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The effect of compressibility on the criticality of swirling subsonic flows is investigated. This study
extends previous works by Rusak and Lee �J. Fluid Mech. 461, 301 �2002�; 501, 25 �2004�� on the
critical swirl of subsonic vortex flows in a circular straight pipe. We derive an asymptotic solution
in the case of an isothermal plug-flow with solid-body rotation. In the limit of low Mach number
M0�1, it is shown that the critical swirl increases with M0 as Sc�Sc,0 / �1−M0

2�1/2, where Sc,0 is the
critical swirl of the incompressible flow. This result still holds when varying the thermodynamic
properties of the flow or when considering different vortex models as the Batchelor vortex.
Physically, compressibility is found to slow down phase and group velocities of axisymmetric
Kelvin waves, thus decreasing the rotation contribution to flow criticality. It is shown that
compressibility damps the stretching mechanism which contributes to the wave propagation in the
incompressible limit. © 2007 American Institute of Physics. �DOI: 10.1063/1.2427090�

Under certain circumstances, vortex flows are known to
undergo a brutal disorganization, the so-called vortex break-
down. Its study is relevant to many engineering applications
such as aircrafts, tornadoes, and combustion chambers.
Among theoretical analyses, the critical-state theory of
Benjamin1 relates the occurrence of axisymmetric vortex
breakdown to the existence of infinitely long standing axi-
symmetric waves on the vortex. Such waves are relevant to
infinitely long straight pipes or long pipes with periodic inlet
and outlet conditions. A supercritical vortex supports only
downstream propagating inertial waves, whereas upstream
and downstream propagating waves may exist in a subcriti-
cal vortex. The transition between both states may appear at
a critical swirl S=Sc, where S compares rotation with advec-
tion �see below�. Rusak and Lee2 extended this concept to
compressible pipe flows and derived a general equation
which defines the critical swirl for given velocity and ther-
modynamic fields. By applying these results to isothermal
solid-body rotation and Batchelor vortices,3 they numerically
showed that Sc is an increasing function of the Mach number.
The first objective of this Brief Communication is to give an
analytical expression of the criticality conditions as a func-
tion of the Mach number. Then, we will show that the study
of the inertial Kelvin waves provides a physical interpreta-
tion of the phenomenon. Finally, results are compared with
different models of thermodynamic field and velocity distri-
butions.

Linear stability formulation: Let us consider a compress-
ible swirling flow characterized by its velocity u, pressure p,
density �, and temperature T. In the following, we choose the
value w0 of the axial velocity on the axis of the flow as the
reference velocity scale of the problem, and the characteristic
transverse length scale Rc of the flow as the reference length
scale. Pressure, density and temperature are made nondimen-
sional by using the values p0, �0, and T0 of the swirling flow
on its axis. The swirl parameter S=v0 /w0 which compares
the intensity of rotation to that of advection is defined as the
ratio between v0, which is the maximum value of the ortho-
radial swirling velocity, and w0.

The flow is assumed to be axisymmetric and governed
by the compressible Euler equations �in a nondimensional
form�:

dt� + � � · u = 0, �dtu + �p/��M0
2� = 0, dts = 0, �1�

where M0=w0 / ��p0 /�0�1/2. Here, dt represents the material
derivative and u= �u ,v ,w� denotes the velocity vector ex-
pressed in a cylindrical frame �r ,� ,z�, where the z axis cor-
responds to the vortex centerline and the r axis to its radius.
The fluid is a perfect gas for which thermodynamic proper-
ties are related by the state equation p=�T. The specific heat
ratio is �=Cp /Cv=1.4 and s=ln�p1/� /�� denotes the entropy.

The present study is based on a small perturbation tech-
nique. Each quantity is considered as the superposition of a
basic state and an infinitesimal perturbation q�r ,z , t�=q� �r�
+�q��r ,z , t�, where ��1 is a little parameter. The invariance
of the basic flow under z and t translations allows us to
decompose the fluctuating quantities into normal modes

q�= q̂�r�ei�kz−�t�, where q̂= �û , v̂ , ŵ ,�M0
2�̂ ,�M0

2p̂ ,�M0
2T̂� is

the perturbation amplitude vector and q� = �0,V ,W , �̄ , p̄ , T̄�
denotes the basic flow. The coefficient �M0

2 is introduced to
obtain nondegenerate equations in the limit M0=0. In a tem-
poral study, k denotes the real axial wave number and �
=�r+ i�i is the complex pulsation with �r the frequency and
�i the temporal amplification rate of the disturbance. Upon
substituting the normal mode decomposition into Eqs. �1�
and linearizing them around the basic flow, one obtains the
linearized Euler equations. After elementary manipulations,
it is possible to reduce the system to a single second order
differential equation for the function ��r�= �̄rû.

We first consider a basic flow corresponding to an iso-
thermal plug-flow with solid-body rotation. The nondimen-
sional expressions for the velocity components �V ,W� and
for the thermodynamic quantities read

V = Sr, W = 1, p̄ = �̄ = e�M0
2S2r2/2, T̄ = 1. �2�

In such a case, the equation for � reduces to
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�3�

where c=� /k stands for the phase velocity of the distur-
bance. Different contributions to wave dynamics are identi-
fied in Eq. �3�: the term rotation is the restoring effect of
rotation, the term acoustic represents the acoustic contribu-
tion, whereas terms labelled coupling represent coupling be-
tween rotation and acoustic effects.

Equation �3� along with the boundary conditions ��0�
=��1�=0 constitute an eigenvalue problem either for � in a
temporal stability analysis or for S in a criticality analysis. In
the former approach, for given wave number k and swirl S,
nontrivial solutions � exist only for some values of the pul-
sation �. In the latter approach, stationary solutions of
infinite extent �i.e., c=k=0� may exist only for some values
of S.

Flow criticality: According to Benjamin,1 the long-wave
limit k=0 allows us to distinguish supercritical flows that
cannot support standing waves c=0 from subcritical flows
where standing waves may exist. Upon setting k=c=0 in Eq.
�3�, we obtain

d2�c

dr2 − �r−1 + �M0
2S2r�

d�c

dr

+ �4�1 − M0
2�S2 + �� − 1�M0

2S4r2��c = 0, �4�

with boundary conditions �c�0�=�c�1�=0. The subscript
c refers to critical conditions.1 Equation �4� was first derived
in Ref. 2 with a term for pipe length correction. The solution
of Eq. �4� with the condition �c�0�=0 reads �c�r�
=exp��M0

2S2r2 /4�M�,	�
r2�, where M�,	 represents the
Whittaker function4 with coefficients defined by

� =
− 2i�1 − M0

2�

M0
�4�� − 1� − �2M0

2
; 	 =

1

2
;


 = i
S2M0

�4�� − 1� − �2M0
2

2
.

The dispersion relation is obtained by applying the outer
boundary condition �c�1�=0 to the solution, so the eigenval-
ues are the zeros of the function M�,	�
�. It is convenient
to write the Whittaker function in terms of the confluent
hypergeometric function M: M�,	�x�=e−x/2x	+1/2M�1/2+	
−� ,1+2	 ,x�. In the limit M0�1, it is possible to connect
the solution for �c with Bessel functions of the first kind
Jn by using the formula lima→�M�a ,b ,−x /a� /��b�
=x1−b/2Jb−1�2�x� �see Ref. 4�. One thus obtains the
asymptotic dispersion relation. In the limit M0�1, the
asymptotic critical swirl reads

Sc,as = Sc,0�1 − M0
2�−1/2, �5�

where Sc,0= j1,1 /2 is the critical swirl of the incompressible
plug-flow with solid-body rotation.5 j1,1 denotes the first zero
of J1. Note that expression �5� looks like the Prandtl-Glauert
transformation used to take compressibility into account
when evaluating aerodynamic coefficients in subsonic flows.
Nevertheless, no similarity law was found from Eq. �4� and
Eq. �5� cannot be derived directly.

FIG. 1. Critical swirl as a function of the characteristic Mach number:
numerical results from Ref. 2 �line� compared with the asymptotic predic-
tion �5� �symbols�.

FIG. 2. Three first inertial temporal branches for different Mach numbers
�S=2�. Lines correspond to numerical simulations and symbols correspond
to asymptotic solutions �7�.

FIG. 3. Physical interpretation of the Kelvin wave propagation: the evolu-
tion of the axial vorticity component of the initial perturbations �line�; thick
arrows refer to velocity components.
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The asymptotic results are now compared with a direct
computation of the eigenvalues of Eq. �3�. The numerical
procedure is based on a shooting method and Eq. �3� is in-
tegrated via a classical fourth-order Runge-Kutta scheme.
Figure 1 shows the critical swirl of the flow as a function of
M0. Both results, asymptotic and numerical, are in good
agreement for a wide range of Mach numbers and Eq. �5�
could be useful for engineering applications involving com-
pressible swirling flows. Direct numerical simulations of
pipe flows6 and experiments on delta wings7 also confirm
that axisymmetric breakdown occurrence may be delayed by
compressibility effects.

Normal mode analysis: To give a physical support to our

results, it is necessary to analyze the dynamics of the Kelvin
waves associated with the flow criticality. For that purpose,
the swirl S is now a prescribed parameter and, for a given
wave number k, we look for possible eigenvalues �. If the
same procedure as above is applied to Eq. �3� with boundary
conditions, the following dispersion relation is obtained in
the limit M0�1, with the additional assumption kM0�1:

��k − ��2 − 4S2��M0
2�k − ��2 − k2� − j1,n

2 �k − ��2 = 0, �6�

where j1,n is the nth zero of J1. This relation gives the pul-
sation as a function of k and flow parameters. Four branches
of solutions are readily found:

�n,ac
± �k� = k ±

�j1,n
2 + k2 + 4S2M0

2 + ��j1,n
2 + k2�2 + 8S2M0

2�j1,n
2 + 2S2M0

2 − k2�
�2M0

,

�n,in
± �k� = k ±

�j1,n
2 + k2 + 4S2M0

2 − ��j1,n
2 + k2�2 + 8S2M0

2�j1,n
2 + 2S2M0

2 − k2�
�2M0

. �7�

The two first modes correspond to acoustic waves,
whereas the two other modes correspond to inertial waves.
Each mode is linearly stable ��i=0� and oscillates in the
flow. By setting S=0 or M0=0 in �6�, one recovers the lim-
iting cases of either a subsonic flow without swirl or an in-
compressible solid-body rotation flow respectively. The first
term k in Eq. �7� corresponds to the effect of uniform con-
vection in the basic flow �2� which acts as a Doppler shift on
�. The second term corresponds either to the acoustic or to
the inertial wave modified by compressibility and swirl ef-
fects.

Acoustic branches �n,ac
± are beyond the scope of the

present study. Concerning inertial waves �n,in
± , the smallest

group velocity is obtained for the branch n=1 at k=0, that is

vg,min = �d�1,in
−

dk
�

k=0
= 1 − 2S�4M0

2S2 + j1,1
2 �−1/2. �8�

Hence, for SSc,as, where Sc,as is defined by Eq. �5�, the
group velocity is positive and axisymmetric Kelvin waves
propagate only downstream. At S=Sc,as, a standing wave of
infinite extent may appear. Beyond this swirl value, S
�Sc,as, vg,min0 and some waves propagate upstream. In the
limit M0�1, the critical-state concept1 agrees with the zero
group velocity criterion8 as expected. As a consequence, a
subcritical �vg,min0� incompressible flow may become su-
percritical �vg,min�0� when increasing M0.

Figure 2 displays the three first upper temporal branches
n=1, 2, and 3 of the inertial waves where we compare
asymptotic with numerical results. Only the rotation contri-
bution, i.e., �n,in

± −k, is sketched �the lower branches are sym-
metrical to positive ones with respect to the k axis and are
not shown�. Again, the asymptotic solution is seen to accu-

rately describe the Kelvin waves dynamics. For a fixed k, the
frequency decreases when M0 is increased, this effect being
reduced for slowest branches n=2,3. Consequently, the am-
plitudes of the phase and group velocities decrease with in-
creasing M0. Hence, the increase in critical swirl number Sc

with M0 is attributed to a decrease of the Kelvin wave fre-
quencies. This damping effect reduces the rotation contribu-
tion with respect to the downstream advection by Doppler
shift. Let us now describe the physical mechanism respon-
sible of this frequency reduction.

A physical interpretation: We consider the role of com-
pressibility in the axisymmetric Kelvin waves propagation
mechanism. This mechanism has been described in Ref. 9 in
the case of an incompressible flow.

Since the axial velocity acts only as a Doppler shift on
�, one can set W=0 in Eq. �2� without loss of generality. The
linearized conservation equations of the azimuthal and axial
vorticity fluctuations components read

�t��� = 2S�zv� − �dp̄/dr��zT�/�M0
2�̄2, �9a�

�t�z� = 2S�zw� − 2S � · u�. �9b�

In the incompressible limit, the last terms in Eqs. �9a�
and �9b� vanish. One considers an axial vorticity perturbation
�z�= ��rrv�� /r, with a given wave number k, superimposed
on the basic flow �2� as schematized in Fig. 3. Extrema of v�
and �z� coincide. Axial gradients �zv� lead to the production
of azimuthal vorticity fluctuations ��� via tilting of the basic
flow vorticity in the �z ,�� plane �Eq. �9a��. Having
���=�zu�−�rw�, one gets radial gradients of axial velocity,
which means axial stretching of the basic vorticity when �z�
is minimum and contraction when �z� is maximum �see Fig.
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3�. This restoring mechanism reverses the initial gradient of
�z� �Eq. �9b��, thus leading to the propagation of the
perturbation.9

Then, we consider a low compressible flow M0�1 and
long inertial waves k�1, with c=� /k=O�1� �see Fig. 4�. We
now evaluate the magnitudes of different terms in Eq. �9�.
The last term in Eq. �9a� is a baroclinic contribution and is
invoked in Ref. 10 to account for the increase in critical swirl
with M0. Its order of magnitude is however O�kM0

2� and it
could be neglected with respect to other terms which are
O�k�. The velocity field divergence in Eq. �9b� can be trans-
formed via the continuity equation into � ·u�=−��t��
+ �dr�̄�u�� / �̄. The temporal derivative of the density is
O��M0

2� and appears to be negligible with respect to the
convective term. This term is O�M0

2� to be compared to the
incompressible terms in Eq. �9b� which are O�k�. The con-
vective term is thus the leading compressible effect and must
be retained. Now, as already noted, the perturbation of azi-
muthal vorticity is associated to axial and radial velocities
through ���=�zu�−�rw�. This means that regions where �z� is
maximum or minimum lead to a radial outflow u��0 or
inflow u�0 respectively �see Fig. 4�. We conclude that
compressibility damps the inertial waves propagation mecha-
nism by producing an effect which is opposite to that of the
stretching term in Eq. �9b�.

Discussion: We now briefly discuss the application of
this analysis to different flow fields. First, Table I summa-
rizes some critical swirl values Sc obtained when changing
the thermodynamic properties. In all instances, Sc remains an
increasing function of the Mach number. Changing thermo-
dynamics leads to comparable results. The asymptotic pre-
diction �5� thus remains acceptable whatever the thermody-
namic model.

Second, we consider an isothermal Batchelor vortex de-
fined by W�r�=a+ �1−a�e−r2

and V�r�=S�1−e−r2
� /r, where

a=w� /w0 is the ratio between velocities away and on the
axis. This model is representative of realistic unbounded co-
lumnar vortices.3 The critical swirl Sc is numerically evalu-
ated by using the shooting method. Figure 4 presents the
evolution of Sc, divided by the asymptotic prediction Sc,as

=Sc,0 / �1−M0
2�1/2, as a function of M0. The criticality condi-

tions are well predicted by the asymptotic model up to M0

=0.7 where the difference with respect to the numerical re-
sults is lower than 5%. For larger M0, results diverge. Be-
sides, the ratio Sc /Sc,as does not depend on the parameter a,
indicating that the waves depend only on the axial velocity
on the axis even if compressibility is taken into account �the
inertial waves propagate in the core of the vortex and thus
behave independently of the external flow�. Finally, note that
the results obtained for a=1 are different from those ob-
tained in Ref. 2 where Sc was found to become singular in
the neighborhood of the value M0=0.69.

These last results prove that the present conclusions, i.e.,
Eq. �5� and subsequent interpretations, are poorly dependent
on the swirling flow model and confirm the relevance of the
Kelvin waves to describe the dynamics in supercritical vor-
tex flows, before the transition to breakdown occurs. Accord-
ing to Refs. 11 and 12, vortex breakdown is a result of the
interaction of azimuthal vorticity waves with relatively fixed
inlet state in an incompressible vortex. When S�Sc,0, azi-
muthal disturbances move upstream and accumulate at the
inlet condition thus initiating the instability process. A simi-
lar situation is strongly expected to occur in compressible
pipe flows10 and accounts for the study of compressibility
effects on the waves dynamics.
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TABLE I. Critical swirls for different thermodynamic models of the solid-
body rotation flow �numerical results�.

M0 p̄= �̄a p̄= �̄1/�b p̄= �̄�1− ��−1�M0
2U�

2 /2�c

0 1.92 1.92 1.92

0.4 2.07 2.09 2.05

0.6 2.33 2.37 2.36

aIsothermal.
bHomoentropic.
cHomoenthalpic.

FIG. 4. Critical swirl, divided by the asymptotic prediction, as a function of
the Mach number M0. The critical swirl value of the incompressible vortex
is Sc,0�1.56 whatever the value of a.
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