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A mechanism for promoting the Crow instability in a counter-rotating vortex pair is presented within
the framework of linear dynamics. It consists of �i� the creation of a periodic array of vortex rings
along the length of the vortices by stretching of vorticity at the leading hyperbolic point of the
dipole, and �ii� the deformation of the vortices by the vortex rings leading to the Crow instability.
A reduction of the characteristic time of the Crow instability by a factor of roughly 2 can be obtained
by this mechanism. © 2007 American Institute of Physics. �DOI: 10.1063/1.2793146�

Vortex hazard caused by aircraft trailing vortices has
gained much attention during the past decades with the ad-
vent of jumbo jets. In certain situations, vortex wakes col-
lapse through a chain process including deformation of co-
lumnar vortices by the Crow instability, vortex linking, and
turbulence.1 One way to alleviate vortex hazard is to accel-
erate the process by exciting the intrinsic instabilities of the
wake. This is the idea developed in this article, in which we
optimize the energy of the Crow perturbation by means of an
appropriate initial perturbation. The growth rate of the Crow
instability was first derived by Crow.2 Vortices of the pair
deform by mutual induction and oscillate in a plane inclined
at approximately 45° about the horizontal. The oscillations
grow exponentially in amplitude until the point when the two
vortices touch, leading to final collapse. Several studies such
as that of Crow and Bate3 showed that exciting the vortex
pair at the wavelength of the mutual induction instability
could be efficient in accelerating the chain process. Other
studies such as those of Crouch4 and Fabre, Jacquin, and
Loof5 showed by a vortex filament method that systems of
four vortices exhibit much larger amplification rates than the
Crow instability. While these previous studies arbitrarily
specify the structure of the perturbation as vortex filaments,
in this article we use a global stability method based on a
finite-element discretization with a high number of degrees
of freedom that presupposes no particular shape for the ini-
tial perturbation. In the case of a single Lamb-Oseen vortex,
Antkowiak and Brancher6 and Pradeep and Hussain7 have
already reported that the optimal perturbation takes the form
of spirals of vorticity outside the vortex core, which suggests
that a similar mechanism of amplification can be expected in
the case of the dipole as far as the two vortices are not too
close to each other. Yet this suggestion is partially hindered
by the presence of two hyperbolic stagnation points �hereaf-
ter simply referred to as hyperbolic points, “hyperbolic”
standing for the hyperbolicity of the streamlines in the vicin-
ity of these points, see Fig. 1� in the flow that are also
known8 to behave as energy amplifiers. The main objective
of the study is to understand the roles that these two dynam-
ics �that of the vortex and that of the hyperbolic point� play
in the optimal amplification of the Crow instability.

Base flow. The basic flow is a two-dimensional pair of
counter-rotating vortices symmetric with respect to x=0,

which may9 be characterized by the aspect ratio a /b of the
dipole �see Fig. 1�. Cartesian coordinates �x ,y ,z� are used
throughout the study. Let us define S the computational do-
main, �S the far-field boundaries, and S+=S�x�0� the right
domain. These definitions allow us to define a as the radius
of the vortices by �a2=��S+�z�x−xC�2dS with xC= �xC ,yC�
=1 /���S+�zxdS the center of the right vortex, �=��S

+�zdS
its circulation, b=2xC the distance between the vortex cen-
ters, and �z the axial basic vorticity. We consider a dipole at
a /b=0.2 obtained by a two-dimensional direct numerical
simulation �DNS� started with an initial dipole characterized
by a /b�t=0�=0.1 and composed of two Lamb-Oseen vorti-
ces. This procedure produces a dipole that is a solution of the
2D incompressible steady Navier-Stokes equations �which is
not the case initially� in the reference frame attached to the
dipole �the pair drifts at a velocity of approximately 2�b /�
under mutual velocity induction�. The computational domain
is S+ and a symmetry boundary condition is used at the sym-
metry plane of the dipole to account for the left vortex.
Streamlines of the flow are drawn in Fig. 1. During the simu-
lation, the two vortices basically diffuse under the effect of
viscosity with a viscous time scale T�=2�a2 /� and adapt
under the strain mutually induced by one vortex onto the
other. The time scale T3D=2�b2 /� of the three-dimensional
perturbations is much smaller than T�, as T� /T3D=Re�a /b�2

and Re=� /�=3600. The base flow can consequently be con-
sidered as quasisteady for the forthcoming stability analysis.
We note �U , P� the basic state �where U= �U ,V ,0��, which is
assumed homogeneous in the axial direction z. In the follow-
ing, T3D and b are used as reference time and length scales.
Time t=1 is the time needed to have order 1 deformation of
the vortices by the Crow instability.

Stability theory. In order to study the linear behavior of
the dipole, we superimpose a small disturbance q= �u , p�,
where u= �u ,v ,w� onto the background flow �U , P�. Consid-
ering a Fourier decomposition of the form q�x ,y , t�
= �ũ , ṽ , iw̃ , p̃��x ,y , t�eikz+c.c., where k is the axial wavenum-
ber, the evolution of q̃= �ũ , ṽ , w̃ , p̃� is given by the initial
value problem �1� derived from the incompressible Navier-
Stokes equations linearized about the basic state �U , P�.

B�tq̃ = Aq̃, q̃�t = 0� = q̃0, q̃��S� = 0, �1�
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A =�
− �xU − C + V − �yU 0 − �x

− �xV − �yV − C + V 0 − �y

0 0 − C + V − k

�x �y − k 0
	 .

�2�

We noted C=U�x+V�y the convection of the perturbation by
the base flow, V=2� /Re��xx+�yy −k2� the viscous term, and
B=diag�1,1 ,1 ,0�. If we consider a normal mode decompo-
sition of the form q̃�x ,y , t�= q̂�x ,y�e�t with �=�R+ i�I a
complex number, the equation yields the eigenproblem

Aq̂ = �Bq̂, q̂��S� = 0. �3�

The eigenmodes q̂ of the eigenproblem �3� are called direct
modes. An adjoint problem can similarly be defined with a
continuous adjoint operator A+ given by the relation
�q̃1 ,Aq̃2�= �A+q̃1 , q̃2� whatever q̃1,2 where the scalar product
is given by �q̃1 , q̃2�=��Sq̃1

* · q̃2dS and where * denotes the
conjugate. The eigenmodes q̂+ of A+, called the adjoint
modes, are solution of a generalized eigenproblem similar to
�3� given by

A+q̂+ = �+Bq̂+, q̂��S�
+ = 0, �4�

A+ =�
− �xU + C + V − �xV 0 �x

− �yU − �yV + C + V 0 �y

0 0 C + V k

�x �y − k 0
	 . �5�

In comparison to the direct problem described by A, the con-
vection in A+ is reversed and the off-diagonal terms −�xV and
−�yU are exchanged. Any direct mode has a corresponding
adjoint mode and their eigenvalues are conjugate to each
other.

A finite-element method with P2 space discretization for
the velocity and P1 for the pressure is used to discretize the

sparse matrices A, A+, and B �size 5�105�. Problems �3� and
�4� are then solved by an Arnoldi method based on a shift
and invert strategy �ARPACK package�. The matrix inverse is
solved thanks to a direct sparse LU solver �UMFPACK pack-
age�. Once calculated, the direct and adjoint eigenmodes are
normalized so that �q̂i ,Bq̂i�=1, �q̂i

+ ,Bq̂i�=1, and the bi-
orthogonality condition �q̂i

+ ,Bq̂ j�=0 if i� j is verified.
Energy gain. The dynamics of �1� will always be driven

by the most unstable direct eigenmode at large time. It can be
shown �see Schmid and Henningson11� that a specific initial-
ization that consists in the adjoint mode q̂max

+ of the most
unstable direct mode q̂max will yield the perturbation with the
maximum energy at large time. Defining the energy gain of a
perturbation q̃�t� by

G�t� = �q̃�t��2/�q̃�0��2, �6�

where the norm �·� is based on the scalar product �· ,B · �, it
may be shown that the maximum energy gain is Gmax�t�
= �q̂max

+ �2e2�maxt obtained for q̃�0�= q̂max
+ . The non-normal

gain �q̂max
+ �2 is the increase in amplification achieved by an

initialization with the adjoint mode compared to an initial-
ization with the direct mode.

Figure 2 reports the variation of the growth rate and the
non-normal gain of the Crow instability with the wavenum-
ber k. The most unstable Crow mode occurs for k=0.9. The
related direct mode is depicted on the right side of Fig. 1 and
the adjoint on the left side �the reason for showing �̂x will be
apparent later�. The numerical code is validated against the
theoretical inviscid growth rate given by Crow2 and
Saffman.10 To our knowledge, this is the first time the growth
rate of Crow has been calculated so successfully by a global
method.

According to Fig. 2, the non-normal gain is greater as
the growth rate is smaller. The minimum, which equals 36, is
reached for the most unstable mode at k=0.9. This means
that disturbing the dipole with the adjoint of the most un-
stable Crow mode gives an amplification 36 times greater at
large time than a modal disturbance by the direct mode. The
potential acceleration of the Crow instability related to this
gain amounts to an interesting log�36� / �2�max�
2.5 time
units. This non-normal gain can even be higher, i.e., 103 to
104 if the disturbance is chosen at a wavenumber k corre-

FIG. 1. Streamlines of the basic counter-rotating vortex pair �arrows indi-
cate the direction of the flow�. Right side: disturbance �̃z of the Crow mode
at k=0.9. Left side: disturbance �̃x of the adjoint of the Crow mode. �z is
odd and �̃x is even about the symmetry plane of the dipole. Note that the
figure has been enlarged in the x direction for clarity.

FIG. 2. Computed �filled points� growth rate �R of the Crow instability as a
function of the axial wavenumber compared to the theory of Crow �line�.
Empty squares show the non-normal gain �q̂max

+ �2. Note that the Crow eigen-
modes are nonoscillating ��I=0�. Re=3600, a /b=0.2.
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sponding to lower growth rates. The influences of the Rey-
nolds number and of the aspect ratio a /b of the dipole on the
non-normal gain were also explored. Note that �q̂max

+ �2 in-
creases slowly with Re ��q̂max

+ �2=44 for Re=9000� and de-
creases slowly with a /b ��q̂max

+ �2=53 for a /b=0.17�. These
results clearly state the high potential of the adjoint
approach.

Linearized simulations. The sole value of the non-
normal gain is not enough to conclude on the efficiency of
the adjoint disturbance as the time needed to reach it is not
known. Therefore, linearized simulations solving the prob-
lem �1� in time were launched with the different initializa-
tions evoked earlier �the legend refers to Fig. 3�: the direct
mode at k=0.9 �long dash�, the adjoint mode at k=0.9 �thick
solid�, the adjoint at k=0.2 �short dash�, and the adjoint at
k=1.4 �dot� �note that the remaining curve is discussed at the
end of the paper�. The previously described finite-element
method is used with a time discretization carried out by a
second-order Lagrange-Galerkin method.

In Fig. 3, we see that the curve of the adjoint mode at
k=0.9 reaches an asymptote parallel to the modal growth �a
straight line in the log scale�. This shows that after t=1.5, the
adjoint perturbation has reached the direct modal structure
and is amplified accordingly. The associated increase of am-
plification amounts to 36 as predicted by the non-normal
gain, while in terms of time difference the value 2.5 obtained
earlier is approximately recovered. This implies that once the
transient period of amplification t=1.5 is over, the distur-
bance of the dipole by the adjoint perturbation provides an
amplitude perturbation identical to that of the natural Crow
instability on a time scale reduced by 2.5. Sparlart1 and Crow
and Bate3 note a time period of 5 to 6 for the lifespan of
trailing vortices. This means that a reduction of 2.5 shrinks
by almost half this characteristic lifespan, which could be of
great interest for the aeronautical industry. Energy amplifica-
tion corresponding to initial perturbation by the adjoint
modes at k=0.2 and 1.4 does not exhibit the expected strong
energy gains quick enough, i.e., the transient period is
greater than t=5. This renders these cases useless and justi-
fies that we only focus on the case k=0.9 of the most un-
stable Crow mode.

Optimal mechanism. Figure 4 shows the steps leading to

the optimal amplification of the Crow instability. The mecha-
nism basically consists in amplification of �̃x at the leading
hyperbolic point region �upper row, a-c� followed by the in-
duction of the Crow instability in the vortex cores �lower
row, c-d�. As shown by Lagnado et al.,8 transient energy
growth at hyperbolic points occurs for initial vorticity paral-
lel to the stretching direction. Indeed, at the leading hyper-
bolic point �Fig. 1�, the equation for vorticity perturbation
reduces to

�t�̃x = 	�̃x + 2�/Re
�̃x, �7�

�t�̃y = − 	�̃y + 2�/Re
�̃y , �8�

�t�̃z = 2�/Re
�̃z, �9�

where 	=�xU=−�yV� +1.7 is the strain rate in the vicinity
of the hyperbolic point. As a result, the initial perturbation
with �̃x experiences a strong amplification as it passes in the
vicinity of the leading hyperbolic point due to the stretching
along the outflow streamline.

As the streamline bends up, �̃x is tilted �b� leading to the
formation of �̃y. Together �̃x and �̃y form a partial vortex
ring around the dipole �c�. This vortex ring creates axial and
radial velocities within the dipole by the Biot Savart law and
eventually induces axial vorticity in the regions where �z is
strong thanks to the production terms in the linearized equa-
tion of �̃z

�10�

As in the case of a single vortex,6,7 the previous description
of the optimal mechanism suggests that bending modes of
the vortices are optimally induced by vortex rings that par-
tially circle the rotational flow. Following this idea, the ques-
tion of the optimal perturbation reduces to the question of

FIG. 3. Comparison between modal energy growth at k=0.9 �long dash�,
adjoint energy growth at k=0.9 �thick solid�, energy growth induced by a
perturbation �thin solid� containing �̃x on the symmetry axis, and most un-
stable perturbations at k=0.2 �short dash� and k=1.4 �dot�. Re=3600,
a /b=0.2. FIG. 4. Streamlines of the base flow and contours of perturbation vorticity

through time evolution of the adjoint Crow mode ��a�–�c�:
t=0.046;0.41;0.94� at k=0.9. Column d represents the final Crow mode
��a�–�c� contour and �d� contour levels are different�. Contours �a�–�d� of �̃z

are 10 times smaller than those of �̃x and �̃y to allow the use of the same
contour levels. Re=3600, a /b=0.2.
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how to optimally produce such partial vortex rings. While in
the case of the single vortex it is the unrolling6,7 of the spirals
of vorticity around the vortex that forms them, in the case of
the dipole, it is the leading hyperbolic point that plays that
role. The results of these two configurations �dipole and
single vortex� tend to suggest that the way to optimally dis-
turb any compact distribution of vorticity is to create one or
several partial vortex rings around it. Such a generalization
could be investigated in a future study.

A question arises about the lack of a role for the trailing
hyperbolic point. If it were to play a role, it would need an
initial �̃y distribution located at its inflow streamline that
would then be amplified along x=0 between the two vorti-
ces. But due to the symmetry of the perturbation, it appears
that only the leading hyperbolic point can be efficiently used
for vorticity stretching. Indeed, nonzero �̃x can be located on
the stretching line of the leading hyperbolic point whereas �̃y

being antisymmetric is zero on the stretching line of the trail-
ing hyperbolic point. Moreover, because of the resultant di-
polar distribution of �̃y, only a weak velocity induction in
the vortex core could take place, which would induce the
Crow instability less efficiently.

Optimal forcing. While defining a practical method to
trigger this amplification in real flows is beyond the scope of
this article, it is still interesting to study theoretically the
effect of control devices or background turbulence by mod-
eling them by forces in the linearized equations. Solving an
initial value problem initialized by q̃0= �ũ0 , p̃0� is equivalent
to applying a force F̃��t� �� is the Dirac function� to a
flow field at rest.10 Integrating the equation for the perturba-
tion vorticity �̃ over an infinitesimal time interval leads to
�̃0=�� F̃. The initial velocity field corresponding to the
initial forcing is thus given by ũ0= F̃+�h̃, where h̃ satisfies a
Poisson equation � · F̃=−
h̃ �with homogeneous Dirichlet

boundary conditions on �S and a Neumann boundary condi-
tion on the symmetry plane� as � · ũ0=0. An initial perturba-
tion can hence be interpreted in terms of a force acting ini-
tially in the momentum equation. As a result, the optimal
perturbation is also to be interpreted as the optimal force
for destabilizing the dipole. The control needed to have �̃x at
the central plane of the dipole can consist in applying a ver-
tical force F̃= �0, f̃ y ,0� at the same location. This leads to
�̃0= �−kf̃y ,0 ,�x f̃ y� as desired �no �̃y�. We chose an analytical
expression for F̃ with f̃ y = �1+cos�x /ax���1+cos�y−y0� /ay�
for �x���ax and �y−y0���ay �y0, ax, and ay, which control
the location and the form of the distribution, are y0=−0.8,
ax=0.05, and ay =0.7 for k=0.9� and zero everywhere else,
as shown in Fig. 5. The corresponding initial velocity field ũ0

is obtained by solving the preceding Poisson equation. Only
2% of the energy contained in F̃ is lost in the projection
process as �ũ0� / �F̃�=0.98 ��F̃�=�S� f̃ x

2+ f̃ y
2+ f̃ z

2�dS�. Figure 3
shows the gain in energy obtained by this forcing �thin solid
line� and it is clear that the amplification, though not optimal,
is significant. A similar perturbation with initial �̃y and �̃z

and no �̃x �generated by f̃ x instead of f̃ y� leads to no non-
normal gain �not shown here�. This confirms the physical
mechanism involving �̃x as a necessary ingredient for opti-
mal destabilization of the dipole and the fact that it is pos-
sible to create this quasi-optimal perturbation with a force
having a simple distribution. These results clearly open new
perspectives and challenges for controlling vortex pairs in
real flows.
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