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Rusak and Meder �AIAA J. 42, 2284 �2004�� recently studied the behavior of a near-critical swirling
flow in a weakly contracting duct. We investigate the particular inflow condition consisting of plug
axial flow with solid body rotation, and introduce a new perturbation expansion specifically suited
to that case. We show that the wall recirculation occurring in the exit plane as a result of the
nonlinear excitation of the critical wave by the weak contraction is more accurately predicted. We
also compute the near-critical flow for strong contractions and show that wall recirculations trapped
inside the duct are obtained instead. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2773767�

Swirling flows are characterized by a critical state that
distinguishes between supercritical and subcritical states,
similar to supersonic and subsonic states of compressible
flows or to torrential and fluvial states of free surface flows.
In supercritical flows, infinitesimal axisymmetric inertial
waves only propagate downstream, whereas in subcritical
flows they may propagate both upstream and downstream
�see, for instance, Gallaire and Chomaz1 for a synthesis�.
Subcritical flows are, moreover, characterized by their ability
to sustain standing waves. In the critical regime, swirling
flows have also been shown to respond nonlinearly to exter-
nal perturbations. In a steady framework, Rusak and Meder,2

for instance, recently explored the behavior of a near-critical
swirling flow in a weakly contracting duct of finite length,
via a weakly nonlinear analysis. They showed that the exci-
tation of the critical wave by the duct contraction resulted in
a flow with a wall deceleration in the exit plane. Upon ap-
plying their weakly nonlinear formalism in a range of param-
eters where the obtained perturbation becomes of order unity,
they found flows with a recirculation at the exit plane wall.

We focus in this article on the particular inflow condition
of plug axial flow with solid body rotation, which has re-
ceived much attention in general theoretical analyses on
swirling flows.1,3–6 Our purpose is twofold. Considering first
the case of a weak duct contraction, we introduce a new
perturbation expansion exploiting the formal simplicity asso-
ciated with this inflow condition, adapted from the unsteady
analysis of Grimshaw and Yi.3 This formalism allows to ob-
tain flows with an incipient recirculation within the limit of
validity of the expansion, and provides a more precise char-
acterization thereof. We then investigate numerically the
flow in a duct with a strong contraction, for which to this day
only the velocity profiles in the exit plane have been
characterized,4 and discuss physically the differences that are
observed with the case of the weak contraction.

We use cylindrical coordinates �r ,� ,z�, where r is the
radius, � the circumferential angle, and z the axial distance,

and the velocity components �u ,v ,w� correspond, respec-
tively, to the radial, azimuthal, and axial velocities. The
steady axisymmetric incompressible motion of an inviscid
fluid is more conveniently described by the axisymmetric
stream function �, which is linked to the velocity via
u=−�1/r��� /�z and w= �1/r��� /�r. It is governed by a
single equation, called Bragg-Hawthorne or Squire-Long
equation �see, for instance, Batchelor4 for its derivation�:

��zz + �rr −
�r

r
� = r2H���� − KK���� . �1�

Here, H= p /�+ �u2+v2+w2� /2 �where p and � stand for the
pressure and density of the flow� and K=rv, respectively,
denote the total head and the circulation, which only depend
on � from the assumption of steady inviscid fluid.

We study the flow in a circular duct of finite length L and
of varying radius R�z�. Note that in this study, the lengths are
made dimensionless by use of the inlet radius R�0�, and the
velocities by use of the inlet axial velocity. An adapted set of
boundary conditions to be prescribed at the duct ends, axis,
and wall reads7–9

��r,0� = �0�r� = r2/2, 0 � r � 1,

K�r,0� = K0�r� = �r2/2, 0 � r � 1,

�zz�r,0� = 0, 0 � r � 1,

�z�r,L� = 0, 0 � r � R�L� ,

��0,z� = 0, ��R�z�,z� = 1/2, 0 � z � L .

�2�

The inflow condition of plug axial flow with solid body ro-
tation is imposed by �0�r�=r2 /2 and K0�r�=�r2 /2; thus, the
swirl number � is equal to twice the ratio between the maxi-
mum azimuthal velocity and the axial velocity at the inlet. It
is also worthwhile noting that conditions K�r ,0�=K0�r�
=�r2 /2 and �zz�r ,0�=0 ensure that functions H��� and K���
are fixed by their respective values at the inlet �see, e.g.,
Buntine and Saffman8�. As a consequence, the problem built
by Eq. �1� together with boundary conditions �2� is only
valid under the condition that w�0 everywhere. Flows with
a recirculation or with entrance of fluid at the outlet, fora�Electronic mail: benjamin.leclaire@onera.fr
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which there exists a region where w�0, are excluded from
this analysis. Upon calculating K��� and H��� from their
values at the inlet, Eq. �1� simplifies into4

��zz + �rr −
�r

r
� = �2� r2

2
− �� , �3�

which is indeed linear, although no hypothesis of lineariza-
tion has been done. This feature is really specific to plug
axial flow with solid body rotation. However, the problem
remains nonlinear via the boundary condition at the wall.

Considering first a weak duct contraction �see also
Rusak and Meder2�, we choose R�z�=1−�h�z� with
0���1. Here, h�z� is a positive increasing function such
that h�0�=0 and h�L�=1; thus, 0��=1−R�L��1 is the or-
der of magnitude of the departure of the exit radius from
unity. We also consider values of the swirl with departures
from criticality of the same order of magnitude as the pertur-
bation on the duct radius; that is, �=�c�1+�	�, with 	 a
constant control parameter of order unity. Supercritical �sub-
critical� flows therefore correspond to 	�0 �	�0�.

Since Eq. �3� is linear, the expansion for � can be sought
with a leading-order perturbation of order unity �see, e.g.,
Grimshaw and Yi3�. We therefore set

��r,z� = �0�r� + 
0�r,z� + �
1�r,z� + O��2� , �4�

where �0�r� is the parallel flow �with a corresponding circu-
lation equal to K0�r�� that would be obtained for any � if the
duct were of constant cross section. We term this expansion
strongly nonlinear since 
0�r ,z� is of the same order as the
base flow �0�r�. When injecting the decompositions for R�z�,
� and ��r ,z� in problem �2� and �3�, the equation of motion
becomes


zz
0 + r�
r

0

r
�

r
+ �c

2
0 + ��
zz
1 + r�
r

1

r
�

r
+ �c

2
1

+ 2	�c
2
0� + O��2� = 0. �5�

Among the boundary conditions, only that imposed at the
wall leads to the following nontrivial expression, obtained
via a Taylor expansion:


0�1,z� + ��
1�1,z� − h�z�
r
0�1,z�� + O��2�

= �h�z� + O��2�, 0 � z � L . �6�

Retaining only the terms of order unity, the problem verified
by the critical wave 
0�r ,z� is then obtained:


zz
0 + r�
r

0

r
�

r
+ �c

2
0 = 0,


0�r,0� = 0, 
z
0�r,L� = 0, 0 � r � 1,


0�0,z� = 0, 
0�1,z� = 0, 0 � z � L .

�7�

Since all boundary conditions are homogeneous, this prob-
lem is an eigenvalue problem for �c, whose corresponding
eigenvector is the critical wave 
0�r ,z�. From the studies of
Wang and Rusak,5,9 it can be shown that 
0�r ,z� has to be
sought under the form


0�r,z� = A sin��z

2L
�rJ1�j1,1r� , �8�

where A is a constant amplitude undetermined at leading
order, j1,1 denotes the first nontrivial root of the Bessel func-
tion of order one of the first kind J1, and the so-called critical
swirl in a pipe �c is given by �c

2=�B
2 +�2 / �4L2�. Here, �B

stands for the critical swirl for a parallel flow in a duct of
infinite length determined by Benjamin;10 therefore, �c in-
cludes a contribution of the finite-length effects. For our spe-
cific inlet flow, it is known that �B= j1,1	3.8317.

At order �, the problem for 
1�r ,z� is obtained, with
forcing terms from the order unity appearing in both the
motion equation and the boundary condition at the wall:


zz
1 + r�
r

1

r
�

r
+ �c

2
1 = − 2	�c
2
0,


1�r,0� = 0, 
z
1�r,L� = 0, 0 � r � 1,


1�0,z� = 0, 
1�1,z� = h�z��1 + 
r
0�1,z��, 0 � z � L .

�9�

In particular, the wall boundary condition expresses the con-
servation of mass, which was not enforced at leading order
as seen in problem �7�. Since the left-hand side of the equa-
tion of motion in problem �9� is the same as in problem �7�,
Fredholm’s theorem applies: problem �9� admits a solution
only under the condition that a compatibility condition be
fulfilled. This condition is obtained by multiplying the mo-
tion equation in �9� by 
0�r ,z� /r and integrating on the
whole domain. After some integration by parts, and upon
using Eqs. �7� and the boundary conditions of problem �9�,
one obtains a balance between the forcing terms in the bulk
flow and at the wall:



0

L 
r
0

r
�1,z�
1�1,z�dz = 2	�c

2

0

L 

0

1 
0�r,z�2

r
dr dz . �10�

Upon replacing 
0�r ,z� and 
1�1,z�, one finally gets the
amplitude equation bI2+b2AI3−2A	�c

2I1=0, which yields
the expression for A as a function of 	:

A =
I2b

2	�c
2I1 − b2I3

. �11�

Here, the following notations have been introduced for
clarity:
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b = j1,1J0�j1,1�, I1 = 

0

L 

0

1

sin2��z

2L
�rJ1

2�j1,1r�dr dz ,

I2 = 

0

L

h�z�sin��z

2L
�dz, I3 = 


0

L

h�z�sin2��z

2L
�dz ,

with I1	4.0554�10−2, b	−1.5433, and J0 denoting the
Bessel function of the first kind of order zero. Furthermore,
since h�z��0, one obtains I2�0 and I3�0.

We now seek the value �R of the inlet swirl number at
which a recirculation is obtained, which also coincides with
the limit of validity of the model. To that aim, we consider a
supercritical flow approaching criticality �i.e., with 	�0�. At
order unity, the flow axial velocity is given by w�r ,z�=1
+Aj1,1 sin��z / �2L��J0�j1,1r�. From �11� it is found that
A�0. Besides, sin��z / �2L�� is increasing on the interval
�0,L�, and J0 is decreasing on �0, j1,1� with J0�j1,1��0.
Therefore, the minimum of w�r ,z� is obtained in the exit
plane, at the duct wall. From a Taylor expansion around
r=1, the condition w=0 yields the limit value for A as
Amax=−1/b	0.6480. The present expansion thus shows that
the recirculation is obtained at the exit plane wall, and allows
to derive the following expression of �R as a function of the
exit radius R�L�:

�R = �c − �1 − R�L��
b2�I2 − I3�

2�cI1
. �12�

It is thus confirmed that in the case of plug axial inflow with
solid body rotation, the strongly nonlinear response of the
near-critical flow due to the weak contraction may lead to a
wall recirculation in the exit plane. It should also be empha-
sized here that the obtained resonant flow is intrisically non-
parallel, since even for values of R�L� very close to 1, which
guarantee that �R��z� � �1 for 0�z�L, large axial gradients
are observed.

We now illustrate these results by considering a weakly
contracting duct of length L=1, with a radius defined by
h�z�=0.5�1−cos��z /L�� and �=1−R�L�=0.1. Such values

lead to I2	0.4244 and I3=0.375. Figure 1 compares the val-
ues of the wall axial velocity in the exit plane as a function
of �−�c given by the present strongly nonlinear expansion
�SNLE�, together with the values obtained with the weakly
nonlinear expansion �WNLE� of Rusak and Meder2 and the
numerical solution of Eq. �3� with boundary conditions �2�.
This solution was obtained with a Chebyshev collocation
method using a curvilinear coordinate transformation map-
ping the duct geometry into a square computational domain.
As expected, since the SNLE takes into account a perturba-
tion of order unity which is necessary for dealing with van-
ishing axial velocities, it fits more accurately to the numeri-
cal solution than the WNLE, in particular in the vicinity of
the limit value �−�c=�R−�c. As ��−�c� increases, the
SNLE progressively shifts from the numerical solution since
the hypothesis of near-critical flow progressively becomes
invalid.

We now investigate the flow behavior for decreasing val-
ues of R�L�; i.e., increasing values of �. Figure 2 plots the
values of �R−�c obtained with the numerical simulation for
two ducts of lengths L=1 and L=5, as a function of R�L�.
Corresponding values predicted by the SNLE �Eq. �12�� are
also plotted for comparison for R�L� close to unity. As above,
a very good agreement is found in this region. However,
when the contraction is strong enough so that finite values of
� are reached �R�L��0.77 for L=1 and R�L��0.92 for
L=5, see the shaded rectangles in Fig. 2�, the numerical re-
sults show that a new behavior sets in, since then the recir-
culation appearing at �R is not observed in the exit plane, but
inside the duct. As R�L� further decreases from these values,
the location of this trapped recirculation is observed to pro-
gressively shift upstream in the duct. Note that we did not

FIG. 1. Axial velocity w�R�L� ,L� at the exit plane wall of a weakly con-
tracting duct with L=1, R�L�=0.9 ��=0.1�. Comparison of the present
strongly nonlinear expansion �SNLE� with the weakly nonlinear expansion
�WNLE� of Rusak and Meder �Ref. 2� and with the numerical solution.

FIG. 2. Value of �R−�c ��R being the swirl at which a wall recirculation is
obtained� as a function of the exit duct radius R�L�, for L=1 and L=5.
Comparison between the SNLE �valid in the vicinity of R�L�=1� and the
numerical solution. In the shaded region, the recirculation is obtained for
z�L, inside the duct.
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plot the values of �R−�c given by the SNLE in the shaded
zones of Fig. 2. As a matter of fact, extending the results of
the SNLE to this range of R�L� still leads to flows with a wall
recirculation in the exit plane �as shown above in the deriva-
tion of �12��, whereas this is no longer the case.

The reason for this difference between weak and strong
contractions is that for a sufficiently strong contraction, the
flow does not remain near-critical in the whole duct, as was
implicitly the case when deriving the SNLE. Considering
such a strong contraction, this may be justified by analyzing
the evolution with z of the local swirl number

S�z�=2v�R�z� ,z� /W̄�z�, where v�R�z� ,z� and W̄�z�
=2/R2�z��0

R�z�rw�r ,z�dr respectively denote the wall azi-
muthal velocity and the mean axial velocity built from the
volume flow rate at the considered axial location z. Note that
such a definition leads to S�0�=�. Using the conservation of

mass and of circulation one gets W̄�z�=1/R2�z� and
v�R�z� ,z�=� / �2R�z��, so that S�z�=�R�z�. Consequently, if
R�L� is sufficiently small, a flow that is initially near-critical
at the inlet is forced back to a supercritical state in the most
downstream part of the nozzle; say, between some abscissa
z=z0 and the exit plane z=L. Since the wave excitation re-
sponsible for the wall deceleration occurs only in the near-
critical regime, the recirculation is then bound to be trapped
in the interval 0�z�z0.

To further justify this reasoning, we compare the numeri-
cally simulated flow in a situation of incipient trapped recir-
culation with the formulas of Batchelor4 �Eqs. �7.5.22� and

�7.5.23�, p. 548�. These formulas stem from an assumption of
parallel flow and therefore provide an accurate approxima-
tion wherever the flow is locally supercritical and far from
the critical regime, and the geometry has moderate axial gra-
dients ��R��z� � �1�. Considering such a geometry �here with
L=5 and R�L�=0.5�, we therefore use this comparison as a
diagnosis of the local nearness of the flow to criticality. This
is done in Fig. 3, which plots the wall axial velocities ob-
tained for �−�c=�R−�c=0.0594. The parallel approxima-
tion is seen to be valid for z0	2.0�z�L. In this zone, the
flow has therefore returned to supercritical �note that one has
R�z��0.83 there� and is locally determined by the value of
R�z�. The recirculation occurs at z	1.69�z0, in a zone
where the formulas of Batchelor are seen to diverge. Thus, it
is indeed confined in the zone of near-critical flow, where the
contraction is still weak enough to trigger a nonlinear re-
sponse of the flow. Incidentally, our analysis also shows that
the formulas of Batchelor, when used to characterize the flow
downstream of a contraction, may be applied for increasing
� only until the near-critical regime is reached at the inlet, as
the trapped recirculation then invalidates Eq. �3� for larger
values of �.

Since the trapped wall recirculation obtained from our
analysis was found by subjecting a near-critical inflow to a
sufficiently large contraction, it is expected that it will also
be encountered for other types of inflow. Besides, it would be
of foremost importance to investigate if this phenomenon
results in boundary layer separation when the viscosity and a
no-slip condition at the wall are taken into account. Work is
in progress along these lines.
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mation of Batchelor �Ref. 4�.
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