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Dynamics and Control of Global
Instabilities in Open-Flows: A
Linearized Approach
This review article addresses the dynamics and control of low-frequency unsteadiness, as
observed in some aerodynamic applications. It presents a coherent and rigorous linear-
ized approach, which enables both to describe the dynamics of commonly encountered
open-flows and to design open-loop and closed-loop control strategies, in view of sup-
pressing or delaying instabilities. The approach is global in the sense that both cross-
stream and streamwise directions are discretized in the evolution operator. New light will
therefore be shed on the streamwise properties of open-flows. In the case of oscillator
flows, the unsteadiness is due to the existence of unstable global modes, i.e., unstable
eigenfunctions of the linearized Navier–Stokes operator. The influence of nonlinearities
on the dynamics is studied by deriving nonlinear amplitude equations, which accurately
describe the dynamics of the flow in the vicinity of the bifurcation threshold. These
equations also enable us to analyze the mean flow induced by the nonlinearities as well
as the stability properties of this flow. The open-loop control of unsteadiness is then
studied by a sensitivity analysis of the eigenvalues with respect to base-flow modifica-
tions. With this approach, we manage to a priori identify regions of the flow where a
small control cylinder suppresses unsteadiness. Then, a closed-loop control approach
was implemented for the case of an unstable open-cavity flow. We have combined model
reduction techniques and optimal control theory to stabilize the unstable eigenvalues.
Various reduced-order-models based on global modes, proper orthogonal decomposition
modes, and balanced modes were tested and evaluated according to their ability to
reproduce the input-output behavior between the actuator and the sensor. Finally, we
consider the case of noise-amplifiers, such as boundary-layer flows and jets, which are
stable when viewed in a global framework. The importance of the singular value decom-
position of the global resolvent will be highlighted in order to understand the frequency
selection process in such flows. �DOI: 10.1115/1.4001478�
Introduction
In aeronautical applications, unsteady flows, whose characteris-

ic spatial scales are on the order of those of the studied object and
hose temporal frequencies are low, are commonly encountered.
ithin the range of the Kolmogorov turbulent energy cascade,

hese phenomena are located at the left edge of a wavenumber or
requency spectrum, at scales where energy is injected. Within the
ramework of steady configurations, these fluctuations are intrin-
ic to the fluid, and stability theory can explain at least some of
hese phenomena, such as how structures of a specific frequency
nd scale are selected and emerge in a flow. The occurrences of
hese unsteadiness are usually detrimental to a satisfactory opera-
ion, which can be illustrated by a number of examples. On a wing
rofile, the boundary-layer at the upstream stagnation point is usu-
lly laminar. Tollmien–Schlichting waves, however, destabilize
he flow, and the boundary-layer subsequently becomes turbulent
1�. This induces an increase in skin friction at the wall and thus a
oss of performance of the vehicle linked to the increase in its
rag. Inside the booster of a space launcher, the flow generated by
olid combustion is characterized by a rather small Reynolds
umber, on the order of a few thousands �2�. However, very
trong unsteadiness is generated by the flow, inducing thrust os-
illations and vibrations of the vehicle. A transport aircraft pro-
uces a swirling flow in its wake. These structures are dangerous
or following airplanes, which may be subjected to violent rolling
oments �3�. These structures ought to be quickly destroyed by
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triggering the natural instabilities of the swirling system, such as
the Crow instability. The flight envelope of a transport airplane is
currently limited in the Mach-angle of attack �AoA� plane by the
shock-induced buffeting phenomenon on the airfoil. For Mach
numbers on the order of 0.8 and high AoAs, the shock located on
the suction side of the wing suddenly starts to oscillate �4�, which
in turn causes vibrations that are detrimental to the airplane. When
passing to the transonic regime, a space launcher such as Ariane V
is subjected to strong vibrations, which originate from instabilities
developing in the wake of the vehicle and are particularly harmful
for the payload �5�. Fighter aircraft are vulnerable due to the
strong infrared signature of the hot jet exiting the engine. In this
application, the triggering of unstable modes in the hot jet by
actuators placed at the nozzle exit constitutes a possible mecha-
nism to promote turbulent mixing with the atmosphere, which in
turn reduces the extent of the jet’s hot zones as quickly as possible
�6�. Cavity flows, such as those observed over bomb bays, are the
site of violent unsteadiness related to powerful sound pressure
waves that can cause severe structural vibrations �7�. Fatigue
problems are the result, which significantly increase the cost of
vehicle maintenance or decrease vehicle lifetime. The sound
waves, arising from a hydrodynamic instability, propagate over
long distances and can be the cause of extensive noise pollution.
Furthermore, on transport aircraft, the slat on a multi-element
wing configuration acts as a cavity and generates intense noise
during landing when these high-lift devices are deployed �8�. The
noise-related environmental problems have been an issue of in-
creasing concern for many years. Many other examples, where
occurrences of low-frequency unsteadiness cause noise, are worth

mentioning: among them, the noise known as blade-wake interac-

MAY 2010, Vol. 63 / 030801-110 by ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



t
r

m
s
f
w
t
s
b
F
s
t
r
s
i
m
s
fl

t
d
c
t
r
a
b
i
l
a
e
p
f

o
e

w
r
d

A
c
a
u

t

F
i
†

0

Downlo
ion �BWI� caused by helicopter rotors �9� and the “tonal noise”
elated to laminar flow over an airfoil profile �10�.

1.1 Models, Base-Flow, and Perturbation Dynamics. The
ain hypothesis underlying this review is that all phenomena pre-

ented in Sec. 1 can be properly described within a linearized
ramework, despite the fact that the Navier–Stokes equations,
hich govern them, are strongly-non-linear due to the convective

erm. At first sight then, a linearized description of the dynamics
eems rather limiting. Moreover, the following question needs to
e asked: Around which field must the equations be linearized?
or flow configurations that deal with the destabilization of a
teady flow-field, the answer is straightforward: the steady solu-
ions of the Navier–Stokes equations; that is to say, the equilib-
ium points of these equations. These flow-fields usually exist at
ufficiently low-Reynolds numbers, even if they are not observed
n reality owing to instabilities. From a physical point of view, this

eans that we will focus on a low-amplitude perturbation that is
uperposed on a desirable base-flow. We then wish to stabilize the
ow by various means in the vicinity of this equilibrium point.
Why come back to linear dynamics? The tools available within

his framework, such as eigenvalue decomposition, singular value
ecomposition, the adjoint matrix, reduced-order-models based on
ontrollability and observability concepts, H2 and H� control
echniques, etc., are well-established and powerful and provide a
igorous mathematical foundation for the study of the dynamics
nd control of a fluid system. It should also be noted that it has
een the studies of transition in Poiseuille and Couette flows that
n the 1990s gave rise to a renewed interest in linear theory and
inear processes based on non-normal operators. Moreover, linear
lgebra �including its numerical algorithms� has continued to
volve significantly over the past 50 years, and many complex
henomena that were initially attributed to nonlinearity have
ound an explanation by using these tools.

Throughout this review, the equations governing the dynamics
f the flow are the incompressible homogeneous Navier–Stokes
quations. They will be written in the form

du

dt
= R�u� �1�

here u denotes the divergence-free velocity field and R�u� the
esidual. A base-flow uB, or an equilibrium point of Eq. �1�, is
efined by

R�uB� = 0 �2�

n example of base-flow is shown in Fig. 1 in the case of the
ylinder flow at Re=47: Isocontours of streamwise velocity show
recirculation zone with negative velocities of up to 11% of the

pstream velocity.
The dynamics of the small perturbations u� superimposed on

ig. 1 Flow around a cylinder for Re=47. Base-flow uB visual-
zed by isocontours of streamwise velocity. Adapted from Ref.
38‡.
his field are governed by
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du�

dt
= Au� �3�

The operator A corresponds to the Navier–Stokes equations lin-
earized about the base-flow uB. Formally, the operator A may be
written as A=�R /�u �uB. This operator involves spatial stream-
wise and cross-stream derivatives, which may be discretized with
finite differences or finite elements to lead to a large-scale matrix.
In the following, and throughout the whole article, A will stand
for this large-scale matrix rather than the operator.

1.2 Asymptotic and Short-Term Instabilities. The dynamics
of a low-level amplitude perturbation u� is governed by linearized
Navier–Stokes equation �3�. According to Schmid �11�, a base-
flow or a matrix A is said to be asymptotically stable if the modu-
lus of any initial perturbation tends to zero for large times; other-
wise it is asymptotically unstable. Based on this definition, the
stability of a base-flow is determined by scrutinizing the spectrum
of the matrix A. To this end, particular solutions of Eq. �3� are
sought in the form

u� = e�tû �4�

The corresponding dynamical structures are the global modes of
the base-flow uB: Their spatial structure is characterized by the
complex vector field û and their temporal behavior by the com-
plex scalar �, whose real part ��� designates the amplification rate
and its imaginary part ��� the frequency. The global modes �� , û�
correspond to eigenvalues/eigenvectors of the matrix A as fol-
lows:

Aû = �û �5�

Note that the global modes defined here are eigenvectors of the
discrete matrix A and do therefore depend a priori on the chosen
discretization, which led to A. Among all eigenvectors of A, only
a few of them are somehow independent of the chosen discretiza-
tion and have an intrinsic existence. These eigenvectors are only
moderately sensitive to external perturbations of the matrix A. For
example, they exhibit good spatial convergence properties; i.e., as
the mesh is refined or the computational domain is varied these
eigenvalues/eigenvectors may be tracked and converge toward
fixed quantities. These eigenvectors are the physical global
modes. We note that, if at least one of the eigenvalues has a
positive real part ���0�, then the base-flow is asymptotically
unstable. This instability is also called a modal instability, or even
an exponential instability. On the other hand, if all of the eigen-
values have negative real parts ���0�, the global modes will
eventually all decay at large times, and the base-flow is asymp-
totically stable.

In the case of an asymptotically stable flow, the ability of this
flow to amplify perturbations transiently is given by analyzing the
instantaneous energetic growth of perturbations in the flow. The
energy of a perturbation u� reads �u� ,u��, where �· , ·� designates
the scalar product associated with the energy in the whole domain.
The equation governing the perturbation energy is then given by
�see Ref. �12��

d

dt
�u�,u�� = �u�,�A + A��u�� �6�

Here A� is the adjoint matrix and is defined such that

�uA,AuB� = �A�uA,uB� �7�

for any vector pair uA and uB. Equation �6� shows that a necessary
and sufficient condition for instantaneous energetic growth in a
flow is that the largest eigenvalue of the matrix A+A� is positive.
A matrix is said to be normal if AA�=A�A; i.e., the Jacobian
matrix commutes with its adjoint. In this case, all global modes of
A are orthogonal and, from Eq. �6�, one may deduce that the

energetic growth of a perturbation is linked to the existence of an
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nstable global mode. In the case of a non-normal matrix—when
he Jacobian does not commute with its adjoint—then this equiva-
ence is not true anymore: Instantaneous energetic growth may
xist although all global modes are asymptotically stable. This
ehavior will be called a short-term instability, or a nonmodal
nstability, or even an algebraic instability �since the perturbation
nergy then increases algebraically in time�.

1.3 Oscillators and Noise-Amplifiers. According to Huerre
nd Rossi �13�, occurrences of unsteadiness in open-flows can be
lassified into two main categories. The flow can behave as an
scillator and impose its own dynamics �intrinsic dynamics�: Self-
ustained oscillations are observed, which are characterized by a
ell-defined frequency, insensitive to low-level noise. Or the flow

an behave as a noise-amplifier, which filters and amplifies in the
ownstream direction existing upstream noise: The spectrum of a
easured signal, at some given downstream location, reflects, to

ome extent, the broadband noise present in the upstream flow
extrinsic dynamics�. For example, the flow around a cylinder for
eynolds numbers in the range 47�Re�180 is typical of the
scillator-type, while a homogeneous jet or a boundary-layer flow
s representative of noise-amplifiers.

These two types of dynamics have been extensively examined
n the 1980s and 1990s for parallel and weakly-non-parallel base-
ows. In the 1980s most of the studies were focused on finding
xponential instabilities, i.e., linear perturbations that grow expo-
entially in time or space. The concepts of absolute and convec-
ive instabilities were introduced to describe the oscillator’s and
mplifier’s dynamics, respectively �13�. Yet, the subcritical behav-
or of some flows, such as the Poiseuille or Couette flows, could
ot be described by an exponential instability. In the late 1980s/
arly 1990s, it was then recognized that the non-normality of the
inearized Navier–Stokes operator could lead to strong transient
nergy growth, although all eigenmodes were asymptotically
table. In channel flows, due to the three-dimensional lift-up ef-
ect, streamwise oriented vortices grow into streamwise streaks
14–18� while the Orr mechanism �17,19� is responsible for tran-
ient growth of two-dimensional upstream tilted perturbations.
hese important findings made it possible to consider new transi-

ion scenarios to turbulence �although the importance of nonlin-
arity is determinant with this respect, see Sec. 7.2�. The reader is
eferred to the book by Schmid and Henningson �12� for a com-
rehensive review on this subject. Optimization techniques based
n direct-adjoint computations were then intensively used to find
ptimal initial perturbations in boundary-layer flows �Luchini and
ottaro �20� studied the optimal perturbation leading to Görtler
ortices, Andersson et al. �21� and Luchini �22� the transients
elated to the lift-up effect in a spatially developing boundary-
ayer, Corbett and Bottaro �23� the energetic growth associated
ith oblique waves in boundary-layers subject to streamwise pres-

ure gradient, Corbett and Bottaro �24� the instabilities in swept
oundary-layers, and Guégan et al. �25,26� the optimal perturba-
ions in swept Hiemenz flow�.

In a global stability approach, which does not assume the par-
llelism of the base-flow, the oscillator and noise-amplifier dy-
amics may be related to different stability properties of the Jaco-
ian matrix A, as will be shown in Secs. 1.3.1 and 1.3.2.

1.3.1 Oscillators, Global Modes, and Prediction of Frequen-
ies in a Global Approach. An oscillator-type dynamics may be
bserved when the base-flow is asymptotically unstable, since an
nstable global mode ��0 will then emerge at large times with-
ut any external forcing. As observed in the open-flow configura-
ions studied within this review article, these global modes are
enerally physical global modes in the sense that they are only
oderately sensitive to perturbations of the matrix A. Further-
ore, they also carry physical meaning since � and û, respec-

ively, characterize the frequency and spatial structure of the un-
teadiness, at least in the vicinity of the bifurcation threshold. The

mplification rate � of the global mode allows identifying the

pplied Mechanics Reviews
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critical parameters �Reynolds number, AoA for which �=0� for
the onset of the unsteadiness. The identification of these dynami-
cal structures constitutes the key point to characterize an
oscillator-type dynamics. As an example, the global mode in the
case of the cylinder flow at Re=47 is depicted in Fig. 2 by the real
part of the cross-stream velocity of the eigenvector. Vortices of
alternating sign are observed in the wake of the cylinder and are
advected downstream. Note that the imaginary part of the eigen-
vector is approximately 1/4 spatial period out of phase, which
enables a continuous downstream advection of the structures.

Computing global modes requires the solution of very large-
scale eigenvalue problems �Eq. �5��. Indeed, given that the global
eigenvector û depends on the streamwise as well as cross-stream
coordinate directions, the number of degrees of freedom �the di-
mension of the matrix A� that are necessary for spatially con-
verged results rapidly approaches the order of millions �number of
mesh cells multiplied by the number of unknowns�. Suitable al-
gorithms to solve these equations are thus mandatory, as are pow-
erful computing capabilities. The first eigenvalue computations
within a global framework were carried out by Zebib �27� and
Jackson �28� who described the bifurcation structure of the flow
around a cylinder at Re=47 �see also Ref. �29��. Natarajan and
Acrivos �30� followed by studying axisymmetric flows around a
disk and a sphere; Lin and Malik �31� investigated the stability of
a swept Hiemenz flow. An important change in algorithmic tech-
niques took place in the 1990s with the advent of the Arnoldi
method: Edwards et al. �32�, Barkley and Henderson �33�, and
Lehoucq and Sorensen �34� introduced and applied iterative algo-
rithms based on Krylov subspaces to obtain parts of the global
spectrum. The hydrodynamic stability community �35� has incor-
porated these new tools into the stability analyses of increasingly
complex configurations, among them: Barkley et al. �36� for the
case of a backward-facing step, Gallaire et al. �37� for the flow
over a smooth bump, Sipp and Lebedev �38� for the flow over an
open cavity, Åkervik et al. �39� for the case of recirculating flow
in a shallow cavity, and Bagheri et al. �40� for a jet in cross-flow.
Global stability analyses based on the compressible Navier–
Stokes equations have also emerged very recently: Robinet �41�
studied the case of a shock-boundary layer interaction, Brès and
Colonius �42� treated the dynamics of an open cavity, and Mack et
al. �43� investigated the instabilities of leading-edge flow around a
Rankine body in the supersonic regime.

The prediction of the frequency of self-sustained oscillations
has recently received much attention �44�. In the framework of
weakly-non-parallel flows, linear �45� and fully nonlinear criteria
�46� have successively been worked out to predict this frequency.
In the case of wake flows, it was observed �47–51� that the linear
saddle-point criterion �45� applied to the mean flow, rather than
the base-flow, yields particularly good results. This is shown, for
the cylinder flow, in Fig. 3, where the Strouhal number of the
unsteadiness is given versus the Reynolds number. The thick solid
line refers to the experimental data of Williamson �52�, while the
thin solid line �symbols� designates the global linear stability re-

Fig. 2 Flow around a cylinder for Re=47. Marginal global
mode characterized by the frequency �=0.74. The structure is
visualized by isocontours of the real part of the cross-stream
velocity „R„v̂……. Adapted from Ref. †38‡.
sults associated with the base-flow �mean flow�. As mentioned
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arlier, in the vicinity of the bifurcation threshold, the base-flow
ffectively yields the experimental frequency; but for supercritical
eynolds numbers, one observes that the mean flow, rather than

he base-flow, has to be considered. One of the objectives in this
eview article is to explain these observations and show how a
lobal stability analysis may predict the frequencies of the flow
eyond the linear critical threshold, where nonlinearities are at
lay.

1.3.2 Noise-Amplifiers and Superposition of Eigenvectors in a
lobal Approach. A noise-amplifier-type dynamics may be ob-

erved when the base-flow is asymptotically stable, in which case
n external forcing is required to sustain unsteadiness. In this case
ll global modes of A are damped ���0�. As recognized by
refethen et al. �53� and Farrell and Ioannou �17�, the non-
ormality of the matrix A is of pivotal importance. Indeed, non-
ormal systems can exhibit strong responses for certain excitation
requencies, even though no eigenvalue of the system is close to
he excitation frequency. This phenomenon is called pseudoreso-
ance. Non-normality also induces that the eigenvectors of A are
onorthogonal and that a superposition of such structures may
ead to transient growth although all eigenvectors of A are
amped. This line of thought has been pursued first in the case of
arallel channel flows �16–18�.

Likewise, transient growth has first been viewed as a superpo-
ition of global modes in global stability approaches. For ex-
mple, in the case of a spatially developing Blasius boundary-
ayer, Ehrenstein and Gallaire �54�, Alizard and Robinet �55�, and
kervik et al. �56� computed a set of stable global modes from
hich they deduced optimal perturbations. The case of a separat-

ng boundary-layer displaying a recirculation bubble has recently
een analyzed, with the global mode approach, by Alizard et al.
57�. In open-flows, we will, in fact, show that studying noise-
mplifier type dynamics is prawn to difficulties when transients
re viewed as a superposition of global modes. The problem lies
n the fact that stable global modes are generally unphysical �in
he above defined sense, i.e., robustness to external matrix pertur-
ations, such as discretization errors�: For example, in the cylin-
er flow, none of the global modes are physical for the subcritical
eynolds number Re=20. The shortcomings of the stable global
odes to characterize a noise-amplifier-type dynamics in open-
ows will be further discussed in Sec. 6. Instead, it will be shown

hat the singular values and vectors of the global resolvent R
�i�I−A�−1 will prove useful to characterize such a dynamics.

1.3.3 How Local Instabilities in Weakly-Non-Parallel Flows
re Captured by Global Stability Analyses. Absolute instabilities,
uch as exponential Kelvin–Helmholtz instabilities in plane coun-
erflow mixing layers �58�, generally lead to unstable eigenvectors
n a global stability approach. Hence, oscillators are related to

ig. 3 Flow around a cylinder. Strouhal number versus Rey-
olds number. The thick solid line refers to experimental re-
ults †52‡, the thin solid line to a global linear stability analysis
n the base-flow, and the symbols to a global linear stability
nalysis on the mean flow. Adapted from Ref. †49‡.
bsolutely unstable flows in a local approach and to globally un-

30801-4 / Vol. 63, MAY 2010
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stable flows in a global approach. If one wishes to compare a
global mode stemming from a global stability approach to a global
mode stemming from a weakly-non-parallel approach, then the
linear saddle-point criterion by Monkewitz et al. �45� should be
considered in the weakly-non-parallel approach. In the case of the
cylinder flow, this comparison has been carefully achieved by Gi-
annetti and Luchini �59�, who showed that, despite the strong
nonparallelism of the flow, weakly-non-parallel results compare
reasonably well with those of a global stability approach �see thin
solid line of Fig. 3 of the present article�. On the other hand, the
strongly-non-linear criterion by Pier and Huerre �46� �associated
results are shown with filled squares in Fig.6 of Pier �48�� directly
targets the frequency of the bifurcated flow on the limit-cycle
�experimental results are recalled by a thick solid line in Fig. 3 of
the present article�. The results of the strongly-non-linear local
theory should therefore rather be compared with those of the
weakly-non-linear global analysis discussed in Sec. 3.4 �see, in
particular, Eq. �15��.2

In the case of noise-amplifiers, streamwise growth of perturba-
tions is expected, because of downstream advection by the base-
flow. If the instability is locally convective, as is the case in ex-
ponential Tollmien–Schlichting instabilities in boundary-layers or
exponential Kelvin–Helmholtz instabilities in plane coflow mix-
ing layers �58�, then the streamwise growth is exponential. But a
weaker streamwise algebraic growth may also exist in the case of
nonmodal instability �lift-up or Orr mechanisms�. In both cases
�streamwise exponential and streamwise algebraic growth�, an ex-
ponentially stable �in time� but algebraically unstable �in time�
flow is obtained in a global stability analysis. This link has been
established in the case of a model equation mimicking open-flows
�61� and for spatially developing boundary-layers �54,55�.

1.4 Control of Oscillators. In the present review article, flow
control specifically aims at suppressing unsteadinesses of oscilla-
tors by stabilizing the unstable global modes. The stabilization of
noise-amplifier flows will briefly be discussed in Sec. 6. Other
objectives such as flow separation control are not addressed here.
For a more comprehensive review on flow control, the reader is
referred to Gad- el-Hak et al. �62� and Collis et al. �63�. Generally
speaking, the control strategies may be classified into closed-loop
and open-loop control techniques, depending on whether the ac-
tuation is a function or not of flow measurements. Both strategies
are considered here and have been adapted to the context of global
stability analysis.

1.4.1 Open-Loop Control of Oscillators. A general presenta-
tion of open-loop control of wake flows is given in the article of
Choi et al. �64�. Various physical mechanisms may be involved in
open-loop control of oscillators, for instance, tuning of the system
to a given frequency by upstream harmonic forcing �Pier �65�� or
stabilizing the perturbation by acting on the base or mean flow
�Hwang and Choi �66��. Also various types of actuations may be
considered: passive actuations, as introducing a small object into
the flow �Strykowski and Sreenivasan �67��, active actuations, as
steady base blowing and suction �68–71�, or periodic actuations
�65,72�. The present review article will focus on a specific open-
loop control problem that was introduced by Strykowski and
Sreenivasan �67�. In the case of the cylinder flow, these authors
suggested to suppress the vortex-shedding process at supercritical
Reynolds numbers �Re�50–100� by introducing a small control
cylinder in the flow. Figure 4 reproduces their experimental re-
sults: For each Reynolds number, this figure indicates a region in
space inside which the placement of the small control cylinder

2Yet, for a given base-flow, poor results are expected from such a comparison,
since the weakly-non-linear analysis presented in Sec. 3.4 blows up in the case of
weakly-non-parallel flows �44,60�, while the validity domain of the nonlinear local
criterion by Pier and Huerre �46� is precisely restricted to weakly-non-parallel flows.
Still, both approaches are complementary and concern different base-flows �weakly-
non-parallel base-flows for the local approach and strongly-non-parallel ones for the

global approach�.
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uppresses the von Kármán vortex street. For Reynolds numbers
lose to the bifurcation threshold Re=48, there are two co-
xisting stabilizing regions: The first one is located on the sym-
etry axis close to �x0=2,y0=0�, and the second one is located on

ither side of the symmetry axis near �x0 ,y0�= �1.2, �1�. As the
eynolds number increases, the first stabilizing region disappears,
hile the second becomes increasingly smaller near �x0 ,y0�
�1.2, �1�. The same optimal positions were found by Kim and
hang �73� and Mittal and Raghuvanshi �74� from direct numeri-
al simulations, and by Morzynski et al. �75� from global stability
nalyses. All these approaches successfully determined the opti-
al placement of a control cylinder to suppress the vortex shed-

ing, but required that various locations of the control cylinder be
ested and either experimental measurements, direct numerical
imulations, or global stability analyses be carried out in each
ase. This review will address a new formalism based on global
tability and sensitivity analyses, which allows predicting before-
and the regions of the flow where a control cylinder will be
ffective. This approach may also be viewed as an optimization
roblem �Gunzburger �76�� with a specific cost functional being
he eigenvalue of the unstable global mode, the constraints the
avier–Stokes equations, and the control variable a force exerted
n the base-flow, which mimics the presence of a control cylinder.
his formalism may also deal with active control, such as steady
ase blowing and suction �77,78�.

1.4.2 Closed-Loop Control of Oscillators and
educed-Order-Models. Automatic control engineers have devel-
ped rigorous methods for closed-loop linear system control. Two
ommon approaches based on H2- and H�-control are presented
n Refs. �79,80�. These techniques were introduced to fluid me-
hanical application by Joshi et al. �81�, Bewley and Liu �82�,
ortelezzi and Speyer �83�, and Högberg et al. �84� for the closed-

oop control of channel flow transition. Hœpffner et al. �85� and
hevalier et al. �86� showed that a stochastic modeling of the
easurement noise, of the initial condition, and of the external

erturbations could appreciably improve the performance of an
stimator. The control of a spatially developing boundary-layer
as undertaken by Högberg and Henningson �87� using full-state

nformation control and by Chevalier et al. �88� using an estima-
or. Drag reduction in turbulent flows was achieved by Cortelezzi
t al. �89� and Lee et al. �90� �see Ref. �91� for a review�. A
ummary of these results can be found in Refs. �92,93�.

When applying flow control techniques in a global setting, a
ajor difficulty arises. The very significant number of degrees of

reedom of the system prevents the direct implementation of the
2- and H�-control strategies. For example, the Riccati equa-

ions, a central equation for determining the control and Kalman
ain, cannot be solved for a number of degrees of freedom greater
han about 2000. The solution does not only become prohibitive
wing to restrictions in memory resources, the precision of the
alculations using standard algorithms is compromised as well.
or example, Lauga and Bewley �94� showed, using a one-

ig. 4 Flow around a cylinder. Flow stabilization regions ob-
ained experimentally for various Reynolds numbers. Adapted
rom Ref. †67‡.
imensional model equation of open-flow, that the Riccati equa-
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tions could not be solved with sufficient accuracy using 8-byte
real arithmetic. As a response to these problems, Antoulas �95�
showed how reduced-order-models of the flow-field, with a small
number of degrees of freedom, may be built to capture—not all
but—the most relevant features of the flow dynamics for the de-
sign of a control law. A physics-based way to do this is to look for
a projection basis that complies with these requirements and then
to project the governing equations on it.

The choice of the projection basis is crucial for good perfor-
mance. Åkervik et al. �39� implemented a compensator for the
first time in a global stability approach: Considering a reduced-
order-model based on unstable global modes and few stable global
modes, they implemented a H2-control strategy to stabilize an
unstable shallow cavity flow. Global modes thus seem to consti-
tute a first candidate for model reduction �96�. Antoulas �95� has
noted, however, that the least damped eigenvectors do not gener-
ally constitute an appropriate basis for model reduction. A proper
reduced-order-model is one which best approximates the input-
output transfer function of the full �unreduced� system. Moore
�97� showed how a basis for such an approximation may be found.
After defining the controllability and observability Gramians
�which yield a measure of controllability and observability of the
system�, he showed that the eigenvectors of the product of these
two Gramians constitute a quasi-optimal basis in terms of the
criterion defined above. This basis consists of balanced modes that
are equally controllable and observable. Laub et al. �98� found an
optimal and accurate algorithm for the calculation of this basis.
However, this algorithm does not allow for large-scale systems. It
was Willcox et al. �99� and Rowley �100� who would overcome
this difficulty: they showed that the Gramians can be approxi-
mated using two series of snapshots resulting from two different
numerical simulations and that the algorithm of Laub et al. �98�
can be generalized to take into account these approximate Grami-
ans. Due to the use of snapshots, this technique is also referred to
as “balanced proper orthogonal decomposition” to highlight the
connection of Rowley’s algorithm �100� with proper orthogonal
decomposition �POD� �see Refs. �101–103��. Moreover, Rowley
�100� noted that the eigenvectors of the controllability Gramian
�instead of the product of the Gramians� yield a POD-type basis. It
should be noted that all these algorithms are based on the singular
value decomposition of a matrix. The technique of Rowley �100�
has been applied to several stable flows: Ilak and Rowley �104�
studied a channel flow, and Bagheri et al. �105� investigated a
one-dimensional model equation mimicking an open-flow and a
boundary-layer flow �106�. Ahuja and Rowley �107� looked at a
first unstable case corresponding to flow about a flat plate at an
AoA of 35 deg.

Several bases for model reduction are available. Balanced
modes constitute the best basis to reproduce the input-output dy-
namics of the full-system. However, more traditional bases, such
as the modal basis or the POD basis, are also possible. As far as
the stability of reduced-order-models is concerned, one notes that
within a linearized framework, a stable matrix A yields a stable
reduced-order-model if the latter is based on global modes, bal-
anced modes, or POD-modes, independent of the dimension of the
reduced-order-model. This remarkable property does not exist for
the nonlinear case. Additional features, such as eddy viscosity,
may then be used to stabilize the reduced-order-models �108�.
Along this line, Samimy et al. �109� recently succeeded in experi-
mentally controlling the unsteadiness of an open cavity. The
reduced-order-model was given by a Galerkin projection of the
2D compressible Navier–Stokes equations on the leading POD-
modes, obtained from velocity snapshots thanks to particle-image-
velocimetry measurements. An estimate of the perturbation was
given by stochastic estimation, which correlates surface pressure
data with the perturbation structure, described in the POD basis.
Linear-quadratic-regulators were then used to design the control
gains.
All the previously mentioned reduced-order-models were
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hysics-based: They were obtained from projection of the govern-
ng equations onto a given basis. Yet, one may also proceed with
ystem identification techniques to build reduced-order-models.
or example, the eigenvalue-realization-algorithm �Juang and Pa-
pa �110�� identifies directly from the input-output data a linear
tate-space model. For data arising from a linear large-scale model
for example, data stemming from a simulation or an experiment
ith small-amplitude perturbations superposed on a base-flow�,
a et al. �111� showed that this algorithm has strong links with

alanced-POD: The identified reduced-order state-space model
ctually governs the dynamics of the leading balanced modes. If
ne is able to store the state snapshots along with the input-output
ata �the Markov parameters�, then the direct balanced modes
ay even be reconstructed. Note, however, that, in general, the

mplitude of the perturbations is not small and the large-scale
odel is fully nonlinear, so that identifying a linear reduced-

rder-model from an underlying nonlinear dynamics may be ill-
osed and prawn to difficulties. Finally, in order to determine
ccurately the Markov parameters, especially in a noisy environ-
ent, one may try, before applying the eigenvalue-realization-

lgorithm, to identify the input-output behavior, from the actuator
o the measurement, with an empirical model containing a number
f model parameters �for example, autoregressive linear and non-
inear models�. Then, the unknown model parameters are esti-

ated through error minimization techniques using the input-
utput data from the experiment �Huang and Kim �112��.

Our objective, within this review article, is to show how effi-
ient reduced-order-models may be built from a global stability
pproach, in order to stabilize unstable global modes in open-
ows, within a modern control framework. The models are ob-

ained through projection of the linearized Navier–Stokes equa-
ions on various bases �modal, POD, and balanced-POD�. As
hown in Fig. 5, we choose an open cavity with a measurement
ownstream of the cavity and an action near its upstream corner.

1.5 Outline of Article. First �Sec. 2�, the central notion of
djoint global mode will be defined. In Sec. 3, the bifurcations in
arious oscillator flows �cylinder and open cavity� are examined.
n particular, the role of nonlinearities in the prediction of the
ominant frequency of the unsteadiness, the generation of mean
ows, and the stability properties of the latter will be studied. The
ensitivity of the eigenvalues and the open-loop control approach
o suppress unsteadiness are presented next �Sec. 4�. Then, recent
evelopments in the field of closed-loop control and model reduc-
ion �Sec. 5� are described. The next section �Sec. 6� is devoted to
he case of noise-amplifiers and their open-loop control. Finally,
ssues related to three-dimensional configurations, nonlinearity,
nd high-Reynolds number flows �Sec. 7� are discussed.

Adjoint Global Modes and Non-Normality
Within the framework of local stability theory, the concept of

djoint equations and operators appeared when amplitude equa-
ions were constructed from weakly-non-linear theory. The adjoint

ode is then required to enforce the compatibility conditions of
onhomogeneous problems �113,114�. Optimization techniques
ased on adjoints �76� were first introduced in fluid mechanics by

ig. 5 Flow over an open cavity. Configuration and location of
he actuator and sensor. Adapted from Ref. †141‡.
ill �115� and Luchini and Bottaro �20� for receptivity studies and
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by Bewley �92� and Corbett and Bottaro �116� for optimal control
of instabilities. Note also that Bottaro et al. �117� introduced the
concept of sensitivity of an eigenvalue with respect to base-flow
modifications.

In a global framework, adjoint methods were first used in the
context of shape optimization. By considering an objective func-
tional depending on a large number of degrees of freedom, the
adjoint system appears naturally when the gradient of the func-
tional with respect to a change in the geometry is sought
�118–120�. Hill �121� and Giannetti and Luchini �59� were the
first to use adjoint techniques to study the sensitivity of global
modes.

In the following, the adjoint global modes and the modal basis
will first be defined �Sec. 2.1�. Then, we show that the nonor-
thogonality of the modal basis may be quantified by looking at the
angles of associated direct and adjoint global modes �Sec. 2.2�.
Then, we show why the adjoint global modes are different from
the direct global modes in the case of linearized Navier–Stokes
equations �Sec. 2.3�. In particular, we will see that, in the case of
open-flows, a specific convective mechanism induces very strong
non-normalities.

2.1 Adjoint Global Modes and Modal Basis. Let � be an
eigenvalue associated with the direct global mode û. The structure
û is therefore an eigenvector of the matrix A and satisfies Eq. �5�.
We know that the spectrum of A� is equal to the conjugate of the
spectrum of A, and thus there exists ũ such that

A�ũ = ��ũ �8�

with the normalization condition �ũ , û�=1. The quantity ũ is
called the adjoint global mode associated with the direct global
mode û. In the case of a cylinder flow at Reynolds Re=47, the
adjoint global mode is presented in Fig. 6, with the isocontours
showing the real part of the cross-stream component of the veloc-
ity. We notice that this structure is located in the region x�5 and,
in particular, upstream of the cylinder.

The modal basis is made up of the complete set of direct global
modes �û j , j�1�. In the case of a non-normal matrix, the global
modes are nonorthogonal. Hence, it is not straightforward any-
more to expand a given vector u� in this basis. For example, the
component of u� on the jth global mode û j is not simply
�û j ,u�� / �û j , û j� as would have been the case for a normal matrix.
To circumvent this difficulty, one introduces a dual basis, which is
made of the complete set of adjoint global modes �ũ j , j�1�. The
vectors û j and ũ j are related to the eigenvalues � j by

Aû j = � jû j �9�

A�ũ j = � j
�ũ j �10�

where the adjoint global modes are normalized following
�ũ j , û j�=1. The direct and adjoint bases taken together form a

˜ ˆ ˜ ˆ

Fig. 6 Flow around a cylinder for Re=47. Marginal adjoint glo-
bal mode. The structure is visualized by isocontours of the real
part of the cross-stream velocity „R„v̂……. Adapted from Ref.
†38‡.
bi-orthogonal basis: �u j ,uk�=0 if j�k and �u j ,uk�=1 if j=k. Any
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eld u� can therefore be expressed in a unique way in the modal
asis as u�=	 j�1�ũ j ,u��û j. Note that, if the Jacobian matrix is
ormal, then the basis is orthogonal and the direct and adjoint
lobal modes are identical. If it is non-normal, then the modal
asis is nonorthogonal and the direct and adjoint global modes are
ifferent.

2.2 Nonorthogonality and Adjoint Global Modes. As men-
ioned in Secs. 1.2 and 1.3.2, the level of nonorthogonality of the

odal basis is central in the analysis of short-term instabilities. It
ay be assessed by comparing the direct and the adjoint global
odes: In Sec. 2.1, it was found that the jth adjoint global mode
as orthogonal to all direct global modes except the jth

�ũ j , ûk�=0 if j�k�. Therefore, the angle between the adjoint glo-
al mode ũ j and the direct global mode û j exactly characterizes
he nonorthogonality of û j with the remaining global modes of the
asis. For a specific global mode û, this angle is directly related to
he following coefficient:

	 = 
�ũ,ũ� 
 
�û,û� �11�

iven that �ũ , û�=1, it can easily be shown that this coefficient
atisfies 	�1. The larger 	, the more nonorthogonal the global
ode û is with respect to the remaining global modes of the basis.
or the case of a flow around a cylinder at Re=47, we find that
=77.7

2.3 Component-Type and Convective-Type Non-
ormalities. Analyzing the linearized Navier–Stokes equations, it
as shown �122� that two sources of non-normality exist in open-
ows. To see this, Eqs. �5� and �8� governing the direct and ad-

oint global modes were written in the form

he notation �û refers to the tensor � jûi and · to the contraction
perator. Two main differences, favoring orthogonality of the di-
ect and adjoint global modes, exist in these equations.

1. We observe that terms �1�, which represent the advection of
the perturbation by the base-flow, have opposite signs in
these two equations: The direct global mode is advected
downstream while the adjoint global mode is advected up-
stream. This sign inversion causes a separation of the spatial
support of the associated direct and adjoint global modes
�upstream support for the adjoint mode and downstream
support for the direct mode�. This tends to make the direct
and adjoint global modes be orthogonal and constitutes the
so-called convective-type non-normality �44,61�. For the
case of the flow around a cylinder, this phenomenon is illus-
trated in Figs. 2 and 6, where we observe that the direct
global mode is located downstream of the cylinder and the
adjoint global mode mainly upstream of it.

2. The appearance in the adjoint equations of a transconjugate
operator � in terms �2� causes the associated direct and ad-
joint global modes to have amplitudes in different velocity
components. This constitutes the so-called component-type
non-normality. For example, in a shear-layer flow defined by
the streamwise base velocity profile uB�y�, the off-diagonal
term �yu

B in the velocity gradient tensor induces streamwise
velocity perturbations from cross-stream velocity perturba-
tions in the direct global mode; in contrast, in the associated
adjoint global mode, it generates cross-stream velocity per-

turbations from streamwise velocity perturbations. The tra-
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ditional lift-up phenomenon is hence recovered, where the
optimal perturbation consists of a streamwise vortex and the
optimal response of a streamwise streak �14–16,18�. For the
case of the marginal eigenmodes of the disk and the sphere
�123�, it was shown that the amplitudes of the �m=1� heli-
coidal direct eigenvectors were entirely concentrated in the
streamwise component, while the corresponding adjoint
modes were dominated by the cross-stream components. The
same tendency was observed �122� for the three-dimensional
nonoscillating marginal global mode that destabilizes a re-
circulation bubble in a Cartesian setting �36,37,124�. On the
other hand, nonorthogonality due to component-type non-
normality was never observed for two-dimensional instabili-
ties occurring in cylinder and open-cavity flows, where the
streamwise and cross-stream components of the perturba-
tions were equally found present in the direct and adjoint
global modes.

The amount of nonorthogonality due to component-type non-
normality within total nonorthogonality 	 is given by �123�

� =
��ũ�,�û��

	
�12�

where �u�= �u ·u�1/2 stands for the norm induced by the standard
Hermitian inner product u ·u, at some given location of the flow.3

By using the Cauchy–Schwartz inequality, it can be shown that
the coefficient � satisfies 0���1. This coefficient allows us to
determine whether the nonorthogonality of a global mode stems
from component-type or convective-type non-normality: If � is
close to 0, the nonorthogonality stems from the convective mecha-
nism, and if this coefficient is close to 1, the nonorthogonality is
mostly due to the component-type non- normality. For the case of
the flow around a cylinder at Re=47, we find that �=0.016. Simi-
larly, for the case of the marginal global modes of the disk and the
sphere �123�, nonorthogonality due to the component-type non-
normality was also found to be small compared to the nonorthogo-
nality due the convective-type.

3 Oscillator Flows, Global Modes, and Prevision of
Frequencies

The dynamics of oscillators is described using dynamical sys-
tems and bifurcation theory. These approaches were initially de-
veloped for and applied to simple closed-flows �125�. Chomaz
�44� introduced them to open-flows, using a model equation rep-
resentative of open-flows.

3.1 The Hopf Bifurcation in Cylinder Flow. The first am-
plitude equation derived from the two-dimensional Navier–Stokes
equations for open-flows was worked out for the case of cylinder
flow �38�. A Stuart–Landau equation describing a Hopf bifurca-
tion is thus obtained that governs the amplitude of a global struc-
ture. If the latter is evaluated at a particular point of the flow then
one recovers the results of Provansal et al. �126� and Dušek et al.
�127�, who postulated its existence and calibrated its coefficients
so that its dynamical behavior reproduces experimental or numeri-
cal data at a given location in the flow. It is known that this Hopf
bifurcation appears at Re=47: The flow is steady and symmetrical
for a subcritical control parameter Re�47, and unsteady and
asymmetrical for Re�47. This phenomenon is described sche-
matically in Fig. 7�a� where the x-axis represents the control pa-
rameter �the Reynolds number Re�. On the left of the figure, the
small picture shows the characteristic isocontours of vorticity of
the flow-field, observed for a subcritical Reynolds number �blue
cross�: The flow is symmetrical and steady. The picture on the top

3Note that � · � acts on a vector and not on a vector field. On the other hand,
dependent on the specific context, �· , ·� represents a scalar product acting on scalar

fields or vector fields so that ��u� , �u��= �u ,u� yields the energy of the flow-field u.
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elates to a supercritical Reynolds number �red cross� and presents
n instantaneous field representative of the unsteady dynamics.
he bifurcation diagram of Fig. 7�a� is constructed in the follow-

ng way. First, a family of base-flows uB�Re� is determined, which
s parametrized by the Reynolds number Re. These fields are so-
utions of the steady Navier–Stokes equations, as defined by Eq.
2�. For Re�Rec, these flow-fields can be obtained by a direct
umerical simulation: All initial conditions converge toward a
ingle field, which is steady and symmetrical. Such fields also
xist for Re�Rec, even if these fields are not observed, since they
re unstable. For example, the lower right picture of Fig. 7�a�
hows the steady unstable base-flow related to the red cross on the
-axis. Continuation techniques, such as the Newton method, are
sed to obtain these fields. Next, for each Reynolds number, the
tability of the associated base-flow is studied by solving eigen-
alue problem �5�. The eigenvalues corresponding to the subcriti-
al case �blue cross� and supercritical case �lower red cross� are
isplayed schematically in the �� ,��-plane in Fig. 7�b�: The base-
ows are observed to be stable in the subcritical case and unstable

n the supercritical case. Thus, the base-flow related to the red
ross on the x-axis is unstable and the flow converges toward a
onlinear Hopf limit-cycle �red cross on the bifurcated branch�.
n the latter, the flow is unsteady, periodic in time, and

symmetrical.
To conclude, we should point out that this review does not

onsider bifurcations where two branches of steady solutions
ross for some critical value of the control parameter. This hap-
ens when a real nonzero vector û appears in the null-space of the
acobian matrix: Aû=0. In this case, the marginal global mode is
onoscillating ��=0� and has the same symmetries and homoge-
eity directions as the base-flow. The flow around a cylinder does
ot belong to this bifurcation category since it breaks the temporal
nvariance of the base-flow ���0� as well as its spatial symme-
ry.

3.2 Bifurcation Theory, Control, and Influence of
onlinearity. The control strategies studied in this review article

onsist of stabilizing the unstable eigenvalues, as shown in Fig.
�b�. The open-loop control, which is steady, aims at modifying
he base-flow to make it stable; this control is steady. Given that
his control approach suppresses instabilities, the effects of non-

ig. 7 Flow around a cylinder. „a… Bifurcation diagram. „b… The
east damped eigenvalues in the „� ,�…-plane for subcritical,
ritical, and supercritical Reynolds numbers.
inearity within this control strategy are minimal: With instabili-
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ties eliminated, there no longer exists any mechanism to generate
perturbations of large amplitudes. The closed-loop control, on the
other hand, acts directly on the perturbations to stabilize the sys-
tem. This control is unsteady and corresponds to an opposition
control, where one attempts to generate structures that annihilate
the naturally developing unstable perturbations. It thus stabilizes
the steady unstable branch, which exists for Re�Rec. Since the
underlying mathematical formalism is only valid for flow states in
the vicinity of the base-flow around which the Navier–Stokes
equations have been linearized, this linear control action does not
manage a priori to drive the flow from a limit-cycle toward the
steady unstable branch. Rather, this approach can only ensure the
stabilization of the system on this branch if the initial flow state
has already been in its neighborhood. In principle, open-loop con-
trol is more costly than closed-loop control, with the former acting
on the base-flow and the latter on the perturbations.

3.3 Problems Related to the Mean Flow. The mean flow
corresponds to the temporal average of an unsteady flow. Its char-
acteristics are often studied in numerical simulations and in ex-
periments since it can be rather easily obtained. However, several
questions arise. Is the mean flow different from the base-flow? If
so, why and by how much? What does it mean to perform a
stability analysis on a mean flow? New light will be shed on these
points. The link between nonlinearities and the induced mean flow
was first described by Zielinska et al. �128� for the case of wake
flows. These authors showed that the nonlinearities were rather
strong, resulting in a mean flow that substantially deviated from
the base-flow. These nonlinearities are responsible for the de-
crease in the recirculation length observed at supercritical Rey-
nolds numbers. Barkley �49� then studied the stability properties
of mean flows. To this end, direct numerical simulations for Rey-
nolds numbers between 47 and 180 were carried out. The corre-
sponding mean flows were calculated by time-averaging the snap-
shots from the simulations, and global stability analyses of these
mean flows were performed. The author observed, unexpectedly,
that the amplification rates related to the mean flows were quasiz-
ero and that the frequencies were in agreement with the ones
observed in the direct simulations. Although these results seem
natural at first sight, they are nevertheless surprising since the
mean flow is a statistical construct with no immediate inherent
meaning, which makes the associated linear dynamics around it
doubtful. In the same spirit, Piot et al. �129� observed good agree-
ment between the frequencies extracted from large-eddy simula-
tions and those predicted by stability analyses of the mean flow
for the case of jets. As mentioned in the Introduction, for wake
flows, Hammond and Redekopp �47� and Pier �48� showed that
linear stability analyses of the mean flow can identify the true
frequency of the flow. For the case of flow around a cylinder, we
will provide a proof that corroborates the observations of Barkley
�49�. In general, however, it will be shown that certain conditions
have to be satisfied such that the linear dynamics based on the
mean flow captures relevant properties of the flow, in particular,
the marginal stability of the mean flow and the agreement between
the associated frequencies with the nonlinear dynamics.

3.4 Hopf Bifurcation and Limit-Cycle. Global stability
analysis is practical to describe the linear dynamics of oscillator
flows. For Reynolds numbers above a critical value, however, it
predicts the existence of exponentially growing perturbations in
time, thereby invalidating, for large but finite time, the small-
amplitude assumption underlying the linear stability theory. In
other words, in the presence of instabilities, there exists a time
beyond which the nonlinear terms can no longer be neglected. The
nonlinear dynamics is studied in this section, based on a weakly-
non-linear analysis. An asymptotic development of the solution in
the vicinity of the bifurcation threshold is sought, where the small
parameter 
=Rec

−1−Re−1 designates the departure of the Reynolds
number from the critical Reynolds number. More precisely, the

global flow-field u�x ,y , t� is taken in the form �38�
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u�x,y,t� = u0�x,y� + 

�Aei�0tû1
A�x,y� + c.c.� + 
�û2

1�x,y�

+ �A�2û2
�A�2�x,y� + �A2e2i�0tû2

A2
�x,y� + c.c.�� + . . .

�13�

here c.c. denotes the complex conjugate. The dominant term in
his expansion corresponds to the base-flow uB=u0�x ,y� obtained
or Re=Rec and is represented in Fig. 1. The solution at order 


onsists of the marginal global mode Aei�0tû1

A+c.c., which satis-
es the eigenvalue problem Aû1

A= i�0û1
A for Re=Rec �Eq. �5��.

he time evolution of this structure is described by the frequency
0=0.74 and by its complex amplitude A, which is assumed to
volve on a slow characteristic time-scale A�
t�. The marginal
lobal mode is depicted in Fig. 2. The solution at order 
 consists
f three terms: the correction of the base-flow û2

1 due to a depar-
ure from criticality,4 the zeroth-order or mean-flow harmonic

A�2û2
�A�2 resulting from the nonlinear interaction of the marginal

lobal mode with its complex conjugate, and the second-order

armonic A2e2i�0tû2
A2

related to the interaction of the marginal
lobal mode with itself. At order 


, nonhomogeneous, linearly
egenerate equations appear. Compatibility conditions have thus
o be enforced, which lead to a Stuart–Landau equation

dA

dt
= 
�A − 
�� + ��A�A�2 �14�

hich describes the slow time evolution of the complex amplitude
. The complex coefficients �, �, and � are obtained �38� from
calar products involving the adjoint global mode ũ1

A, which is
epicted in Fig. 6, and forcing terms depending on the various
elds that have been introduced in Eq. �13�. The first term on the
ight-hand side of Stuart–Landau equation �14� represents the lin-
ar instability dynamics while the second term describes the non-
inear mechanisms. The linear instability phenomenon is com-
letely determined by the coefficient �. It was shown �38� that
r�0, which indicates that the flow is unstable for supercritical
eynolds numbers �
�0�. As for the nonlinear mechanisms, they
re characterized by the coefficients � and �, which are, respec-

ively, related to the zeroth-order harmonic û2
�A�2 and second-order

armonic û2
A2

. It turned out �38� that �r+�r�0, which implies
hat the system converges toward a limit-cycle: The nonlinear
erm has a stabilizing effect on the dynamics.56 On this limit-
ycle, the frequency of the flow in the vicinity of the bifurcation

�1� is

�LC = �0 + 
�i − 
�r

�i + �i

�r + �r
�15�

here the first term on the right-hand side is the frequency of the
arginal global mode and the second term is the linear correction

f the frequency due to departure from criticality. The sum of
hese two terms corresponds to the linear prediction of the fre-
uency �B=�0+
�i. The third term in Eq. �15� is the nonlinear
orrection due to contributions of the zeroth-order and second-
rder harmonics. The numerical evaluation of these terms gives

4In fact, û2
1=duB /d
 since the base-flow uB�
� depends on the Reynolds number

.
5Chomaz �44� argued that the more the flow is parallel, the smaller ��r+�r�. This

tems from the fact that, the more the flow is parallel, the further apart are the spatial
upports of the direct and adjoint global modes. Hence, the mean flow and second-
rder harmonics have less and less impact on the dynamics since their support is
ore and more outside the wavemaker region �see Sec. 4.2.2 for definition�. In this

ase, one has to resort to a strongly-non-linear approach, as presented by Pier and
uerre �46�.

6The cylinder bifurcation corresponds to a supercritical instability; i.e., the flow is
nstable solely for supercritical parameters 
�0. If �r+�r�0, then the bifurcation
ould be subcritical and an instability of an open-flow may arise for subcritical

arameters 
�0 but only for finite-amplitude perturbations �130,131�.
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�LC=0.74+3.3
+31
. It clearly indicates that the nonlinear cor-
rection is much larger than the linear correction. The frequency of
the limit-cycle �LC is thus significantly different from the linear
prediction �B, which explains why a global stability of the base-
flow may yield a very poor prediction of the frequency observed
in direct numerical simulations for supercritical Reynolds num-
bers 0�
�1. Finally, a comparison of the coefficients from the
nonlinear correction term shows that ��r��r� and ��i��i�. The
zeroth-order harmonic is therefore mainly responsible for the
change in the frequency of the limit-cycle.

Note that, in the case of an axisymmetric disk placed perpen-
dicular to the incoming flow, a similar development has been led
�132� in order to determine the global amplitude equations asso-
ciated with the codimension 2 bifurcation. It was shown that the
amplitude equations reproduce precisely the complex bifurcation
scenario observed in direct numerical simulations by Fabre et al.
�133�.

3.5 Mean Flow and Stability of Mean Flow. As mentioned
previously, a global stability analysis of the mean flow yields
surprisingly a good approximation of the frequency obtained from
direct numerical simulations �49�. In this section the concept of
mean flows and global stability of mean flows are addressed in
light of the weakly-non-linear analysis presented above. While the
base-flow is given by uB=u0+
û2

1, the mean flow uM related to
the limit-cycle is obtained by calculating an average over time7 of
expansion �13�: uM =u0+
û2

M. Here û2
M is equal to the sum of the

base-flow correction û2
1 and the mean-flow harmonic �A�2û2

�A�2. In
Fig. 8, the streamwise velocity component for the base-flow u0,
for the correction of the base-flow û2

1, and for the correction of the
mean flow û2

M, evaluated on the axis of symmetry, is displayed.
We observe that the recirculation zone of the base-flow at the
bifurcation threshold extends up to x=3.2 diameters. The correc-
tion of the base-flow û2

1 tends to increase this length �û2
1�0 in the

wake� whereas the correction of the mean flow shortens it �û2
M

�0 for x�2.25�. This confirms the observations of Zielinska et
al. �128� concerning the mean flow.

The stability of the mean flow has then been addressed in detail

7If � �T denotes the process of averaging over time, we thus obtain uM = �u�t��T.
Letting u=uM +u� with �u��T=0 and averaging Eq. �1�, the following equation gov-
erning the mean flow is obtained: R�uM�=−�R�u���T. It is noted that the mean flow
uM is not a base-flow, i.e., a solution of Eq. �2�. For our case, we get u�


 i�0t ˆ A

Fig. 8 Flow around a cylinder for Re=47. Streamwise velocity
on the symmetry axis for the base-flow u0 „dotted line…, for the
correction of the base-flow û2

1
„continuous line… and for the cor-

rection of the mean flow û2
M
„dashed line…. Adapted from Ref.

†38‡.
= 
�Ae u1�x ,y�+c.c.� at the dominant order.
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38�. In particular, it is shown that the amplification rate �M and
requency �M of the global mode associated with the mean flow
re given by

�M = 
�r
�r

�r + �r
, �M = �0 + 
�i − 
�r

�i

�r + �r
�16�

e observe that the frequency �M is not strictly equal to the
requency of the flow on the limit-cycle �LC, which was given in
q. �15�. Also, the growth rate �M is not strictly zero. Comparing

hese equations, we can see that the global stability of the mean
ow gives a good prediction of the frequency of the limit-cycle, if

��i/�i� � 1 �17�

nd that the mean flow is marginally stable, if

��r/�r� � 1 �18�

ince � and �, respectively, result from interactions of the mar-
inal global mode with the zeroth-order and second-order har-
onics, the above criteria can be physically interpreted as the

redominance of the zeroth-order harmonic in the saturation pro-
ess. For the case of the flow around a cylinder, ��r /�r����i /�i�
0.03 is obtained, which explains that �M �0 and �M ��LC.

his gives a theoretical justification of the results of Barkley �49�.
t can be further shown that the two conditions stated above are
ot satisfied for the case of an open-cavity flow. Consequently, the
ssociated mean flow is not stable, and the frequency of its global
ode is not equal to the frequency of the observed unsteadiness.

Sensitivity of Eigenvalues and Open-Loop Control
First, we will show how the use of the modal basis defined in

ec. 2.1 may yield an elementary form of sensitivity and open-
oop control approach �Sec. 4.1�. We will then see how an adjoint
lobal mode can be used to acquire information about the sensi-
ivity of an eigenvalue �Sec. 4.2� or to predict the influence of a
mall control cylinder on the dynamics of a flow �Sec. 4.3�.

4.1 Toward Sensitivity and Open-Loop Control. Let us de-

ermine a forcing f̂ that maximizes the response û at a given

requency. The equation that links f̂ to û is given by

�i�I − A�û = f̂ �19�

n the modal basis, the solution of this equation can be written as

û = 	
j�1

�ũ j, f̂�
i� − � j

û j �20�

he response of the jth component of û is thus strongest when the
jth eigenvalue � j is closest to the excitation frequency i� and the

tructure of the global forcing f̂ closest to the jth adjoint global

ode ũ j, so as to maximize �ũ j , f̂� / �i�−� j�. Hence, to excite the
jth global mode û j �with eigenvalue � j� as much as possible, the
orcing must be applied at the frequency �=I�� j� with a spatial
tructure of the forcing equal to the one of the adjoint global mode

j.
8 This control strategy has been explored for various flows. The

ensitivity of the three-dimensional nonoscillating marginal global
ode for a recirculation bubble in a Cartesian configuration has

een considered in Ref. �122�. A similar analysis was carried out
or axisymmetric configurations based on the marginal global

8It should be noted that this approach is only rigorously justified in the case of a
arginal global mode forced in the vicinity of its natural frequency. In fact, it is the

ntire sum in Eq. �20� that should be considered as the functional objective and not
ust the response in a particular component. The relevant concept here should be the
ingular value decomposition of the resolvent that seeks the maximum response
ssociated with a given forcing energy. This will be further discussed in the section

ealing with noise-amplifiers in Sec. 6.
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modes of a sphere and a disk �123�.
The modal basis introduced previously may also be useful to

select the initial condition to maximize energy amplification at
large times. To this end, the system is formulated in the time
domain

du�

dt
= Au�, u��t = 0� = uI �21�

and the solution can be written as

u� = 	
j�1

�ũ j,u
I�e�jtû j �22�

At large times, this solution is dominated by û1, since this mode is
the least damped �or most unstable� mode. The amplitude of this
mode is proportional to �ũ1 ,uI�. Consequently, the initial pertur-
bation that maximizes energy for large times corresponds to the
most unstable adjoint global mode ũ1. This strategy was pursued
for the optimization of the Crow instability in vortex dipoles
�134�. It was also used by Marquet et al. �122� and Meliga et al.
�123� in their analysis of a recirculation bubble in a Cartesian
setting and of the wake of a disk and a sphere.

4.2 Sensitivity of the Eigenvalues. A formalism for open-
loop control has been introduced �135� that enables the accurate
prediction of the stabilization regions determined experimentally
by Strykowski and Sreenivasan �67� and presented in Fig. 4. Fol-
lowing the precursory work of Hill �121�, the idea is to consider
the eigenvalue � as a function of the base-flow uB and the base-
flow uB, in turn, as a function of an external forcing f. This forc-
ing is intended to model the presence of a small control cylinder.
This functional relation is formalized as

f →
R�uB�+f=0

uB →
A�uB�û=�û

� �23�

The control problem is illustrated in Fig. 9. The horizontal axis
represents the forcing f while the vertical axis displays the ampli-
fication rate �=R���. The continuous curve represents the func-
tion ��f�. For f=0, the amplification rate is positive; that is, the
uncontrolled system is unstable. To stabilize the system, we try to
find a particular forcing f such that ��f��0. This problem is dif-
ficult to solve owing to the many degrees of freedom of f. We
focus on the gradient of the function ��f� evaluated at f=0, that is,
for the case of an uncontrolled system. This will provide us with
invaluable information regarding the most sensitive regions for
control based on the underlying physics. We note that the nonlin-
ear optimization problem that uses gradient calculations for de-
scent algorithms will not be addressed in this review. Given the
expression ��f�=��uB�f��, the evaluation of the gradient of the

Fig. 9 Open-loop control by action on the base-flow by an ex-
ternal forcing. Diagram displaying the law �„f….
function ��f� requires prior knowledge of the gradient of the func-
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ion ��uB�. This requirement is the subject of Sec. 4.2.1; the com-
lete evaluation of the gradient of ��f� is the focus of Sec. 4.2.4.
he gradient of ��uB� can be interpreted as the sensitivity of the
igenvalue with respect to a modification of the base-flow. A local
ersion of this theory has been derived by Bottaro et al. �117�; in
hat follows, this formalism is extended to the global framework.

n Sec. 4.2.2, we address the “wavemaker” notion, which is meant
o identify the regions in space that are at the very origin of the
nstability. In Sec. 4.2.3, the expression of the gradient of ��uB�
ill reveal that the stabilization or destabilization of a flow can be

inked either to a strengthening of the downstream advection of
he perturbations or to a weakening of their production.

4.2.1 Sensitivity of the Eigenvalues to a Modification of the
ase-Flow. Let � be an eigenvalue associated with a direct global
ode û via eigenvalue problem �5�. Recalling that � is a function

f uB, the following expression can be obtained by differentiation:

�� = ��uB�,�uB� �24�

he quantity �uB�, for which an explicit expression will be given
n this subsection, represents the sensitivity of an eigenvalue to a
odification of the base-flow. It is a complex vector field defined
ver the entire flow domain; its real part �imaginary� defines the
ensitivity of the amplification rate �uB�=R��uB�� �the sensitiv-
ty of the frequency �uB�=−I��uB��� to a modification of the
ase-flow. The variation �� in Eq. �24� is defined using the scalar
roduct �· , ·�. As will be shown, the gradient �uB� depends on the
hoice of the scalar product through the computation of adjoint
uantities, but the variation �� in Eq. �24� is intrinsic. Generally
peaking, it can be shown that for any variation �A of the Jaco-
ian A the variation �� of the eigenvalue satisfies

�� = �ũ,�Aû� �25�

here ũ is the adjoint eigenvector given by A�ũ=��ũ �see Eq.
8��. The adjoint global mode is normalized such that �ũ , û�=1. A
pecific variation of the matrix �A will now be specified, which
epresents a modification of the base-flow. Let us recall that the
acobian A is a function of the base-flow uB. After differentiation,
he matrix B�uB , û� is obtained as follows:

�26�

fter substituting this expression into Eq. �25�, we obtain ��
�B�uB , û��ũ ,�uB� where B�uB , û�� is the adjoint matrix associ-
ted with B�uB , û� based on the scalar product �· , ·�. After identi-
ying this expression with Eq. �24�, a final expression for the
ensitivity of the eigenvalue to a modification of the base-flow is

Fig. 10 Flow around a cylinder at Re=47 and
base-flow. „a… Sensitivity of the amplification rate
†135‡.
btained as follows:
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�uB� = B�uB,û��ũ �27�

For the incompressible Navier–Stokes equations, it was shown
�135� that an explicit expression of gradient �27� may be obtained
in the form

�uB� = − ��û�� · ũ + �ũ · û� �28�

This gradient9 is the sum of two terms, each of which involving
the direct global mode û and the adjoint global mode ũ. For the
flow around a cylinder at Re=47, the sensitivity of the amplifica-
tion rate �uB�=R��uB�� and the sensitivity of the frequency
�uB�=−I��uB�� are displayed in Figs. 10�a� and 10�b�. The
streamlines of these fields are represented by continuous lines,
their direction is indicated by small arrows, and the modulus of
the fields is displayed by colors. The amplitudes of both fields
tend to zero far from the cylinder, which is in agreement with the
fact that the direct and adjoint modes vanish upstream and down-
stream of the cylinder, respectively. The most sensitive region for
the amplification rate is located just downstream of the cylinder
on the symmetry axis near �x=1,y=0�. As expected, a reduction
in the back-flow velocity within this zone, �uB=+ex �the recircu-
lation bubble becomes smaller�, stabilizes the system since the
vectors �uB� and �uB are parallel but directed in opposite direc-
tions in this region. As for frequency changes �see Fig. 10�b��, an
increase in the frequency is observed. These results are in agree-
ment with those presented in Sec. 3: The action of the nonlineari-

ties reduces the size of the recirculation zone �since u2
�A�2 �0�, the

frequency associated with the mean flow increases, but its ampli-
fication rate decreases. More precisely, we see that the eigenvalue
defined in Eq. �16� and associated with the mean flow �M =�M

+ i�M can be linked to the eigenvalue associated with the base-
flow �B=�0+
�, as follows:

�M = �B + 

�r

�r + �r
��uB�,û2

�A�2� �29�

The importance of both the sensitivity field �uB� and the zeroth-

order harmonic û2
�A�2 for determining the stability properties of the

mean flow arises clearly from this expression.

4.2.2 The Wavemaker Concept. The wavemaker concept may
be introduced in the case of weakly-non-parallel flows by consid-
ering the linear saddle-point criterion �45,137�. Indeed, the asso-
ciated theory identifies a specific spatial position �in the complex
x-plane, where x is the streamwise coordinate�, which acts as a
wavemaker, providing a precise frequency selection criterion and
revealing some important insights pertaining to the forcing of

9Meliga �136� analyzed this gradient in the case of compressible Navier–Stokes
equations. He showed for an axisymmetric bluff body how the sensitivity fields may

sitivities associated with a modification of the
… Sensitivity of the frequency. Adapted from Ref.
sen
. „b
be used to study the effect of compressibility on the instability.
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hese modes. Chomaz �44� and Giannetti and Luchini �59� then
ried to define a wavemaker region in the case of a strongly-non-
arallel flow. It relies on the concept of local feedback acting at
he perturbation level. This feedback is modeled by a volume
orcing in the momentum equations and is taken proportional to
he perturbation, i.e., ��x ,y�û. The feedback function ��x ,y� al-
ows us to localize this feedback in regions of interest within the
ow domain. The modified eigenvalue problem becomes

�A + ��x,y�I�û = �û �30�

he derivation that follows is a reformulation of the ideas of
homaz �44� and Giannetti and Luchini �59� using a gradient-
ased formalism. The eigenvalue � depends on the feedback func-
ion ��x ,y�. In particular, if �=0, Eq. �30� yields the original
igenvalue problem �5�. We may show that ��= ���� ,��� with

����x,y� = ũ�x,y� · û�x,y� �31�

n this expression, ũ is the adjoint global mode associated with û,
hich satisfies �A�+��x ,y��I�ũ=��ũ and is normalized such that

ũ , û�=1. The expression of the gradient given in Eq. �27� is
tructurally analogous to the simpler one given here. If the change
n feedback function �� is equal to a Dirac function located at
x0 ,y0�, then ���x0 ,y0�= ũ�x0 ,y0� · û�x0 ,y0�, and the following re-
ation given by Chomaz �44� and Giannetti and Luchini �59�:

����x0,y0�� � �ũ�x0,y0�� 
 �û�x0,y0�� �32�

s recovered from Cauchy–Schwartz. The right-hand-side of this
xpression is used to identify the wavemaker region. For the flow
round a cylinder at Re=50 this latter expression is presented in
ig. 11�a�. Giannetti and Luchini �59� noted that the locations of

he maxima in this figure are consistent with those given by the
inear saddle-point criterion, justifying their approach. To under-
ine the effectiveness of their concept, Chomaz �44� and Giannetti
nd Luchini �59� also argued that the wavemaker region re-
embled the stabilization regions identified experimentally by
trykowski and Sreenivasan �67�, which are recalled in Fig. 4. A
uick comparison of Figs. 11�a� and 4 shows that the wavemaker
oncept indeed roughly reproduces the experimentally obtained
tabilizing regions. Note that Luchini et al. �138� extended the
avemaker concept to finite-amplitude oscillations, by using a
loquet stability analysis.
We propose here an alternative definition of the wavemaker

−1 −1

ig. 11 Flow around a cylinder. „a… Wavemaker region for Re
50 according to Giannetti and Luchini †59‡. „b… Wavemaker

egion for Re=47 identified by the field W in the vicinity of the
ifurcation threshold.
egion. For a given Reynolds number 
=Rec −Re �which is not
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necessarily small�, we first note that the amplification rate of the
leading global mode for the Reynolds number 
 is given by
��
�−��0�=�0


�d� /d
�d
�, where ��0�=0 since at the bifurcation
threshold the amplification rate is zero. The eigenvalue �=�+ i�
is a function of the base-flow uB and of the Reynolds number 

�since 
 explicitly appears in eigenproblem �5� in the diffusion
part �Rec

−1−
��û�. Also, the base-flow is a function of the Rey-
nolds number: uB�
�. Hence, the eigenvalue is solely a function of
the Reynolds number: ��uB�
� ,
�. After differentiation, we obtain
d� /d
= ��� /�uB��duB /d
�+�� /�
. The two parts of this expres-
sion reflect two distinct mechanisms. The first is related10 to the
modification of the base-flow: ��� /�uB��duB /d
�
= ��uB� ,A−1��uB��, while the second refers11 to an increase in the
Reynolds number in the governing equations: �� /�
=−�ũ ,�û�.
Hence, considering the real part of d� /d
, the amplification rate
for the Reynolds number 
 may be given in closed form as an
integral in space of a scalar field W�
� as follows:

��
� =

 W�
�dxdy �33�

W�
� =

0




��uB� · �A−1��uB�� − R�ũ · �û��d
� �34�

where · refers to the Hermitian scalar product of two vectors. The
scalar field W�
� defines the wavemaker of the instability at the
Reynolds number 
. To compute W�
�, we may approximate the
continuous integral in 
 by a discrete sum involving the knowl-
edge of �uB�, A, uB, ũ, and û for some discrete values of 
�
within the interval 0�
��
. Here, for conciseness, we only rep-
resent and discuss the wavemaker W in the vicinity of the bifur-
cation threshold �
��1. Hence, W= �dW /d
�d
 and it is more
convenient to discuss �dW /d
� rather than W. The quantity
dW /d
 is depicted in Fig. 11�b� for the flow around a cylinder.
Since the integral over space of this quantity yields the amplifica-
tion rate � /
, the regions of the flow where this quantity is zero
do not play a role in the instability. The wavemaker will therefore
be defined as the regions where this quantity is nonzero. We re-
mark that regions characterized by positive values contribute fa-
vorably to the instability whereas regions of negative values in-
hibit the instability. We also emphasize that the present definition
of the wavemaker also reflects the existence of a feedback mecha-
nism as proposed by Giannetti and Luchini �59�. But rather than
assuming a local feedback, i.e., a local force depending on the
velocity, the present definition is based on a global feedback.
Moreover, this forcing does not only depend on the perturbation
û, as assumed by Giannetti and Luchini �59�, but also on the
base-flow uB. Despite such differences in the two analyses, a com-
parison of Figs. 11�a� and 11�b� shows that similar wavemaker
regions are identified here. Hence, this definition of the wave-
maker is also consistent with the initial definition of the wave-
maker in the weakly-non-parallel case.

4.2.3 Advection/Production Decomposition. The two terms
that make up the expression of gradient �28� have a different
origin and physical meaning. Let us recall that the global mode û
is governed by the equation

10The base-flow correction duB /d
 is defined by R�uB+duB ,
+d
�=0. Lineariz-
ing this equation and noting that �R /�
=−�uB, we obtain AduB−�uBd
=0, which
yields duB /d
=A−1��uB�. Note that � refers here to the matrix related to the
Laplace operator.

11The variation of the eigenvalue d� with respect to an increase in the Reynolds
number d
—with the base-flow uB frozen—may be obtained from Eq. �25�, using the
following perturbation matrix: �A=−�, i.e., the negative of the matrix standing for

the Laplace operator.
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�û + �û · uB + �uB · û = − �p̂ +
1

Re
�û, � · û = 0 �35�

s explained in Sec. 2.3, the base-flow uB appears twice in this
quation: �û ·uB describes the advection of perturbations whereas
uB · û stands for the production of perturbations. It can be shown

hat these two terms produce, respectively, the two terms in gra-
ient expression �28�. The resulting sensitivity measure then
reaks down as follows:

�uB� = �uB���A� + �uB���P� �36�

ith �uB� ��A�=−��û�� · ũ and �uB� ��P�=�ũ · û�. One may then de-
uce �135� that the destabilization of a global mode by a base-
ow modification �uB is

1. either due to a weaker advection of the perturbations by the
base-flow ��uB� ��A� ·�uB�0�

2. or due to a stronger production of perturbations
��uB� ��P� ·�uB�0�

These ideas are reminiscent of certain concepts of the local
heory by Huerre and Monkewitz �139�; we know that absolute
nstability is promoted either because the downstream advection
ecomes weaker or because the production mechanism becomes
ore significant. Let us also note that these two effects cannot be

solated within the classical convective/absolute framework �13�.
owever, this decomposition appears rather naturally from a sen-

itivity approach of the eigenvalue with respect to base-flow
odifications.
For the flow around a cylinder at Re=47, the sensitivity field

ssociated with advection is directed upstream �135� throughout
he flow domain; as expected, an increase in the velocity of the
ase-flow tends to stabilize the global mode, by strengthening of
he downstream perturbation advection. It was also shown that the
ensitivity field related to advection is much smaller than the sen-
itivity field associated with the production of perturbations. We
hus conclude that any stabilization or destabilization of flow will
e due mainly to the modification of the mechanism responsible
or perturbation production rather than downstream perturbation
dvection.

4.2.4 Sensitivity of the Eigenvalues to a Steady Forcing of the
ase-Flow. We now return to our initial objective: a measure of
igenvalue sensitivity to a forcing f of the base-flow. This is de-
ned by the following expression:

�� = ��f�,�f� �37�

here the term �f� corresponds to this sensitivity. It represents a
omplex vector field whose real part is related to the sensitivity of
he amplification rate to a steady forcing of the base-flow �f�
R��f�� while its imaginary part measures the sensitivity of the

Fig. 12 Flow around a cylinder at Re=47 and s
base-flow. „a… Sensitivity of the amplification rate
†135‡.
requency �f�=−I��f��. To give an explicit expression of this
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sensitivity field, let us recall that the base-flow uB depends on the
steady forcing f via the equation governing the base-flow, R�uB�
+ f=0. By differentiating this equation, we obtain the expression
A�uB+�f=0. Substituting the expression for �uB into Eq. �24�,
the following result is obtained:

�f� = − A�−1�uB� �38�

where A� is again the adjoint matrix corresponding to A. As
discussed previously, to calculate the sensitivity to a steady forc-
ing of the base-flow, the sensitivity to a modification of the base-
flow should be evaluated first. Application of the matrix −A�−1

enables us to go from a sensitivity to a modification of the base-
flow to a sensitivity to a steady forcing of the base-flow. For flow
around a cylinder at Re=47, both fields �f� and �f� are dis-
played in Figs. 12�a� and 12�b�. These are appreciably different
from those presented in Figs. 10�a� and 10�b�, which only show
sensitivities to a modification of the base-flow. Despite this obser-
vation, general trends are identical. Thus, a force placed inside the
recirculation bubble and acting in the downstream direction stabi-
lizes the flow-field and increases the frequency.

4.3 Open-Loop Control With a Small Control Cylinder. In
this section we use the sensitivities of the amplification rate and
the frequency associated with a steady forcing of the base-flow,
which were presented in Figs. 12�a� and 12�b�, to predict the
stabilization zones for the flow around a cylinder described by
Strykowski and Sreenivasan �67� and displayed in Fig. 4. For this
reason, it is necessary to find a forcing field f that adequately
describes the presence of a small control cylinder located at
�x0 ,y0�. This modeling is, in fact, a rather complex problem. It
was addressed by Hill �121�, then formalized by Marquet et al.
�140� by means of an asymptotic expansion based on two small
parameters, one accounting for the amplitude of the marginal glo-
bal mode, and the other describing the size of the small control
cylinder. The small control cylinder acts both on the level of the
base-flow and the level of the perturbations by imposing a zero
velocity on these two flow-fields at the location of the control
cylinder. It turns out that its impact on the perturbation level re-
mains rather weak �at least for the case of the bifurcation of the
flow around a cylinder at Re=47�. We therefore restrict our dis-
cussion to the forcing’s influence on the base-flow. To model the
presence of the small control cylinder on the base-flow, we note
that the base-flow uB exerts a force F on the small control cylin-
der. Invoking the action/reaction principle, the small control cyl-
inder then exerts the force −F on the base-flow uB. We hence
obtain a force field f, which is zero everywhere except at the
location of the small control cylinder where it is represented by a
Dirac function of intensity −F. It thus remains to model the force
F exerted on the small cylinder by the base-flow. In this review
article, only the simplest modeling is considered: We focus on the

itivities associated with a steady forcing of the
… Sensitivity of the frequency. Adapted from Ref.
ens
. „b
direction of the force and leave aside its strength. We assume that
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he force exerted on the small cylinder, located at �x0 ,y0�, is par-
llel but opposite to the velocity vector of the base-flow at �x0 ,y0�.
e have

�f�x,y� = − uB�x0,y0���x − x0,y − y0� �39�

ence, the small control cylinder is only subjected to a drag
orce12 that is assumed steady.13 From Eq. �37�, the variation of
he eigenvalue ���x0 ,y0� based on the presence of a small control
ylinder at �x0 ,y0� is thus given by

���x0,y0� = − �f��x0,y0� · uB�x0,y0� �40�

his field corresponds to the negative scalar product at each point
etween the sensitivity field �f� and the base-flow uB. It takes
nto account the level of sensitivity, the amplitude of the base-flow
elocity, as well as the respective directions of the sensitivity and
he base-flow. The real and imaginary parts of this complex field
re depicted in Figs. 13�a� and 13�b�. These two fields represent,
espectively, the variations of growth rate and frequency as a
mall control cylinder is placed into the flow at a given point. If
he figure on the left is compared with the isocontour for Re=48
n Fig. 4, we observe very strong analogies: The two stabilization
ones determined by Strykowski and Sreenivasan �67� are well
ecovered, their spatial extent and location seem well predicted,
nd the destabilizing zone near the small control cylinder, where
he boundary-layer detaches, is also identified. In Fig. 13�b�, we
otice that the introduction of a small control cylinder into the
ow always yields a reduced frequency of the unsteadiness. This
esult is in agreement with the observations of Strykowski and
reenivasan �67�.
The decomposition in terms of advection/production, intro-

uced in Sec. 4.2.3, is used next to provide an interpretation of the
tabilization/destabilization phenomenon. We consider a small
ontrol cylinder located at the place of maximum stabilization,
.e., at �x0 ,y0�= �1.2,1�. The modification of the base-flow associ-
ted with the introduction of this cylinder at �x0 ,y0� is given by
uB=−A−1�f, with the force �f defined by Eq. �39�. Thus, the
ariation of the eigenvalue can be evaluated using either the sen-
itivity field associated with a steady forcing of the base-flow:
�= ��f� ,�f�, or the sensitivity field associated with a modifica-
ion of the base-flow: ��= ��uB� ,�uB�. Resorting to the decom-
osition introduced in Sec. 4.2.3, it is found that stabilization is
ue to a weaker production mechanism; the advection properties,
n the other hand, are slightly destabilizing.

A model for the forcing amplitude F was not required here
ince the computation of the stabilizing zones at the bifurcation

12This is incorrect if the small control cylinder is located in a shear flow. In this
ase, a lift force must also be taken into account.

13For this, a control cylinder of a sufficiently small diameter is chosen such that
he Reynolds number based on the local velocity of the base-flow and the diameter of

Fig. 13 Flow around a cylinder at Re=47. „a… Va
placement of a control cylinder of infinitesimal
variation of the frequency. Adapted from Ref. †13
he small control cylinder is lower than Rec=47.

30801-14 / Vol. 63, MAY 2010

aded 01 May 2010 to 129.104.247.2. Redistribution subject to ASME
threshold is independent of such a model. However, a model be-
comes essential if we want to determine the stabilization regions
at supercritical Reynolds numbers. This work was completed in
Ref. �135�, and the final result is reproduced in Fig. 14. We note
that this figure matched rather well the experimental results of
Strykowski and Sreenivasan �67� shown in Fig. 4.

5 Model Reduction and Closed-Loop Control
Contrary to open-loop control, which modifies the base-flow in

order to stabilize the unstable eigenvalues, closed-loop control
acts directly on the perturbations. It is by nature unsteady and
consists of an opposition control strategy where structures are
generated by the actuator that annihilates the unstable perturba-
tions that would otherwise develop naturally. A measurement of
the flow is necessary to estimate the phase and the amplitude of
the disturbance after which one constructs a control law linking
the measurement to the action. This control law must be simple
and designed for application in real-time in an experiment. To this
end, it should be based on only a moderate number of degrees of
freedom, at the most on the order of a few tens. The control law is
obtained within the linear quadratic Gaussian �LQG� control
framework, which requires the implementation of an estimator.
The estimator and the controller are both based on a model of the
flow that must be low-dimensional and reproduce certain flow
properties, as will be specified below. Model reduction techniques
based on Petrov–Galerkin projections and the choice of a basis
�such as POD, balanced, or global modes� are required to build
this model. In this section, we will design and implement a
closed-loop control strategy for an unstable open-cavity flow. The
configuration of this flow is first described �Sec. 5.1�. For the
chosen parameters, the flow is unstable, and a reduced-order-
model of the unstable subspace is constructed based on the un-
stable global modes. Next, we concentrate on the stable subspace.
First, we show why the stable subspace has to be modeled appro-

tion of the amplification rate with respect to the
ze located at the current point. „b… Associated

Fig. 14 Flow around a cylinder. Stabilization zones for the un-
steadinesses as obtained by the sensitivity approach for differ-
ent Reynolds numbers. The results should be compared with
the experimental results displayed in Fig. 4. Adapted from Ref.
ria
si
†135‡.
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riately �Sec. 5.2� after which we proceed to determine a model
or this stable subspace �Sec. 5.3�. Finally �Sec. 5.4�, a closed-
oop control scheme based on the LQG control framework is
mplemented where various reduced-order-models �global modes,
alanced modes, and POD-modes� will be considered and tested
s their effectiveness in stabilizing the flow.

5.1 Configuration and Reduced-Order-Model for the Un-
table Subspace. The configuration has been presented in Fig. 5.
he actuator is located upstream of the cavity and consists of
lowing/suction at the wall described by the law ��t�. The sensor,
aking the measurement m�t�, is situated downstream from the
avity and reads the wall shear-stress integrated over a small
egment.

This flow exhibits a first Hopf bifurcation at a Reynolds number
qual to Rec=4140 �38�. For the supercritical Reynolds number of
e=7500, the spectrum of the flow, which is displayed in Fig.
5�a�, shows four unstable �physical� global modes �eight if the
omplex conjugates are counted�. The spatial structures of the two
nstable global modes with the lowest frequency are presented in
igs. 15�b� and 15�c�. These structures, visualized by the stream-
ise velocity component, correspond to Kelvin–Helmholtz insta-
ilities located atop the shear-layer. The dynamics of the pertur-
ation u� is governed by a large-scale state-space model, which is
btained by a spatial discretization of the Navier–Stokes equations
inearized about the base-flow for Re=7500. Taking into account
he perturbation dynamics, the control, and the measurement, we
ave

du�
= Au� + Cc �41�

ig. 15 Flow over an open cavity for Re=7500. „a… Spectrum of
he matrix A, „b… real part of the streamwise velocity of the
ost unstable global mode, „c… same for the unstable global
ode with the lowest frequency, „d… likewise for the most un-

table adjoint global mode, and „e… likewise for the unstable
djoint global mode with the lowest frequency. Adapted from
ef. †141‡.
dt

pplied Mechanics Reviews

aded 01 May 2010 to 129.104.247.2. Redistribution subject to ASME
m = Mu� �42�

where M represents the measurement matrix related to the wall
shear-stress measurement mentioned above, and C denotes the
control matrix. This is a single-input-single-output �SISO� prob-
lem. Hence, C and M, respectively, designate matrices of dimen-
sion �n ,1� and �1,n�, where n is the number of degrees of free-
dom in the state vector u�. The base-flow is shown in Fig. 16�a�,
visualized by contours of the streamwise velocity and velocity
vectors. The control matrix C is obtained by a lifting procedure
since the control consists in blowing/suction at the wall. This ma-
trix satisfies AC=0 together with a unit blowing ���t�=1� bound-
ary condition imposed on the control segment. The resulting flow-
field is shown in Fig. 16�b�. The control function c�t� in Eq. �41�
is equal to the negative derivative of the blowing/suction function
��t�.

A reduced-order-model of these equations is obtained by a
Petrov–Galerkin projection onto a bi-orthogonal basis �W ,V�,
which satisfies �Wi ,V j�=0 if i� j and �Wi ,V j�=1 if i= j. We de-
note by Wi and V j, respectively, the ith and jth vector of the dual
and primal bases W and V. By introducing the reduced variables
ui

r= �Wi ,u�� �or equivalently u�=	iViui
r�, the following is ob-

tained:

dur

dt
= Arur + Crc �43�

m = Mrur �44�

where the reduced matrices are defined by Ai,j
r = �Wi ,AV j�, Ci,1

r

= �Wi ,C�, and M1,j
r =MV j.

At this point, the following important questions must be raised:
Which basis should be chosen and what should be the dimension
of this basis? The modal basis, presented in Sec. 2.1 and formed
by direct global modes û j, at first looked like a natural choice to
us within a linearized framework. This basis comprises both
physical global modes representing the dynamics atop the shear-
layer and inside the cavity and unphysical global modes
�advection-diffusion of perturbations in the freestream�. These
modes are grouped into the rectangular matrices V and W, respec-
tively, arranged by decreasing amplification rate. The matrix Ar is

Fig. 16 Flow over an open cavity for Re=7500 visualized by
streamwise velocity contours and velocity vectors. „a… Base-
flow. „b… Control matrix C. Adapted from Ref. †141‡.
then diagonal, and the values along the diagonal consist of the
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ominant eigenvalues of A. The four �physical� unstable global
odes �direct and adjoint� represent the core of the reduced-order-
odel. The unstable subspace of the matrix A is thus modeled by

apturing its dynamic features. This model describes exactly, and
ith the least number of degrees of freedom, a rich and complex
ynamics. The locations of the actuator and sensor were decided
uch that the controllability coefficients Ci,1

r and the measurement
oefficients M1,j

r are large for the unstable global modes. This is
he reason for taking the measurement downstream of the cavity
here the unstable direct global modes have significant ampli-

udes; the actuator is located upstream of the cavity where the
ontrol matrix C and the adjoints of the unstable modes are both
arge. We recall that Figs. 15�b� and 15�c� display the two unstable
lobal modes with the lowest frequency. In Figs. 15�d� and 15�e�
he associated adjoint global modes are visualized in the same

anner. The coefficient M1,j
r corresponds to the measurement of

he jth direct global mode, and the coefficient Ci,1
r corresponds to

he scalar product of the ith adjoint global mode and the steady
nit-control flow-field presented in Fig. 16�b�.

5.2 Why Is the Modeling of the Stable Subspace
ecessary? We will now explain why a reduced-order-model
ased only on unstable global modes may not be able to yield a
table compensated system. The answer to this question can be
ormulated as follows. A general action at the upstream edge of
he cavity certainly acts on the unstable global modes but may
lso excite the stable global modes. Due to their stability, the
xcitation of the stable modes may not be problematic by itself.
he problem, however, lies in the fact that these stable modes will
orrupt the measurement. In other words, the measurement ob-
ained at the downstream edge of the cavity certainly includes the
seful measurement, that is, the measurement associated with the
nstable global modes, but also the measurement associated with
he stable global modes excited by the actuator. Even though the
lobal modes may be damped, they may nevertheless significantly
ontribute to the input-output dynamics of the system. If the esti-
ator is based on a reduced-order-model that only incorporates

eatures from the unstable subspace, it will not manage to extract
he unstable dynamics from the corrupted measurement. The esti-

ated unstable state will be inaccurate and, as a consequence, the
ontrol law based on the estimated unstable flow-field will be
neffective and even lead to instabilities in the compensated
ystem.

To overcome this difficulty, the idea is to incorporate the stable
ubspace into the reduced-order-model. For this reason, the
educed-order-model should be built not only on the unstable
odes but should also contain a certain number of stable modes.
ut what criterion should be adopted to select them? A naive
pproach would consist in retaining only the p least stable global
odes, following the argument that the neglected modes are too

amped to contribute significantly to the system’s dynamics. Al-
hough this strategy has been successfully pursued by Åkervik et
l. �39�, in general it appears to be erroneous. Indeed, as suggested
n the preceding paragraph, it is necessary to select the stable
lobal modes that contribute most to the system’s input-output
ynamics. To identify these modes, it was suggested �141� to use
he following quantity:

� j =
�C j,1

r ��M1,j
r �

�R�A j,j
r ��

�45�

hich is defined for each global mode j. Noting that �R�A j,j
r ��

enotes the damping rate of the jth eigenvector, this criterion
elects modes, which are highly controllable ��C j,1

r � large�, highly
bservable ��M1,j

r � large�, and least damped ��R�A j,j
r �� small�. It

ay be shown that this criterion represents a good measure of the
mportance of the jth global mode regarding system’s input-output
ynamics. In Fig. 17, the value of the criterion � j is presented, for

ach stable global mode, by the color of the eigenvalue. The
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warmer the color, the more significantly an eigenvalue contributes
to the input-output dynamics. The results show that

1. the modes that contribute most to the input-output dynamics
are very damped

2. the higher the damping rate, the larger the number of modes,
which contribute to the input-output dynamics

For this specific configuration, this observation certainly dis-
qualifies the original idea of a reduced-order-model solely built on
global modes. The shortcomings of stable global modes will be
further analyzed in Sec. 6.1, where it will be shown that most of
the stable global modes in an open-flow configuration display a
very bad behavior and that the modal basis constitutes, generally
speaking, an ineffective and ill-posed projection basis in
open-flows.

This argument has shown the need to model the stable sub-
space. The selection criterion defined by � j highlighted the impor-
tance of the input-output dynamics for this modeling and intro-
duced the concepts of controllability and observability. As for a
proper choice of basis for model reduction, we have found that the
modeling of the unstable subspace with global modes seems jus-
tified and efficient, but that the same is not true for modeling the
stable subspace. The �unphysical� stable global modes represent
an ineffective and ill-posed basis to reproduce the system’s input-
output dynamics.

5.3 How Should the Stable Subspace Be Modeled? The
properties of a basis suitable for the representation of the stable
subspace of A will now be defined. Since the dynamics of the
unstable and stable subspaces are decoupled, it is possible to study
the dynamics restricted to the stable subspace of A; i.e.,

du�

dt
= Au� + PsCc �46�

m = Mu� �47�

where Ps is the projection matrix onto the stable subspace. The
initial condition for this simulation is chosen in the stable sub-
space. The input-output dynamics in this subspace is characterized
by the impulse response: H�t�=MeAtPsC. In an equivalent way, it

Fig. 17 Flow over an open cavity for Re=7500. Spectrum of
the flow with the eigenvalues colored according to the criterion
�j. Adapted from Ref. †141‡.
can be defined by the transfer function, which is the Fourier trans-
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orm of H�t�; we get Ĥ���=�−�
� H�t�e−i�tdt.14 The modulus of

ˆ ��� is shown in Fig. 18 for our case study. We observe that a
trong response is observed at a frequency �=4.6. An effective
educed-order basis of the stable subspace is characterized by an
ccurate representation of the input-output dynamics of the full-

ystem, i.e., by an associated reduced transfer function Ĥr���,
hich accurately reproduces that of the original system Ĥ���. The
uantification of the difference between the two transfer functions

s preferably done using the norm �Ĥ��=sup��Ĥ����, since theo-
etical results are readily available for this norm.

The theory of balanced truncation introduced by Moore �97�
ields an algorithm to build a quasi-optimal basis measured in the
· �� norm. First, we recall that the input-output dynamics in the
table subspace is characterized by the matrices �A ,PsC ,M�. The
ontrollability and observability Gramians are defined as

Gc =

0

�

eAtPsCC�Ps
�eA�tdt �48�

Go =

0

�

eA�tPs
�M�MPse

Atdt �49�

he integrals are convergent because of our restriction to the
table subspaces of A and A�. These two matrices define the
oncept of controllability and observability of a structure u� of the
table subspace. Thus, u��Gc

−1u� corresponds to the minimum en-
rgy �0

�c2�t�dt that has to be expended to drive a system from state
� to 0 whereas u��Gou� is equal to the maximum measurement

0
�m2�t�dt induced by the system if it has been initialized by u�. It
s then possible to show that a reduced-order bi-orthogonal basis
Ws ,Vs� of the stable subspace of A can be obtained by solving
he following eigenvalue problems:

GcGoVs = Vs�
2 �50�

14 ˆ −1

ig. 18 Flow over an open cavity for Re=7500. Transfer func-
ion �Ĥ„�…� representative of the input-output dynamics of the
table subspace. Adapted from Ref. †141‡.
It may be shown that this function is also equal to H���=M�i�I−A� PsC.
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GoGcWs = Ws�
2 �51�

where Ws has been normalized so that �Wsi ,Vsi�=1. The basis Vs

comprises the balanced modes, which are equally controllable and
observable. It is straightforward to verify that �Wsi ,Vsj�=0 if i
� j. The theory shows that the values on the diagonal of � are
also the singular values of the Hankel matrix associated with lin-

ear systems �46� and �47�. The transfer function Ĥr related to the
reduced-order-model incorporating the first p balanced modes sat-
isfies �95�

�Ĥr − Ĥ�� � 2 	
j�p+1

� j,j �52�

This basis is often close to the optimum, since, for any basis of
order p, the following relation holds:

�Ĥr − Ĥ�� � �p+1,p+1 �53�

Laub et al. �98� introduced an efficient algorithm to solve eigen-
value problems �50� and �51� for systems of low-dimensions.
Willcox and Peraire �99� and Rowley �100� introduced a POD-
type technique to treat large-scale problems. For this, two series of
snapshots, obtained, respectively, from a temporal simulation of
the direct problem du� /dt=Au� with u��t=0�=PsC and a tempo-
ral simulation of the adjoint problem du� /dt=A�u� with u��t
=0�=Ps

�M�, are used to approximate the controllability and ob-
servability Gramians. The original eigenvalue problems �50� and
�51� are then reformulated into a singular value problem whose
dimension is equal to the number of snapshots. These calculations
are not detailed here; we only describe some of the results. The
largest singular values � obtained for our case are presented in
Fig. 19�a�. The decay behavior of this curve directly determines
the dimension of our reduced basis. For a given error threshold,
the upper limit of the error bound given in Eq. �52� straightfor-
wardly yields the dimension of the reduced model. In Figs.

Fig. 19 Flow over an open cavity for Re=7500. „a… Singular
values of the Hankel matrix. „„b…–„e…… Streamwise velocity of the
1st, 2nd, 9th, and 13th balanced modes. Adapted from Ref.
†141‡.
19�b�–19�e�, the balanced modes associated with the 1st, 2nd, 9th,
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nd 13th singular values in � are displayed using the streamwise
elocity. Let us recall that all these modes belong to the stable
ubspace of A. In particular, the first two modes are bi-orthogonal
o the unstable global modes presented in Figs. 15�b� and 15�c�.
his means that the scalar products of the unstable adjoint global
odes �see Figs. 15�d� and 15�e�� and the balanced structures are

ero. Once the bases Vs and Ws have been determined, the re-
uced matrices Ar, Cr, and Mr can be calculated and the associ-

ted transfer function Ĥr can be determined. The relative error

Ĥr− Ĥ�� / �Ĥ�� is shown in Fig. 20�a� as a function of the number
of balanced modes considered. In this figure, the upper and

ower bounds for the error defined in Eqs. �52� and �53� have also
een included. As required, the error related to the reduced-order-
odel of order p falls within these two bounds. We also observe

hat taking ten balanced modes �p�10� yields a nearly perfect
pproximation of the input-output dynamics of the stable part of
he system. For comparison, we have also given, in Fig. 20�b�, the
esults pertaining to the modal basis discussed in Sec. 5.2. We
bserve a decrease in the error for the first thousand global modes,
fter which the curve becomes erratic and grows again for p
3000. Hence, independent of the number of included global
odes, the reduced-order-model based on these structures does

ot approximate the transfer function of the original system. This
esult corroborates the conclusions drawn in Sec. 5.2.

Rowley �100� pointed out that the eigenvectors of Gc could be
nterpreted as POD-modes �102� of the simulation du� /dt=Au�
nitialized by the control matrix u��t=0�=PsC. These modes
aximize controllability but do not take into account any require-
ents regarding observability. Nevertheless, the quality of such

educed-order-models has been assessed by estimating, as in the
ase of balanced modes and global modes, the error between the
educed transfer function and the transfer function of the full-
ystem. The results are given in Fig. 20�c�. The behavior of these
ases is very good, with a steady decrease in the approximation
rror as the dimension p of the reduced-order-model increases.
or p=100, very small error levels, equivalent to those obtained
ith 13 balanced modes, are reached. Note, however, that signifi-

antly more POD-modes than balanced modes are required to
chieve similar accuracy.

5.4 Closed-Loop Control: Analysis of the Compensated
ystem. The objective of this section is to analyze the compen-
ated systems. For this, we couple a direct numerical simulation of
he large-scale dynamical problem to an estimator and a control-
er, both of which are based on the reduced-order-models built
reviously. We know �see Secs. 5.1–5.3� that the reduced-order-
odels based on eight unstable global modes and a series of bal-

nced or POD-modes reproduce the unstable dynamics as well as
he input-output dynamics of the stable subspace, if sufficient bal-
nced modes or POD-modes are taken into account. The number
f modes that will stabilize the compensated system cannot be
etermined a priori. For example, a threshold below which the
ompensated system would certainly be stable cannot be given for

he approximation error of the transfer function �Ĥr− Ĥ�� / �Ĥ��.
he final steps in the design of the estimator and controller can
ow be taken. For this, control gains for the controller and Kal-
an gains for the estimator are calculated using the LQG-

ramework �79�. Following previous statements, a reduced-order-
odel based on all unstable global modes was chosen and

ugmented by a series of p balanced or POD-modes for the stable
ubspace. The computation of the gains, based on solving the
espective Riccati equations, is performed within the small-gain
imit �79�. This means that the control cost is assumed infinite and
hat the measurement errors are infinitely larger than the model
rrors �which seems reasonable for our case since the models are
btained by an accurate Petrov–Galerkin projection�. In this limit,
t is neither necessary to specify the state-dependent part of the

ost functional �the energy of the perturbations, for example� nor
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to model the structure of the external noise sources associated
with the model. Moreover, the gains are the smallest possible and
are nonzero only for the unstable structures of the reduced-order-

Fig. 20 Flow over an open cavity for Re=7500. Approximation
error of reduced-order-models versus their dimension. „a… bal-
anced modes, „b… global modes, and „c… POD-modes. In „a…, the
continuous curves represent the upper and lower bounds of
the error „52… and „53…. Adapted from Ref. †141‡.
model. Thus, the controller specifies the smallest values for the
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ontrol law c�t� �due to the infinite control cost�, and the estimator
s driven the least by the measurement error since we are more
onfident in the validity of the model than in the measurements �in
ther words, the measurement error is infinitely larger than the
odel error�. In this case, according to Burl �79�, the eigenvalues

f the compensated system are equal to the stable eigenvalues of
he reduced-order-model, but the unstable eigenvalues of the un-
ompensated system are reflected about the imaginary axis �=0
hen a small-gain-limit compensator is added.
A numerical simulation code solving Eq. �41� has then been

ombined with the controller and estimator that have just been
efined. The estimator takes as input the measurements m�t� of the
irect simulation. The reduced-order-model of the flow is inte-
rated in time and driven in real-time by the measurement m�t� of
he simulation via the Kalman gain. It then provides the controller
ith an estimate of the real state of the flow, which is subse-
uently used by the controller to generate a control law c�t� via
he control gain. Depending on the selected reduced-order-model
based on balanced modes or POD-modes for the stable subspace�
nd its dimension 8+ p, the stabilization of the simulations by the
ompensator is more or less effective. The results for the compen-
ated simulations are presented in Fig. 21. Figure 21�a� shows
imulations with a reduced-order-model based on balanced
odes, and Fig. 21�b� displays the results for a reduced-order-
odel using POD-modes. The x-axis denotes time while the

-axis shows the energy of the perturbation u�. In Fig. 21�a�, the
urve labeled p=0 represents a reduced-order-model including
nly the eight unstable global modes. As previously mentioned,
e see that this simulation diverges, which again confirms that the
odeling of the stable subspace is mandatory. As the number of

alanced modes incorporated into the reduced-order-model in-
reases, the system eventually stabilizes. For p=7, the energy of
he perturbations remains bounded; for p�7, the energy de-
reases. The dark line in the figure represents the best possible
ontrol, toward which the curves for the reduced-order-models
onverge as p increases. This best control is obtained when the
educed-order-model exactly reproduces the transfer function of
he original system. Similar results are observed in Fig. 21�b� with
OD-modes. We note, however, that the number of POD-modes

o stabilize the system is significantly higher than the number of
alanced modes to reach the same goal: Twenty-eight POD-modes
re necessary to render the compensated system stable, whereas
nly seven balanced modes are needed to accomplish the same.

In the last paragraph, the control law, which has been synthe-
ized by the linear LQG approach, has been evaluated using a
inearized direct numerical simulation �DNS� code, solving Eq.
41�. This should be strictly equivalent to solving nonlinear
avier–Stokes equation �1� with a small-amplitude initial pertur-
ation �so that the perturbation amplitude remains small and in the
inear regime during the whole simulation�. If the initial perturba-
ion amplitude is not small, then the nonlinear term acting on the
erturbation is not negligible anymore and there is no guarantee
hat the linear LQG compensator will work. Preliminary nonlinear
imulations effectively show that the results from the linearized
imulations are recovered in the case of small-amplitude initial
erturbations but that the performance of the compensator dete-
iorates when the amplitude of the initial perturbation increases.

The Case of Noise-Amplifiers
Sections 3–5 were all concerned with the occurrence of un-

teadiness linked to an oscillator dynamics; for this scenario, the
acobian matrix A had at least one unstable eigenvalue. As men-
ioned in Sec. 1.3, flows like boundary-layers or jets display un-
teadiness even though the Jacobian matrix A is asymptotically
table. External perturbations as for instance turbulence, acoustics,
r roughness elements may continuously sustain the unsteadiness
f the flow-field. The Jacobian matrix A then acts as a linear filter

n the external disturbance environment, thus creating a fre-
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quency selection mechanism, which leads to a broadband low-
frequency spectrum for the perturbation field. The question arises
on how to characterize the dynamics of a noise-amplifier within a
global stability approach.

As seen in Sec. 2.3, the non-normality of the Navier–Stokes
equations results in nonorthogonal global modes in open-flows. In
Sec. 1.3.2, the noise-amplifier dynamics in a global stability
analysis has first been characterized through transient growth
properties viewed in terms of a superposition of nonorthogonal
global modes. We will now show the shortcomings of such an
approach for open-flows �Sec. 6.1�. Then �Sec. 6.2�, we mention
how transient growth may properly be computed by a direct-
adjoint approach. Finally �Sec. 6.3�, we show that selection fre-
quency mechanisms are better viewed in the frequency domain by
computing optimal forcing distributions and their associated re-

Fig. 21 Flow over an open cavity for Re=7500. Linearized di-
rect numerical simulations with a controller and an estimator
obtained by the LQG approach. „a… Reduced-order-model con-
sisting of eight unstable global modes and p balanced modes.
„b… Likewise, but p POD-modes. Adapted from Ref. †141‡.
sponses. An example with a Blasius boundary-layer will be given

MAY 2010, Vol. 63 / 030801-19
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o illustrate the approach. Open-loop control of noise-amplifiers
ill also be discussed in the light of sensitivity analyses with

espect to base-flow modifications.

6.1 Transient Growth as a Superposition of Global Modes:
hortcomings of Stable Global Modes. We will first show, on

he example of the open-cavity flow discussed in Sec. 5, that
omputing stable global modes is generally a bad idea in open-
ows: Most of the stable global modes do not carry any physical
eaning and are unphysical in the sense introduced in Sec. 1.2—

hey are extremely sensitive to external perturbations of the Jaco-
ian matrix. The spectrum of the open-cavity flow was given in
ig. 17, where the coloring indicated the importance of a given
lobal mode in the input-output dynamics. We saw that very
amped modes did significantly contribute to this dynamics. A
etailed analysis of the problem shows that nearly all stable global
odes �except few physical ones that represent the dynamics in-

ide the cavity� are located at the downstream boundary of the
omputational domain whereas their corresponding adjoints are
ocated at the upstream boundary. These modes are unphysical in
he sense introduced in Sec. 1.2 and represent the advection of the
erturbations by the base-flow uB in the freestream. We recall that,
aken individually, these modes carry no dynamic significance,
nd only the superposition of a great many of them yields physi-
ally relevant features. They are a consequence of the strong con-
ective driven nonorthogonality of the stable global modes �142�,
hich is further evidenced by a large nonorthogonality coefficient
�see Eq. �11��. This coefficient can reach values of 	=1015 for

he strongly damped eigenvalues. In addition, displacing the left
oundary �the right boundary� of the computational domain fur-
her upstream �downstream� will increase this coefficient even fur-
her. At a certain point, the convective driven nonorthogonality
as become so large that numerical methods fail to accurately
ompute these modes. We recall that the coefficient 	 also corre-
ponds to the condition number of the associated eigenvalue prob-
em. It is known that when this number is large, the eigenvectors
nd eigenvalues become very sensitive to perturbations of the ma-
rix. For example, in the present flow over an open cavity, it is
mpossible to calculate more discrete eigenvalues than those al-
eady presented in Fig. 17.

As recognized by Trefethen and Embree �142�, the problem
videnced in the previous paragraph arises in all advection-
iffusion problems when boundary conditions are introduced at
rtificial upstream and downstream boundaries. In the case of
treamwise unbounded flows, the spectrum of the linearized
avier–Stokes operator should, in fact, hold a continuous spec-

rum. For example, in the case of the constant coefficient equation
tu=�xu+�xxu /Re, if one looks for eigenfunctions of the form u
û exp��t+ ikx�, then the dispersion relation reads �= ik−k2 /Re;

.e., there exists a continuous set of eigenvalues/eigenvectors since
is real. Note also that this problem is normal in the sense that the

igenfunctions are all orthogonal. If the boundary conditions
�0�=u�1�=0 are added to the definition of the problem �because
mesh always starts and ends at some given artificial input-output
oundaries�, then the eigenvalues become discrete; i.e., only an
nfinite discrete countable set of eigenvalues exists �142�. These
igenvalues lie along the negative real-axis in the �� ,��-plane.
urthermore, in the case of high-Reynolds numbers, these eigen-
alues are extremely sensitive to external perturbations of the op-
rator and are unphysical in the sense introduced in Sec. 1.2.
hese perturbations are introduced when the equations are spa-

ially discretized with a numerical scheme, which explains the
ack of robustness of the eigenvalues with respect to discretization
hanges. Also, Trefethen and Embree �142� showed that the resol-
ent norm was extremely high in a parabola shaped area lying
long the negative real-axis in the �� ,��-plane: This means that
his whole area is nearly an eigenvalue when extremely small

erturbations to the governing operator are added. This same fea-
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ture could be observed in the case of the open-cavity flow with
two-dimensional Navier–Stokes equations: The eigenvalues were
most difficult to compute near the negative real-axis �see Fig. 17�.

In conclusion, we can state that most of the stable global
modes, when considered individually, are at best physically irrel-
evant and at worst impossible to compute. Therefore, the modal
basis constitutes, generally speaking, an ineffective and ill-posed
projection basis for the stable subspace in open-flows.

6.2 Noise-Amplifiers in the Temporal Domain. Even though
none of the global modes of A may be physical, the initial-value
problem described by Eq. �3� is well-defined and robust to exter-
nal perturbations of the matrix A, like discretization errors. For
example, for sufficiently fine meshes and for a given initial con-
dition, the perturbation solution has an intrinsic existence, which
is weakly sensitive to external perturbations. Therefore, instead of
computing transient growth from a superposition of a small num-
ber of global modes, one should directly look for transient growth
stemming from the large-scale matrix A and study energetic
growth solely from robust initial-value problem �3�. Note that the
transient growth problem in open-flows is structurally robust since
the transient growths and the optimal perturbations on a time ho-
rizon T are solution of an eigenproblem involving the Hermitian
matrix eATeA�T. Hence, the condition number of this eigenprob-
lem is equal to 1, showing the weak sensitivity of the energetic
gains and optimal perturbations to external perturbations of the
matrix A. This eigenproblem may also be viewed as a large-scale
optimization problem �11,20,76� that may be solved thanks to
direct-adjoint techniques. Here, for a given optimization time T,
one iteratively solves the direct problem du� /dt=Au� forwardly
in time on �0,T� and the adjoint problem du� /dt=−A�u� back-
wardly on �T ,0�. The initial condition of the adjoint problem is
the final state of the direct problem, while the initial condition of
the direct problem is the final state of the adjoint problem. First
studies on this strategy in a global stability approach were carried
out by Marquet et al. �143,144� on a rounded backward-facing
step and by Blackburn et al. �145,146� on a backward-facing step
and stenotic flows. This type of analysis produces unprecedented
stability information for the characterization of noise-amplifiers in
complex flows.

6.3 Noise-Amplifiers in the Frequency Domain. An initial
optimal perturbation problem, as presented in Sec. 6.2, well de-
scribes transients and the physics of energetic growth in noise-
amplifiers. Nevertheless, the above-identified initial optimal per-
turbations may not straightforwardly be linked to the upstream
perturbations that a flow may experience in simulations or experi-
ments. In such situations, one usually knows—or may know—
some characteristic features of the upstream noise, such as a fre-
quency spectrum, a spatial structure, and a preferred location.
Then, one aims at predicting the features of the downstream sus-
tained unsteadiness, also in the form of a frequency spectrum,
spatial structure, and location. For this, it is more natural to resort
to the frequency domain and achieve the singular value decompo-
sition of the global resolvent, as shown below �147,148�.

For this, let us consider an asymptotically stable base-flow uB,
solution of Eq. �2�, and a perturbation u� superposed on uB that is
driven by some external forcing f�. For a small-amplitude forcing
f�, the flow response u� is governed by the linearized Navier–
Stokes equations, which after spatial discretization read

du�

dt
= Au� + f� �54�

We then consider a forcing f� and a response u� characterized by

a given real frequency � : f�=ei�tf̂�x ,y� and u�=ei�tû�x ,y�. The

harmonic forcing f̂ then induces the following harmonic response
ˆ
u in the flow:
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û = R���f̂ �55�

here R���= �i�I−A�−1 is referred to as the global resolvent.
his matrix is defined for any real frequency � since all eigenval-
es of A are strictly damped. If the energy norm induced by the

calar product �· , ·� is considered, the optimal forcing f̂ corre-
ponds to the forcing, which maximizes the energetic gain

�2 = sup
f̂

�û,û�

�f̂, f̂�
�56�

his optimal forcing can be calculated using the singular values of
he global resolvent R��� given by

R�Rf̂ = �2f̂ �57�

n the above, �2 is a real positive eigenvalue related to the optimal

orcing f̂ of unit norm and R� is the matrix adjoint to R and
efined in such a way that �uA ,RuB�= �R�uA ,uB� for any vector

A, uB. The optimal response û of unit norm is obtained by solv-

ng û=�−1R���f̂. Since eigenvalue problem �57� is Hermitian,

he set of optimal forcings �f̂ j , j�1� defines an orthonormal basis,

hich is adequate to represent the forcing space f̂=	 j�f̂ j , f̂�f̂ j. In
he same way, it is possible to show that the set of optimal re-
ponses �û j , j�1� also forms an orthonormal basis. This latter
asis is meant to represent the response space û=	 j�û j , û�û j. The

ingular values �� j , j�1� satisfy R���f̂ j =� jû j.
To summarize, if we are given the structure of the harmonic

orcing f̂ at some frequency �, we readily obtain the structure of
he response in the form

û = 	
j�1

� j�f̂ j, f̂�û j �58�

nd the energy of the response is simply

�û,û� = 	
j�1

� j
2�f̂ j, f̂�2 �59�

ence, to maximize the response of the flow-field, the external

orcing f̂ should drive the flow with a structure as close as pos-

ible to the optimal forcing f̂1, in which case the response of the
ow will closely resemble the optimal response û1.
Finally, note that the condition number of eigenproblem �57� is

qual to one due to the Hermitian nature of the underlying matrix;

he eigenvalues � j
2, optimal forcings f̂ j, and responses û j are

herefore numerically well-posed and only very weakly sensitive
o external perturbations of the matrix A. These quantities are
herefore �structurally� physical, in the sense introduced in Sec.
.2, contrary to the stable global modes.

To illustrate this new approach, let us take the example of a
oundary-layer flow that develops over a flat plate located be-
ween x=0 and x=1. The computational domain extends from x
−1 to x=1, its height being equal to y=1. The Reynolds number
ased on the upstream velocity and the plate length is taken as
e=200,000. After having determined the base-flow, we verify

hat the Jacobian matrix has only stable eigenvalues even though
he velocity profiles extracted for 0.4�x�1 are convectively un-
table since the Reynolds number based on the displacement
hickness ranges from 500 to 770 in this interval. Hence, the glo-
al Jacobian matrix A should show strong amplifications in some
ow-frequency range due to the development of Tollmien–
chlichting waves in the boundary-layer. In Fig. 22�a�, we display

he dominant singular value �1
2 as a function of the frequency �.

e observe that this curve displays a maximum for the low-
2
requency �� /U�=0.00018. The present formalism based on the
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global resolvent thus explains the frequency selection in Blasius
boundary-layers. The optimal forcing and associated optimal re-
sponse at the frequency of maximum amplification are displayed
in Figs. 22�b� and 22�c�. The optimal forcing is located around
x�0.3 while the associated response displays Tollmien–
Schlichting waves developing downstream. The present results
show that if external perturbations �turbulence� are present near
x�0.3, Tollmien–Schlichting waves will be sustained on the flat
plate.

These results are complementary to the modal analyses by Eh-
renstein and Gallaire �54�, Akervik et al. �56�, and Alizard and
Robinet �55�. Moreover, if a transverse wavenumber � is consid-
ered, the lift-up and oblique wave phenomena highlighted within a
local framework by Andersson et al. �21�, Luchini �22�, Corbett
and Bottaro �23�, and Levin and Henningson �149� should be
recovered. This formalism is also well suited for receptivity stud-
ies, in the spirit of studies by Crouch �150� within a local
framework.

Last, we will briefly demonstrate how the sensitivity concept
and the open-loop control design may be extended to the case of
noise-amplifier flows. For this, we consider a given optimal forc-

ing f̂ and the associated optimal response û such that R�Rf̂

=�2f̂ and û=�−1Rf̂. These fields are normalized according to

�f̂ , f̂�=1 and �û , û�=1. The singular value �2 is a function of the
base-flow uB, due to the dependence of the resolvent R on the

Fig. 22 Boundary-layer flow over a flat plate for Re=200,000.
„a… Frequency response of the flow �1

2
„�…, „b… real part of

streamwise momentum forcing for f̂1 at �� /U�
2 =0.00018, and

„c… associated optimal response û1 „real part of streamwise
velocity….
latter. Differentiation of the above expression leads to
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��2 = ��uB�2,�uB� �60�

here �uB�2 is the sensitivity of the singular value with respect to
modification of the base-flow. A simple calculation shows that

�uB�2 = �3B�uB,û��f̂ + c.c. �61�

here B�uB , û� is the matrix defined in Eq. �26� and B�uB , û�� is
ts adjoint. This expression is the equivalent of Eq. �27�, with the
ptimal forcing as the adjoint global mode and the optimal re-
ponse as the direct global mode. Hence, all the procedures and
ools for open-loop control of oscillator flows may readily be tran-
cribed and applied to noise-amplifier flows. Such an approach
ay complement the studies by Pralits et al. �151� and Airiau et

l. �152� on the stabilization of Tollmien–Schlichting waves with
all-suction.

Issues Related to Three-Dimensionality, Nonlinear-
ty, and High-Reynolds Numbers

Three issues will be discussed in this final prospect section: Can
e deal �Sec. 7.1� with three-dimensional configurations? How
oes nonlinearity �Sec.7.2� enter the problem? What new prob-
ems �Sec. 7.3� are encountered as the Reynolds number in-
reases?

7.1 Toward Three-Dimensional Configurations. All the ex-
mples presented up to know concerned two-dimensional configu-
ations for which only two directions in space were fully resolved
streamwise and one cross-stream direction�. Conceptually speak-
ng, all notions that have been introduced so far �base-flows, glo-
al modes, adjoint modes, gradients, Gramians, and balanced
odes� straightforwardly extend to fully three-dimensional con-
gurations. There is therefore no theoretical problem but there
ay be a computational one: Can these structures still be com-

uted in a three-dimensional configuration in terms of memory
equirements and CPU time? We will first estimate the cost of
lobal stability analyses within the computational strategy that has
een followed by the authors during these past years. We use
ewton methods to compute base-flows, ARPACK

15 in shift-invert
ode to extract given eigenvalues, and ARPACK in regular mode to

ompute the singular value decomposition of the resolvent. The
ottleneck of all these algorithms is the solution of large-scale
inear systems. Hence, the cost of the approach presented in this
rticle is roughly the cost of solving a large-scale linear problem.
pace discretization is achieved with finite elements. To achieve
econd-order accuracy in space, classical Taylor–Hood elements
ith P2 elements for the velocity components and P1 elements for

he pressure are used. The free software FreeFem++ 16 then ex-
licitly computes the sparse matrices and the right-hand-sides.
arge-scale solutions of the associated linear problems are per-

ormed with a sparse scalable direct lower-upper �LU� solver17

153�.
For example, in the case of the open-cavity flow at Re=7500

tudied in Sec. 5, the mesh comprised 193,708 triangles �97,659
ertices�, which led to 0.9
106 degrees of freedom for a

15http://www.caam.rice.edu/software/ARPACK/
16www.freefem.org
17

able 1 Computational time and memory usage for a real matr
olver

Configuration No. of elements No. of DOFs �
106� No

avity 2D 193,708 0.9
lat plate 2D 491,416 2.2
ing 3D 491,653 2.1
MUMPS. http://mumps.enseeiht.fr/
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velocity-pressure �u ,v , p� unknown. The memory usage and com-
putational time are given in Table 1: The computations may be
achieved on a single processor, take 170 s, and require 2.7 Gbytes
of memory. In the case of the two-dimensional Blasius boundary-
layer at Re=200,000 �Sec. 6�, the mesh comprised 491,416 tri-
angles �247,735 vertices�, which led to 2.2
106 degrees of free-
dom for the velocity-pressure unknown. From Table 1, it is seen
that, comparing to the open-cavity flow case, both the computa-
tional time and the required memory have been multiplied by 2.5,
which is precisely the ratio between the number of elements in the
Blasius boundary-layer case and in the open-cavity flow case.
Hence, the memory usage and computational time scale linearly
with the number of elements in the mesh. All two-dimensional
configurations studied within this review article may be handled
out on a PC. For three-dimensional configurations, the cost rises
substantially. In the case of a low-aspect ratio NACA0012 wing
�AR=4�, the mesh comprised 491,653 tetrahedra �83,290 verti-
ces�, leading to 2.2
106 degrees of freedom for an �u ,v ,w , p�
unknown. An inversion was completed on a cluster using 48 pro-
cessors: From Table 1, it is seen that the inversion lasts 2700 s
�elapsed CPU time� and that 3.5 Gbytes of memory per processor
were required. The cost therefore increases drastically from 2D to
3D configurations, although the same number of degrees of free-
doms is involved in the last two presented computations. The
reason for this blowup stems from the difference in sparsity of the
two matrices: In two-dimensional settings, the matrices have ap-
proximately 29 nonzero elements per line �with Taylor–Hood el-
ements�, while for a three-dimensional mesh, this value raises to
98. On the whole, the computations are short in time but require a
large amount of memory. Moving to domain decomposition meth-
ods should greatly improve scalability of the large-scale linear
problems when using a high number of processors.

Matrix-free methods, in which the Jacobian matrix A is never
formed explicitly, have also been developed over the past years.
The original idea was worked out by Tuckerman and co-workers
�32,154,155�. It has been taken over recently by Henningson and
co-workers �148,156�, with the aim of performing global stability
analyses by using solely a linear or nonlinear DNS-solver. For
example, following Ref. �157�, the action of the Jacobian matrix
on a given vector u� may be approximated through Au�= �R�uB

+�u��−R�uB�� /� for a sufficiently small �. Here, solely the
evaluation of the nonlinear residual of the Navier–Stokes equa-
tions is required to perform Au�. Initial-value problem �3� may
then be solved numerically with the method of exponential propa-
gation �32�, which only requires evaluations of Au� or directly
from the time integration of nonlinear governing equation �1� by
using u=uB+�u� �see Ref. �157��. It is then possible, with Krylov
subspace methods �32�, to look for the least damped global modes
by identifying the largest eigenvalues �in modulus� of the matrix
eAT, where T is an arbitrary time of the order of the instability
time-scale. Indeed, ARPACK in regular mode solely requires the
action of eAT on some given vector û, which may be obtained by
time-marching Eq. �3� or Eq. �1� with the initial condition u��t
=0�= û from t=0 to t=T. As for the computation of the resolvent,

one may just march in time the equations dû /dt=−i�û+Aû+ f̂
until convergence—we note that �−i�I+A� is an asymptotically

inverse in 2D and 3D configurations using a scalable direct LU

f processors
Memory
�Gbyte�

Memory/processor
�Gbyte�

Time
�s�

Time/processor
�s�

1 2.7 2.7 175 175
1 6.7 6.7 431 431

48 168 3.5 129,144 2700
ix

. o
stable matrix in the case of noise-amplifiers, which justifies the

Transactions of the ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



c
fl
m
o
d
m
s
b
B

e
t
l
n

p
p
i
o
c
W
t
o
t
F
p
n
n
A
m
i
t
w
s
�
p
b
l
h
t
s
t
b
s
i
d
�
s
p
fl
p
t

e
i
i
I
a
u
l
m
l
o
T
d
d
a
f
i

A

Downlo
onvergence of the equations. As for the identification of base-
ows, a vast literature deals with implementing cheap Newton
ethods �32�. Also DNS-based approaches for the identification

f base-flows have recently emerged with the selective frequency
amping technique �Åkervik et al. �158��. On the whole, the
atrix-free methods take much more CPU time but require a

maller amount of memory. A first three-dimensional global sta-
ility computation has been performed using such strategies by
agheri et al. �40�.

7.2 Nonlinearity. This review article concerns linearized
quations, which govern the dynamics of a small-amplitude per-
urbation in the vicinity of a base-flow uB. The influence of non-
inearities is now briefly discussed in the case of oscillators and
oise-amplifiers.

In the case of oscillator flows, the effects of nonlinearities have
artly been addressed in Sec. 3.2 when the various control ap-
roaches have been presented in the light of bifurcation analyses,
n Sec. 1.3.3 when the local instabilities were related to the global
nes, and in Sec. 5.4 when testing the robustness of the LQG
ontrol law for initial perturbations of increasing amplitude.
ithin the linearized framework presented in this review article,

he effects of nonlinearities may be accounted for only in the case
f weakly supercritical flows �0�
�1�: The nonlinearities are
hen weak and may be captured by a weakly-non-linear approach.
or such an analysis to hold, the base-flow should not be too
arallel. Indeed, in the case of weakly-non-parallel flows, the dy-
amics associated with exponential instabilities becomes strongly-
on-linear immediately above the critical linear threshold �44,60�.
local description of the flow in terms of front dynamics is then
ore appropriate �44�. In the present review article, we have stud-

ed configurations that were, in fact, sufficiently nonparallel so
hat the dynamics near the critical threshold was captured by a
eakly-non-linear approach. Although not covered in this review,

econdary global linear instabilities, as discussed by Chomaz
44,159�, may also be analyzed straightforwardly within the
resent global stability approach: One then studies the global sta-
ility of the bifurcated states, which appear above the primary
inear instability threshold. In this case, continuation methods
ave first to be used to identify the bifurcated states. In the case of
he cylinder flow where a Hopf bifurcation occurs, the bifurcated
tate is a periodic flow, which may be identified by time marching
he two-dimensional Navier–Stokes equations. Then a Floquet sta-
ility analysis may be used to study the three-dimensional linear
tability characteristics of this new state �33�. Note that subcritical
nstabilities may also exist in open-flows, for which the linear
ynamics is stabilizing and the nonlinear dynamics destabilizing
130,131�: A finite-amplitude perturbation is then required to de-
tabilize the flow and these instabilities are out of reach of a
urely linear description. At least, for sufficiently nonparallel
ows, a weakly-non-linear approach has to be used to tackle such
roblems �the coefficient �r+�r, as introduced in Sec. 3.4, will
hen be negative�.

For noise-amplifier flows, the influence of nonlinearities is gov-
rned by the amplitude of the upstream forcing. If this amplitude
s sufficiently small, then the linear approach presented in Sec. 6
s valid and one does not need to take into account nonlinearities.
f not, then a first step would be to achieve a weakly-non-linear
pproach based on a small parameter being the amplitude of the
pstream forcing. If one aims at predicting transition to turbu-
ence, then a strongly-non-linear approach is required. The linear

echanisms just yield the potential for amplification but the non-
inearities determine the critical threshold �in terms of amplitude
f the perturbation� for transition toward a fully turbulent flow.
his amplitude threshold may be determined by exploring, with a
irect numerical simulation approach, the so-called edge-states,
iscovered recently by Nagata �160�, Waleffe �161�, and Faisst
nd Eckhardt �162�. These edge-states are located on a hypersur-
ace, which constitutes a laminar/turbulent boundary, separating

nitial conditions, which relaminarize uneventfully from those that
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become turbulent �Duguet et al. �163��. For the control of transi-
tional flows, such as boundary-layers, it may be less expensive to
consider these edge-states as objectives for closed-loop control.
Indeed, these states may be easier to reach than the initial short-
term unstable configurations. Finally, note also that secondary in-
stabilities may be studied in noise-amplifier configurations, as, for
example, Cossu et al. �164� with the perturbations developing on
streaks in a plane channel flow.

7.3 High-Reynolds Number Flows. As the Reynolds number
increases, the determination of base-flows to linearize about be-
comes an increasingly difficult task. Indeed, continuation methods
are effective on moderately large Reynolds numbers only. But, for
very high values of this control parameter, these flows may not
even exist. Note that, in the case of noise-amplifiers such as jets or
boundary-layers, finding base-flows seems more easy than for os-
cillator flows. In a numerical approach with high-order discretiza-
tion schemes �so as to minimize discretization errors, which could
be seen as upstream sustained noise�, since the base-flow is as-
ymptotically stable, one just solves nonlinear equation �1� in time
until convergence �43�. For example, it is easy to compute the
base-flow for a flat plate boundary-layer, even for Reynolds num-
bers up to 106, while this is impossible for the cylinder or open-
cavity flow owing to the numerous successive bifurcations that
may exist, as the Reynolds number increases.

For very high-Reynolds numbers, such as the buffeting of air-
foils, a solution to the above issue may be to consider the un-
steady Navier–Stokes equations augmented by a turbulence
model. In the English literature on this subject, the acronym
URANS is used for this set of equations �unsteady Reynolds-
averaged Navier–Stokes equations�. Usually, the assumption of a
decoupling of scales is made to justify the adequacy of these
models: Small spatial scales related to high frequencies are ac-
counted for by the turbulence model, while large scales, charac-
terized by low frequencies, are captured by temporal integration.
This way it is possible to redefine the concept of an equilibrium
point, which now means a steady flow-field of the URANS equa-
tions. By this extension, equilibrium points may exist even for
flows at very large Reynolds numbers. The concept of linear dy-
namics thus makes reference to large spatial scales and low-
frequency perturbations whose dynamics is governed by the
URANS equations linearized around an equilibrium point defined
above. Techniques derived from optimal control theory can then
be applied to determine the best possible actions—within the va-
lidity of this model—to stabilize or destabilize the low-frequency
modes. The first global stability analysis that included a �Spalart–
Allmaras� turbulence model has been carried out by Crouch et al.
�165� who studied the onset of transonic shock-buffeting on air-
foils. The same technique has been considered by Cossu et al.
�166� to identify streaks in turbulent boundary-layers. As far as
model reduction is concerned, Luchtenburg et al. �72� considered
URANS simulations with a k−� turbulence model to build a
physics-based reduced-order-model based on a Galerkin projec-
tion with POD-modes. The model is intended to capture the effect
of high-frequency actuation on the mean flow and therefore on the
natural instabilities that develop on it.
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Nomenclature
u � flow velocity
B
u � base-flow
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uM � mean flow
R�u� � residual of the Navier–Stokes equations

A � linearized Navier–Stokes matrix or Jacobian
A� � adjoint matrix of A
Re � Reynolds number


 � Reynolds number in the form of departure
from criticality 
=Rec

−1−Re−1

� � eigenvalue of A
� � amplification rate
� � frequency

�· , ·� � scalar product of two scalar or vector fields
û � direct global mode
ũ � adjoint global mode
	 � measure of nonorthogonality of a global mode

û
� � amount of nonorthogonality due to component-

type non-normality within total
nonorthogonality

�uB� � sensitivity of eigenvalue � to a modification of
the base-flow

�f� � sensitivity of eigenvalue � to a steady forcing
of the base-flow

C � control matrix
M � measurement matrix
PS � projection matrix onto the stable subspace of

A
�W ,V� � bi-orthogonal basis

Ĥ��� � input-output transfer function
Gc � controllability Gramian
Go � observability Gramian

R��� � resolvent matrix
�2 � squared singular value of the resolvent matrix

�uB�2 � sensitivity of the squared singular value �2 to
base-flow modifications

W�
� � scalar field representing the wavemaker region
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