is poor. But, the mecha-
nisms described above also show that one obtains very effi-
cient mixing which remains localized within the vortex core.
These properties may have interesting applications in the
field of mixing and combustion.
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