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A theoretical approach is developed to predict the effect of a passive control device on

the global stability of a cylinder flow close to the critical Reynolds number Rec = 46.8. The

passive control device is here a small control cylinder that is modelled by a local force.

This force is the sum of a steady component, acting on the base-flow, and of an unsteady

component, acting at the perturbation level. To understand how these two components

affect the flow stability, a multiple timescale analysis is first performed at the bifurcation.

The leading global mode responsible for the onset of the Von Karman street is assumed

to oscillate on a ”fast” timescale and its amplitude to grow on a ”slow” timescale. Then a

sensitivity analysis of the leading global eigenvalue with respect to the steady and unsteady

components of the force is developed. By combining these two analysis, one obtains maps

of the growth rate and pulsation of the perturbation as a function of the position of the

local force. The regions of the flow where the placement of a control cylinder suppresses

the Von Karman instability are very well reproduced.

I. Introduction

Control of vortex shedding behind a circular cylinder has received much attention in the past and various
passive and active control techniques have been tested on this flow both experimentally and numerically.
Concerning passive control, Strykowski & Sreenivasan (1990)7 have experimentally investigated how a small
control cylinder suitably placed in the wake of the main cylinder could alter the vortex shedding. For various
diameter ratios of the two cylinders they determined the regions of the flow where the placement of the control
cylinder leads to a complete suppression of the phenomenon over a specific range of Reynolds numbers. They
also provided experimental evidence linking vortex shedding to the onset of a global instability, and the effect
of the adequately positioned control cylinder to a damping of this instability. A theoretical approach of such
a passive control has first been developed by Hill (1992)4 but this study is remained confidential for many
years. Recently Giannetti & Luchini (2003, 2007)2,3 and Chomaz (2005)1 have reconsidered this problem
using modern tools to analyse the stability of non-parallel flows. In particular, they have shown how direct
and adjoint global modes could be used to identify the region of the flow at the origin of the instability. Their
analysis may be extrapolated to a passive control study if one considers that introducing a small device in
the flow can be modeled by an unsteady local force acting at the perturbation level. More recently Marquet,
Sipp & Jacquin (2008)5 have modeled the presence of a control cylinder in the flow not by an unsteady force
as did in Giannetti & Luchini (2007),3 but rather by a steady force modifying the base-flow on which the
perturbation develops. Their analysis is based on the introduction of a sensitivity function to a steady force.
Good predictions of the stabilizing regions for the control cylinder have been obtained. However, from a
physical point of view, the presence of control cylinder in the flow should be modeled by a force acting both
on the base-flow and at the perturbation level. The objective of the present paper is to develop a theoretical
framework in which

• the control cylinder is modeled as the sum of a steady and an unsteady force,
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• the effects of these steady and unsteady components onto the flow stability are both assessed.

To this end, a multiple timescale analysis is developed at the critical Reynolds number Rec. It is based on
the assumption that the leading global mode responsible for the onset of the vortex shedding oscillates on
a ”fast” timescale but that its complex amplitude grows on a ”slow” timescale related to the introduction
of the control cylinder. By combining it with a sensitivity analysis to a steady and an unsteady force, it is
shown how the steady and unsteady components of the force that models the control cylinder modify the
stability of the flow.

II. Problem formulation

The two-dimensional motion of a viscous fluid around a circular cylinder is described in terms of the
velocity and pressure fields (u,p) governed by the unsteady incompressible Navier-Stokes equations

∂tu + ∇u · u + ∇p − Re−1∇2u = f , ∇ · u = 0, (1)

where Re is the Reynolds number based on the cylinder diameter D = 1 and on the upstream velocity
u∞ = 1, and f is a forcing term in the momentum equations. This term vanishes when the flow is not
controlled. The control device is a cylinder of diameter d located at the position (xf , yf ) in the flow. It is
called therein after the control cylinder. In the present paper, such a control device is not introduced into
the physical flow but modeled in the Navier-Stokes equations by the forcing term f .

A. Modelisation of the control cylinder

The control cylinder is modeled by a local force f which is the opposite of the drag force filled by the control
cylinder. Its expression is

f(x, y) = −
1

2
d CD(Ref ) ||u||u δ(x − xf , y − yf ) (2)

where (xf , yf ) denotes the position of the control cylinder, d is the control cylinder diameter, CD stands
for the drag coefficient and δ is the Dirac function. The drag coefficient depends on the Reynolds number
Ref = ||uf || d Re based on the velocity uf = u(xf , yf ) and the control cylinder diameter d. An analytical
expression of the drag coefficient CD(Ref ) depends on the range of values of local Reynolds number Ref .
For d = 0.1, this Reynolds number Ref extents in the range [1, 10]. A good analytical expression for the
drag coefficient is given by

CD(x) =
1

x(a + b lnx)
, with a = 0.0987 , b = −0.0627 (3)

B. Multiple timescale analysis

We consider the two small parameters

ǫ = dCD(Red) ≪ 1 and α ≪ 1. (4)

The first small parameter, denoted ǫ, is introduced to take into account the presence of the control cylin-
der. The drag coefficient CD of the model force is now a function of the local Reynolds number Red =
d||u00(xf , yf )||Rec, based on the control cylinder diameter d and on the velocity u00 measured at the sta-
tion (xf , yf ) where the control cylinder is introduced. In the following it will be shown that this is the
velocity of the unperturbed base-flow at the cirtical Reynolds number Rec. The second parameter, denoted
α, will stand for the amplitude of the perturbation developing on this base flow. In order these two param-
eters to be small, the control cylinder diameter should be small, i.e. d ≪ 1, as well as the amplitude of the
perturbation. The present analysis is therefore restricted to describe the influence of small control cylinder
on the flow computed at the critical Reynolds number Rec.

One performs a multiple timescale analysis based on the ”fast” timescale t and the ”slow” timescale
t1 = ǫt. The following asymptotic expansion of the flowfield U = (u , p)

T
with the small parameter ǫ and α

is considered:
U = U00 + α1ǫ0 U10 + α0ǫ1 U01 + α1ǫ1 U11 + ... (5)
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This expansion is first introduced into the expression of the model local force. At leading orders in ǫ, α one
obtains

f = α0ǫ1fs + α1ǫ1fu + ... , with fs = −
1

2
||u00||u00 δ(x − xf , y − yf ) (6)

fu = −
1

2

(

u00.u10

||u00||
u00 + ||u00||u10

)

δ(x − xf , y − yf )

It will be shown that fs and fu are respectively the steady and unsteady components of the local force
modeling the control cylinder. The expansion (5) is then introduced into the Navier-Stokes equations (1)
for the critical Reynolds number Rec. One obtains a series of equations at various orders in ǫiαj , which are
now detailed.

• At order α0ǫ0, one obtains that the base-flow flowfield U00 = (u00 , p00)
T is a solution of the steady

Navier-Stokes equations at the critical Reynolds number Rec, that read

∇u00 · u00 + ∇u00 · u00 + ∇p00 − Re−1
c ∇2u00 = 0 , ∇ · u00 = 0.

• At order α1ǫ0, one obtains that the perturbation flowfield U10 = (u10 , p10)
T is a solution of the

following homogeneous equations

(∂tL + M)U10 = 0 (7)

where L and M are two linear operators defined by

L =

(

I 0

0 0

)

, M =

(

∇() · u00 + ∇u00 · () − Re−1
c ∆ ∇

∇T 0

)

(8)

The perturbation U10 is sought in the form of global normal modes

U10 =
1

2

(

Û10 exp[σt] + c.c.
)

(9)

where σ = λ + iω is a complex value, called eigenvalue, associated to a complex flowfield Û10 =
(û10, p̂10)

T , called global mode. λ and ω are respectively the growth rate and the pulsation of the
global mode. Introducing the above decomposition into the equations (7), one obtains that the pair
(σ ; Û10) is a solution of the generalized eigenvalue problem:

(σL + M) Û10 = 0 (10)

Solving this problem shows that there exists a global mode Ûc
10

which is marginally stable, i.e. σc =
0 + iωc. The pair (σc , Ûc

10
) is therefore solution of

(iωcL + M) Ûc

10
= 0 (11)

Now, the perturbation is chosen in the form

U10 =
1

2

(

A(t1) Ûc

10
exp[iωct] + c.c.

)

(12)

where A is the complex amplitude of the perturbation that depends on the slow-time scales t1 = ǫt.

• At order α0ǫ1, one obtains that the flowfield U01 = (u01 , p01)
T is a solution of the equations

(∂tL + M)U01 = Fs (13)

where the term on the right hand-side Fs = (fs , 0)
T

is a forcing term, and the forcing term in the
momentum equations fs reads

fs(x, y) = −
1

2
||u00||u00 δ(x − xf , y − yf ) (14)

Since the base-flow velocity u00 is steady, this forcing term is the steady component of the force
modeling the presence of the control cylinder. Therefore, U01 is the base-flow modification induced
by the presence of the control cylinder and is solution of the steady equation

M U01 = F01 (15)
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• At order α1ǫ1, one obtains that U11 = (u11, p11)
T is solution of the equation

(∂tL + M)U11 =
1

2

(

(−
∂A

∂t1
L Ûc

10 + A F̂11) exp[iωct] + c.c.

)

(16)

where two forcing terms oscillating at the pulsation ωc appear on the right-hand side of the equation.
The first one results from the decomposition of the perturbation (see Eq. 12) in which the amplitude
A depends on the slow-time scale t1 = ǫt. The second one, denoted F̂11, reads

F̂11 = F̂u + F̂i =

(

f̂u

0

)

+

(

f̂i

0

)

(17)

It is composed of two terms F̂u and F̂i, both acting as forcing terms in the momentum equations, and
both related to the presence of the control cylinder in the flow.

– The first one, that reads

f̂u(x, y) = −
1

2

(

u00. ûc
10

||u00||
u00 + ||u00||û

c

10

)

δ(x − xf , y − yf ) , (18)

is the spatial structure of the unsteady component of the force fu = f̂u(x, y) exp[iωct]+c.c. modeling
the presence of the control cylinder (see Eq. 6).

– The second one, that reads

f̂i(x, y) = −∇ûc

10
· u01 −∇u01 · ûc

10
, (19)

expresses the interaction of the marginal global mode ûc
10

with the base-flow modification u01.
This term is indirectly related to the force modeling the presence of the control cylinder since the
base-flow modification results from the steady component of the force through the equation (15).

We seek a form for U11 that matches the oscillating structure of the forcing term, i.e.

U11 =
1

2

(

Û11 exp[iωct] + c.c.
)

(20)

Introducing this decomposition into the equations (16), one obtains

(iωcL + M) Û11 = −
∂A

∂t1
L Û10 + A (F̂u + F̂i) (21)

The linear operator on the left-hand side of this equation is degenerated and a compatibility condition
has to be satisfied to determine its solution. To this end, the following scalar product is introduced

〈A , B〉 =

∫

Ω

AH B (22)

where H denotes the transconjugate operator. Furthermore, one defines the adjoint global mode
Ûc+

10
= (ûc+

10
, p̂c +

10 )T that satisfies the adjoint equation

(

−iωcL + M+
)

Ûc+
10

= 0 (23)

where the operator M+ is defined by

M+ =

(

−∇() · u00 + (∇u00)T · () − Re−1
c ∆ −∇

∇T 0

)

(24)

By multiplying (in the sense of the above scalar product) the equation (21) with the adjoint global
mode, one obtains the compatibility condition:

∂A

∂t1
= C1 A(t1) , with C1 =

〈

Ûc+
10

, F̂u + F̂i

〉

(25)
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Note that the adjoint global modes is normalized so that
〈

Ûc+
10

, L Ûc
10

〉

= 1. The amplitude of the

perturbation is thus A(t) = exp[ (ǫC1)t ] and the perturbation reads

U10 =
1

2

(

Ûc

10 exp[σf t] + c.c.
)

, with σf = σc + ǫC1 (26)

The growth rate λf = ℜ(σf ) and pulsation ωf = ℑ(σf ) of the perturbation developing when a control
cylinder is placed into the flow are given by

λf = ǫℜ(C1) (27)

ωf/ωc = 1 + ǫℑ(C1)/ωc (28)

These two relations are fundamental to determine the impact of a control cylinder on the flow stability.
In particular, the control cylinder stabilizes the flow if λf = ǫℜ(C1) < 0 and destabilizes it if λf =
ǫℜ(C1) > 0. The major contribution of the multiple timescale analysis developed in this paper is that
the influence of the steady and unsteady components of the force modeling the control cylinder are
both taken into account and can be analysed separately. To this end, the complex eigenvalue σf is
written as

σf = σc + σf,s + σf,u (29)

where σf,s and σf,u are the contributions due to, respectively, the steady and unsteady components of
the force. These two contribution read:

σf,s = ǫ
〈

Ûc+
10

, F̂i

〉

(30)

σf,u = ǫ
〈

Ûc+
10

, F̂u

〉

(31)

First, let us examine the unsteady contribution σf,u. In the above expression the unsteady component

F̂u appear explicitely and the adjoint global mode plays the role of a sensitivity function with respect
to this component of the force. It is thus straightforward to obtain the values of σf,u for all positions

of the force (xf , yf ) by computing the adjoint global mode Ûc+
10

(Eq.23) and the unsteady component
(Eq.18).

Now, let us examine the steady contribution σf,s. The steady component F̂s does not appear explicitely

but only implicitely through the term F̂i, as explained previously (see Eq. 19). Thus, in the present
form, it is not straightforward to obtain the values of σf,s for all positions (xf , yf ), since it requires to
solve the equation (13) for all positions of the steady force (Eq. 14). The next paragraph explains how
to overcome this drawback by introducing a sensitivity function with respect to the steady component
of the force.

C. Sensitivity analysis

The adjoint global mode appears naturally in the multiple timescale analysis. It has been shown that, for
the eigenvalue, it plays the role of a sensitivity function with respect to the unsteady component of the
force modeling the control cylinder. For a more general discussion about the use of adjoint global modes as
receptivity and sensitivity functions, the reader is refered to Giannetti and Luchini (2007). Marquet et al.
(2008) have recently introduced a sensitivity function of a global eigenvalue with respect to a steady force.
In the present case, it is useful to introduce such a sensitivity function, denoted U+

00
, in order to relate

explicitely the steady contribution σf,s to the steady component of the force F̂s. This is written

σf,s = ǫ
〈

U+
00

, F̂s

〉

(32)

where the complex flowfield U+
00

satisfies the so-called adjoint base-flow equation:

M+ U+
00

=

(

(∇ûc+
10

) ûc ∗

10
− (∇ûc

10
)t ûc+

10

0

)

. (33)
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The procedure to derive this equation is detailed in Appendix. This equation is linear and the right-hand
side term is a forcing term that involves the global mode velocity ûc

10
and the adjoint global mode velocity

ûc+
10

. An important point to notice is that the sensitivity function, solution of this equation, does not depend
on the position of the force (xf , yf ). Consequently, it is now straightforward to obtain the values of σf,s for
all positions of the force (xf , yf ) by using Eq.(32) instead of Eq.(30). It only requires to solve the adjoint
base-flow equations (33) and to compute the steady component of the force.

Finally, since the force is localized at the point (xf , yf ), the steady σf,s and unsteady contribution σf,u

read:

σf,s(xf , yf ) = ǫ(xf , yf ) u+ ∗

00
(xf , yf ) f̂s(xf , yf ) (34)

σf,u(xf , yf ) = ǫ(xf , yf ) ûc+ ∗

10
(xf , yf ) f̂u(xf , yf ) (35)

These two relations give the impact of the control cylinder on the flow stability.

III. Results for the cylinder flow

The incompressible flow around a cylinder is studied for low values of the Reynolds number. At the
threshold Re ∼ 47, it is known that the two-dimensional flow bifurcates from a steady symetric state
towards a periodic non-symetric state. In this section, the cylinder flow (without control) is first briefly
described in the framework of a global stability analysis. The theoretical developed in the previous section
is then applied to predict accurately the positions of the control cylinder that stabilize the flow.

(a) Base Flow (b) Neutral mode

Figure 1. Base-flow and neutral global mode at the critical Reynolds number Rec = 46.8 depicted in the
upper-half plane y > 0. (a) Magnitude of the base-flow velocity ||u00|| (b) Real part of the vertical velocity of
the neutral mode ℜ(v̂10) . The white curve depicts the divided streamlines of the recirculation region.

A. Cylinder flow and global stability analysis

The steady symetric state of the cylinder flow, i.e. the base-flow, is depicted in figure 1(a) for the Reynolds
number Re = 46.8. As expected, a recirculation region, delimited in the figure by the divided streamline
(white curve), develops in the near-wake of the cylinder. Performing a global stability analysis of such a base-
flow is an efficient approach to determine for which Reynolds number values this flow state remains observable.
Such an analysis has first been performed by Zebib (1987)8 but many authors have then considered this
problem. Figure 2 depicts the growth rate λ and the pulsation ω of the leading global mode as a function
of the Reynolds number. The critical Reynolds number Rec = 46.8, outlined by the vertical dashed line, is
determined as the value of Re for which the flow is marginally stable, i.e. λc = λ(Rec) = 0. The critical
pulsation of the global mode is ωc = 0.73. The leading global mode at this Reynolds number is called the
neutral mode. The real part of its vertical velocity is depicted in figure 1(b). It represents an array of
counter-rotating vortices which develop in the wake of the cylinder, very similar to the Von-Karman street
observed experimentally. Note that maximal values of the neutral mode are reached in the far-wake of the
cylinder (x ∼ 25, not shown here).

B. Passive control of the cylinder flow

The passive control of the Von-Karman street by means of a smaller control cylinder of diameter d ≤ D
has been experimentaly studied by Strykowski & Sreenivasan (1990). Figure 3 reproduces their results
obtained for the cylinder ratio d/D = 0.1. Each curve is associated to a Reynolds number Re > Rec.
Within this curve the placement of a control cylinder suppresses the Von-Karman street behind the main
cylinder. Interestingly, the stabilizing regions, thus delimited, are located close the main cylinder, and not
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Figure 2. Global stability of the cylinder flow (without control). (a) Growth rate λ and (b) pulsation ω
(bottom) of the leading global mode as a function of the Reynolds number Re. The vertical dashed line
outlines the threshold of the flow instability at Rec = 46.8. The pulsation at the criticity is ωc ∼ 0.73.

in the far wake region where the amplitude of the global mode is maximal. This suggests, as already noted
by Chomaz (2005)1 and Luchini & Giannetti (2003),2 that the region of the flow responsible for the onset
of the instability, i.e. the wavemaker, can not be identified by examining the structure of the unstable
global mode. For further details about the definition of the wavemaker, the reader is refered to Giannetti
& Luchini (2007)3 who have proposed a general method to identify this wavemaker region. The theoretical
approach developed in the previous section is now applied to the cylinder flow. The objective is not to
reproduce quantitatively the experimental results of Strykowski & Sreenivasan (1990)7 since the present
approach is only valid at the critical Reynolds number Rec (in its present state). The main issue is more
to demonstrate that a modelisation of the control cylinder by a force should include both the steady and
unsteady components of the force to obtain accurate results.

x

y

0 2 4
0

1

2
46.2

5570

48

48
60

Figure 3. Experimental results by Strykowski & Sreenivasan (1990).

1. Steady and unsteady components of the force

The local force that models the presence of the control cylinder located at the station (xf , yf ) has two
components (see Eq.6): a steady component fs, that depends only on the base-flow velocity, and an unsteady
component fu = f̂u exp[iωct], that depends on both the base-flow and global mode velocities. The magnitude
of these two components are respectively depicted in figure 4(a) and figure 4(b) as a function of the station
(xf , yf ) of the force. It shows that the magnitude of the steady component is one of order larger than the
magnitude of the unsteady component. Highest magnitude of the steady and unsteady forces are reached in
differents regions of the flow. For the steady component (figure 4(a)), largest values are reached in regions
where the base-flow velocity is large. Thus, in the recirculation region where the base-flow velocity is weak,
the magnitude of the steady component is also weak. For the unsteady component (figure 4(b)), largest
values are reached in the far-wake of the cylinder (x ∼ 20), the region where the magnitude of the global
mode velocity reaches highest values.
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(a) ||̂fs(xf , yf )|| (b) ||̂fu(xf , yf )||

Figure 4. Local force modeling the control cylinder. Amplitude of the (a) steady and (b) unsteady components
of this force as a function of its location (xf , yf ). Parameter: Re = Rec = 46.8.

2. Sensitivities of the neutral global mode

The sensitivity of the neutral global mode to a steady and an unsteady force is now examined. We recall
that the sensitivity to a steady force is given by the adjoint base-flow velocity, whereas the sensitivity to
an unsteady force is given by the adjoint global mode velocity. The magnitude of these two sensitivities
functions is depicted in figure 5(a) and 5(b). First, it shows that the neutral mode is more sensitive to an

(a) ||û+

00
(x, y)||; Adjoint base-flow (b) ||û+

10
(x, y)||; Adjoint global mode

Figure 5. Sensitivity functions of the neutral global mode. Magnitude of (a) the sensitivity to a steady force
and of (b) the sensitivity to an unsteady force in the plane (x, y). Parameter: Re = Rec = 46.8.

unsteady force than to a steady force, since the magnitude of the sensitivity function is one of order larger in
figure 5(b) than in figure 5(a). Secondly, we observe that, far from the cylinder, the neutral mode is neither
sensitivite to a steady nor to an unsteady force. Indeed, the sensitivity regions are located close the cylinder
in the two figures. The region close to the separation point is sensitivite both to a steady and an unsteady
force. Figure 5(a) shows that the recirculation region is a sensitivite region fo the steady force.

Given the relation (34), the control cylinder should have a large impact onto the flow stability only if it is
placed in the overlapping region between the components of the force and the sensitivity functions, i.e. the
region where the product of the force and sensitivity magnitudes is large. By comparing figures 4(a)-4(b)
with figures 5(a)-5(b), we expect that, for the cylinder flow, this overlapping region is in the near-wake of
the cylinder.

3. Growth rate λf

(a) λf = λf,s + λf,u (b) λf,s (c) λf,u

Figure 6. Growth rate of the neutral mode as a function of the location of the force (xf , yf ). The growth
rate (a) λf is the sum of the two contributions, (b) λf,s and (c) λf,u, induced by, respectively, the steady and
unsteady components of the force. The same colorbar is used in the three figures. Parameter: Re = Rec = 46.8.

In this paragraph we focus on the growth rate λf . We look for the locations of the force that stabilize
(λf < 0) or destabilize (λf > 0) the flow. Figure 6(a) depicts λf in the half-plane (xf , yf > 0). It shows a
large stabilizing region located above the recirculation region and a smaller one located inside the recirculation
region. Close to the cylinder and upstream from the separation point, there exists a destabilizing region.
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The contributions of the steady and unsteady components of the force are respectively plotted in figures
6(b) and 6(c). First we see that the two contributions are of the same order of magnitude. Therefore,
the contribution of one of these components can not be neglected compare to the other one. Secondly, the
two contributions have approximatively the same signs in the same regions. It means that the steady and
unsteady components of the force have a cooperative effect on the stabilization of the flow.

4. Pulsation ωf

(a) ωf /ωc = 1 + (ωf,s + ωf,u)/ωc (b) 1 + ωf,s/ωc (c) 1 + ωf,u/ωc

Figure 7. Same caption as for the previous figure, but for the pulsation ratio ωf /ωc.

In this paragraph we examine the dependance of the pulsation ωf with the position of the force. Figure
7(a) depicts ωf/ωc, the ratio of the pulsation with control over the pulsation without control, in the half-
plane yf > 0. For ωf/ωc = 1, the control cylinder does not modify the pulsation. For ωf/ωc > 1, the
control cylinder increases the pulsation, and inversely when ωf/ωc < 1. In the figure, the green line delimit
approximatively the stabilizing regions determined in the previous paragraph. Placing a control cylinder
in these regions stabilizes the flow. Thus it is not relevant to examine the pulsation in these regions. We
focus our attention on the value of ratio ωf/ωc obtained out of the stabilizing regions. Figure 7(a) clearly
shows that the largest decrease of the pulsation can be obtained if the control cylinder is placed close to
the cylinder, upstream from the separation point. In figures 7(b) and 7(b) are depicted the contributions
of the steady and unsteady components of the force. Strikingly, it shows that the dominant contribution
is the one induced by the steady component. We note that the results obtained for the pulsation should
be considered with caution. Indeed, it is well known that, for the cylinder flow without passive control,
a global linear stability analysis fails to predict accurately the pulsation of the Von-Karman street that
is measured in experiments. In particular, it has been recognised that, during the saturation process of
the linear instability, the non-linearities tends to strongly modify the frequency. We may expect that the
non-linearities also strongly modifies the pulsation instability when the flow is controlled.

IV. Conclusion

This paper is a theoretical contribution to the passive control of globally unstable flows. It is based on
the assumption that introducing a small control device into the flow can be modeled by a local force. Up to
now, the effect of such a force onto the flow stability has been alleviated by assuming that it was either a
steady or an unsteady force. The formalism developed in this paper enables to model the force as the sum of
a steady and an unsteady component, and to take into account their respective effects onto the flow stability.
By applying this approach to the passive control of the cylinder flow, it has been shown that both the steady
and unsteady components of the force affect the flow stability. This result suggests that a modelisation of
the control cylinder as the sum of a steady and unsteady force is essential to obtain a good prediction of
the stabilizing regions. The main drawback of the present formalism is that the passive control of the flow
can be investigated only at the critical Reynolds number Rec. Future developments should be dedicated to
extent the range of Reynolds number for which this approach can be applied. Introducing a third parameter,
in the multiple timescale analysis, which measures the departure from criticality (in terms of the Reynolds
number) seems to be an interesting way to explore.
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Appendix

In this Appendix, it is explained how the sensitivity function to a steady force is introduced and how
the adjoint base-flow equations are derived. The idea is to make appear explicitely the steady component of
the force Fs in the expression of σf,s. To this end we introduce the operator Lr = (I 0) that satisfies the
following relations

LT
r Lr = L , Lr L

T
r = I ,

The velocity u01 can thus be related to the flowfield variable U010 through

u01 = Lr U01

Using the definition of F̂i (Eq.17) and the equation (13) to express the base-flow modification U01 as a
function of the steady force Fs, one writes

〈

Ûc+
10

, F̂i

〉

= −
〈

ûc+
10

, ∇ûc

10
· u01 + ∇u01 · ûc

10

〉

= −
〈

ûc+
10

, ∇ûc

10 · (Lr U01) + ∇(Lr U01) · ûc

10

〉

= −
〈

ûc+
10

, ∇ûc

10
· (Lr M

−1 Fs) + ∇(Lr M
−1 Fs) · û

c

10

〉

Performing the following integrations by parts

〈

ûc+
10

, ∇ûc

10
· (Lr M

−1 Fs)
〉

=
〈

(M−1)H LT
r (∇ûc ∗

10
)T ûc+

10
, Fs

〉

〈

ûc+
10

, ∇(Lr M
−1 Fs) · û

c

10

〉

=
〈

−(M−1)H LT
r (∇ûc+

10
) ûc ∗

10 , Fs

〉

one obtains
〈

Ûc+
10

, F̂i

〉

=
〈

(M−1)H LT
r

{

(∇ûc+
10

) ûc ∗

10
− (∇ûc ∗

10
)T ûc+

10

}

, Fs

〉

One introduces the variable U+
00

=
(

u+
00

, p+
00

)

, called the adjoint of the base-flow and enforce it to satisfies
the adjoint base-flow equations

MH U+
00

= LT
r

{

(∇ûc+
10

) ûc ∗

10
− (∇ûc ∗

10
)T ûc+

10

}

(36)

Thus one obtains that
〈

Ûc+
10

, F̂i

〉

=
〈

U+
00

, Fs

〉

(37)
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