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2Onera, Fundamental and Experimental Aerodynamics Department, 8 rue des vertugadins,
92190 Meudon, France

(Received 20 October 2010; accepted 27 May 2011; published online 6 September 2011)

This paper addresses the model reduction of high-order linear systems within the framework of the

incompressible Navier-Stokes equations. We look for reduced-order models that capture the

response of some specific sensor whatever the initial flow condition and in the presence of any

time-dependent external forcing. Namely, this work deals with the accurate modeling of the input-

output dynamics of a fluid system when considering each degree of freedom of the system as an

input, and the given measurement as the output. In the case of complex or realistic flows, the

number of inputs is too large to apply the standard balanced truncation procedure. To alleviate this

problem, we introduce a method called input projection. Input projection is shown to be analogous

to the output projection procedure introduced by Rowley, Int. J. Bifurcation. Chaos Appl. Sci. Eng.

15, 997 (2005). To illustrate the model reduction, we consider the dynamics of a globally stable

flow over a rounded backward-facing step. Reduced-order models are obtained by projecting the

full original system onto: (i) the basis of the leading balanced modes computed from the input-

projected systems and (ii) the most observable modes. The balanced models are observed to

accurately capture the transient growths along the separated flow whatever the input while

outperforming the models based on the most observable modes. VC 2011 American Institute of
Physics. [doi:10.1063/1.3622771]

I. INTRODUCTION

A variety of open flows, such as boundary layers, mix-

ing layers, or separated flows, are subject to convective insta-

bilities which amplify upstream low-level noise. In fact,

even if globally stable, these flows may sustain large flow

unsteadiness characterized by broadband frequencies due to

the presence of permanent upstream noise.1 These flows are

often called selective noise-amplifiers and may be highly

sensitive to small upstream perturbations (residual turbu-

lence, noise, and surface roughness). In particular, the dy-

namics of such flows strongly depend on the characteristics

of the upstream noise, which are unknown in practice. As a

result, modeling the dynamics of amplifier flows remains a

challenging task which, however, is crucial in many indus-

trial applications. Typical examples are (i) the closed-loop

control of the laminar-turbulent transition in boundary layer

flows2–4 and (ii) the design of near optimal state estimators

in meteorology.5,6 In both cases, due to the large size of the

fluid systems, reduced-order models (ROMs) of the flow dy-

namics that capture the noise are required.

In order to capture such an unspecified noise, one solu-

tion consists of building ROMs which capture all the possi-

ble inputs. As a prototype example, we consider the flow

over a rounded backward-facing step shown in Figure 1.

This flow is assumed to be driven by an uncertain forcing at

the upstream. Our objective is then to design low-order mod-

els that capture the linear dynamics on a single specific sen-

sor, for all possible forcing configurations. Such a ROM may

be very useful in the context of closed-loop control. For

example, Bagheri et al.2 assumed that the upstream noise

was known in the design of their ROM. This noise was taken

as a single spatial structure continuously forced in time by a

white noise signal. The associated Linear Quadratic Gaus-

sian (LQG) compensator will, therefore, only work for this

specific spatial structure and location of the noise. Now, in

real experiments, the noise is unknown and a model captur-

ing all possible inputs would overcome this limitation.

A model reduction technique called balanced truncation

is particularly suited for stable linear input-output systems.7

It consists of finding a basis of equally controllable and

observable modes ranked according to these properties.

ROMs are obtained by the projection of the original system

onto the leading balanced modes. Balanced truncation is said

to be quasi-optimal to capture the dynamics from the inputs

to the outputs since it offers theoretical bounds8 on the trans-

fer function error which are close to the lower bound achiev-

able by any reduced-order model. This useful property

makes it a very efficient and popular technique which

brought the use of modern optimal flow control tools9–13

within reach of current computational technology. Previous

works on balanced truncation comprise the extension to non-

linear problems by Scherpen14 and Lall et al.,15 the introduc-

tion of an algorithm by Laub et al.16 for the accurate and

optimal computation of the balanced basis, and also the

extension to unstable linear systems proposed by Zhou

et al.17

Technically, the balanced basis can be computed as the

eigenvectors of the product of two operators, namely the so-

called controllability and observability Gramians.18,19 For

systems of moderate size, with up to O(103) degrees of
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freedom, the balanced modes can be computed directly by

computing explicitly the Gramians.5,6,20,21 However, an ap-

proximate procedure is required for larger systems since this

computation quickly becomes untractable. A recent exten-

sion proposed by Willcox and Peraire22 and Rowley23 has

overcome this difficulty by approximating the balanced

modes without computing the Gramians, by using a snapshot

method. This technique, called balanced proper orthogonal

decomposition (BPOD), has been performed on both

stable2,24,25 and unstable flow configurations.26–28

Balanced truncation designs efficient low order models

which capture the dynamics from specific inputs to specific

outputs. However, it may be completely ineffective to deal

with the inputs and the outputs that have not been explicitly

taken into account. In particular, it is not meant to model the

true flow perturbation triggered from all the possible initial

conditions unless both the input and the output spaces are

chosen as the full state space. For large systems, using the

method of snapshots requires the computation of one direct

and one adjoint simulation per input and output. Conse-

quently, choosing a large number of inputs and outputs

quickly becomes unaffordable with the standard snapshot

method. Though, Rowley23 has introduced the technique

called output projection to approximate the balanced modes

for systems having a very large number of outputs. Output

projection has been applied for the model reduction of a

channel flow24,29 and to perform closed-loop flow control on

the flow past an inclined flat plate26,28 by choosing the total

kinetic energy of perturbations as the control objective to

minimize.

Alternatively, another model reduction procedure is

worth mentioning. The eigenvectors of the controllability

and observability Gramians constitute two sets of orthogonal

modes that may be considered to perform model reduction.

The leading eigenmodes of the two Gramians account for the

most controllable and observable states, respectively.2 These

modes have already been used to build reduced-order models

for fluid systems.2,23,24,27 In these cases, they are referred to

as proper orthogonal decomposition (POD) models since

they are computed from the classical method of snapshots

introduced by Sirovich.30 By construction, controllable

modes optimally capture the energy triggered by the input

while observable modes are the flow structures leading to

maximum output energy. In spite of these properties, the

resulting ROMs are known to be sub-optimal for capturing

the input-output dynamics and may even be ineffective.31

In this paper, we are concerned with balanced truncation

of stable linear input-output systems having a very large

number of inputs. Particular attention is given to the case

where the input is the full state, which stands for finding low

order models that capture the dynamics from any initial con-

dition or any forcing distribution to some given output. The

procedure developed in this paper consists of an approximate

balanced truncation and stands for an extension of the output

projection procedure by Rowley.23 In particular, the resulting

ROMs are meant to quasi-optimally capture the input-output

dynamics. Owing to its technical analogy with the output

projection procedure, we call the present method input pro-

jection. The procedure is illustrated on the incompressible

flow over a two-dimensional backward-facing step, which

only accounts for a prototype of noise-amplifier flow. The

formalism introduced here does not rely on physical insight

into this particular flow configuration and can be applied to

any other stable open flow configuration. The guideline of

this paper is very similar to that adopted by Ilak and Row-

ley24 where the performance of the output projection proce-

dure is assessed on a channel flow. Notably, both the ROMs

based on the most observable modes and the leading bal-

anced modes are investigated. Their performance are eval-

uated and also compared. The goal of this paper is twofold:

(i) show the ability of input projection to accurately model

the “full-input to single output” transfer function of a large

fluid system and (ii) to illustrate its quasi-optimality.

The rest of the paper proceeds along the following out-

line: in Sec. II, we start by introducing the model reduction

procedures within the framework of the incompressible Nav-

ier-Stokes equations. These techniques are then applied to

the two-dimensional flow over a backward-facing step,

which is described in Sec. III. Results are presented in

Sec. IV where the performance of the ROMs is assessed. A

critical assessment of the input projection technique is pro-

vided in Sec. V and concluding remarks are presented in

Sec. VI.

II. MODEL REDUCTION METHODOLOGY

A. Problem formulation

1. Governing equations

We consider the incompressible Navier-Stokes equa-

tions excited by a small noise (the input) together with a

sensing (the output). The equations governing dynamics of

the velocity u and pressure p fields are given by

@tuþ ðu � rÞu ¼ �rpþ Re�1r2uþ egðtÞ
r � u ¼ 0

mðtÞ ¼ Cu

8<: ; (2.1)

where Re denotes the Reynolds number and g(t) stands for a

field modeling the noise. The parameter e points out that the

FIG. 1. (Color online) Backward-facing step

flow investigated in this paper. The steady-state

base flow at Re¼ 600 is depicted by its stream-

lines and longitudinal velocity. The upstream,

downstream, and upper boundaries are, respec-

tively, located at x¼� 20, x¼ 100, and y¼ 20.

The exact position of the sensor is also

displayed.
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noise is small compared to the other terms of the equation.

Thus, �g(t) acts as a small time dependent forcing on the mo-

mentum equation. As in a practical case, we consider that

the spatial and temporal distributions of the noise g(t) are

unknown. Since the velocity field has a divergence-free con-

straint, it can easily be shown that only the divergence-free

part of g(t) will have an effect on the system, so that we can

suppose that r�g(t)¼ 0. This forcing term g(t) is considered

as the input of our problem in the following.

The measure denoted by m(t) represents a quantity

extracted from the flow by some sensors. Mathematically, it

is expressed as the result of a measure operator C applied to

the velocity field u. For simplicity, we will consider in this

work a single sensor, so that m(t) is a scalar. This measure-

ment is also referred to as the output of our system. In this

context, we wish to design ROMs capable of capturing the

linear input-output dynamics of this system. In other words,

we wish to model accurately these dynamics whatever the

noise distribution.

First, we linearize the dynamics given by Eq. (2.1) at the

order e about a base flow. This base flow is chosen here to be

the solution of the associated steady Navier-Stokes equations

with e¼ 0. The velocity of the base flow is denoted by U in

the following and we adopt, for simplicity, the notation (u, p)

for the perturbation field and m(t) for the measure of the per-

turbation. The resulting set of equations reads

@tuþ U � ruþ u � rU ¼ �rpþ Re�1r2uþ gðtÞ
r � u ¼ 0

mðtÞ ¼ Cu

8<: ;

(2.2)

which accounts for the linear dynamics of the perturbations

about the base flow. Within a numerical approach, Eq. (2.2)

are discretized on a mesh. It can be shown (see Appendix A)

that we can write the resulting discretized equations in the

following matrix form

dX

dt
¼ AXþ gðtÞ; (2.3a)

mðtÞ ¼ CX; (2.3b)

where X and C denote the vectors resulting from the discreti-

zation of u and C. Additionally, we assumed that g(t) and

m(t) maintain the same notation once discretized, and the

matrix A represents the linearized Navier-Stokes operator

which is supposed to be stable in the following. Equations

(2.3) constitute the stable linear input-output state-space sys-

tem considered in the following. The size of this system,

denoted by n, is also its number of degrees of freedom. Thus,

the matrix A is of size n� n, the states X and g(t) are of size

n� 1 and C is of size 1� n.

2. Definition of the norms

Mathematically, there are two relevant and equivalent

quantities for assessing the input-output behavior of system

(2.3): the impulse response g(t)¼CeAt and the transfer func-

tion G(x)¼C(ixI�A)� 1. To quantify the performance of

the ROMs, we compute the error on the transfer function,

which requires the definition of some norms.

First, let us introduce an inner product, denoted by hi,
on the state space. This inner product is chosen as the stand-

ard energy inner product. It is defined for two states Z1 and

Z2, corresponding to the velocities u1 and u2, by

hZ1;Z2i ¼
ð

X
u1 � u2 dX; (2.4)

where X is the fluid volume. We also suppose that the input

space, which is equal to the state space, is endowed with the

same inner product. It is then possible to define the adjoint

operator A† by

hZ1;AZ2i ¼ hA†Z1;Z2i; (2.5)

for all possible states Z1 and Z2. Furthermore, we define the

adjoint of the state X and of the operator C by

hX;Zi ¼ X†Z and CZ ¼ hC†;Zi; (2.6)

for all possible states Z. Note that g(t) and G(x) are vectors

of size 1� n; their adjoint are defined similarly to that of C.

It is straightforward to show that G†(x)¼ (� ixI�A†)� 1C†

and g†(t)¼ eA†tC†, which are both of size n� 1.

The norm associated with the inner product hi will be

denoted by jj jj in the following. It is defined for a state X by

jjXjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hX;Xi

p
. From this inner product, it is possible to

define two standard norms to quantify the transfer function.

The 2-norm of the transfer function G is defined by either a

frequency or a time integral

jjGjj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2p

ðþ1
�1
jjG†ðxÞjj2dx

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðþ1
0

jjg†ðtÞjj2dt

s
:

(2.7)

Furthermore, we also consider the 1-norm of the transfer

function which is defined by

jjGjj1 ¼ max
x
jjG†ðxÞjj: (2.8)

Note that both norms are satisfactorily defined since we

assumed that A is stable. In addition, the two norms jj jj2 and

jj jj1 should not be confused with the norm jj jj that meas-

ures a state.

B. Balanced truncation

Balanced truncation is a well-known model reduction

technique used for stable linear input-output systems. It

relies on the concept of controllability and observability of

the flow states. Controllability quantifies how easy a state

can be reached from any other state, while observability

quantifies the amount of measure triggered by a given flow

state.7 The key idea of balanced truncation is to find a basis

of equally controllable and observable modes and project the

original equations onto the set of the most controllable/
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observable modes. This basis, which is called the balanced

basis, may be computed7 as the eigenvectors of the product

of the controllability and observability Gramians defined,

respectively, by

Gc ¼
ðþ1

0

eAteA†tdt Go ¼
ðþ1

0

eA†tC†CeAtdt: (2.9)

For large systems, a procedure known as BPOD (Ref. 23)

yields a snapshot-based approach to approximate balanced

truncation. It relies on the computation of the matrices

X(t)¼ eAt and Y(t)¼ eA†tC† for a discrete set of times in

order to stack them (with appropriate quadrature weights) as

columns of the matrices X and Y such that the Gramians

may be factored as

Gc � XX† Go � YY†: (2.10)

Next, one can compute the balanced basis from the singular

value decomposition Y†X¼MRN*, where * denotes the

transconjugate. The balanced basis T and its inverse S are

found by

T ¼ XNR�1=2 S ¼ YMR�1=2; (2.11)

where the balanced modes are the columns of the matrix T
while its biorthogonal basis constitutes the columns of S.

Note that their orthogonality relation reads S†T¼ I. The

entries of the diagonal matrix R are known as the Hankel sin-

gular values (HSVs) and refer to the equal controllability

and observability of the associated balanced modes.

Using the snapshot method introduced by Rowley,23 the

computation of Y(t)¼ eA†tC† requires one adjoint simulation

since there is only one output. However, the computation of

X(t)¼ eAt is not tractable since it would require n direct sim-

ulations, one for each degree of freedom of the system. The

computation of the exact balanced basis associated with sys-

tem (2.3) is thus not possible in our case. Yet, we alleviate

this problem by considering instead (i) the observable

modes, which are already known in the literature and (ii) the

balanced modes computed by using the technique introduced

in this paper and called “input projection.”

C. Observable modes

First, we consider an orthogonal basis of modes ranked

according to their observability. These modes are obtained

as the leading eigenvectors of the observability Gramian Go.

The resulting flow structures are by definition the most

observable states and are ranked according to their contribu-

tion to the output energy.2

For large systems, the leading observable modes can be

computed by using the standard snapshot method.23 The first

step is to compute the flow states fY(t)¼ eA†tC†; t> 0g with

an adjoint simulation to build the matrix Y. Next, we com-

pute the singular value decomposition Y†Y¼ LKL*. The

leading observable modes are then obtained as the columns

of the matrix R given by

R ¼ YLK�1=2: (2.12)

Note that the orthogonality of these modes reads R†R¼ I. It

should also be noticed that the observable modes reduce to

the POD modes of the dataset fY(t); t> 0g computed with

the energy inner product. The diagonal matrix K yields the

leading eigenvalues of Go which account for the observabil-

ity of the corresponding eigenvectors.

Reduced-order models can then be obtained by projec-

ting the full system (2.3) onto the most observable modes.

The choice of such ROMs is intuitively motivated insofar as

it is based on the modes having the highest contribution to

the sensor energy. However, contrary to balanced models,

these ROMs are sub-optimal (and may be ineffective) in

capturing the true input-output dynamics.

D. Input projection

The second approach considered here is the method

called input projection. The idea is to project the input g(t)
on a low-dimensional subspace while optimally preserving,

in the 2-norm sense, the original transfer function. If we

introduce an orthogonal projection Ps on a s-dimensional

subspace of the input space, the new input-output system

reduces to

dX

dt
¼ AXþ PsgðtÞ; (2.13a)

~mðtÞ ¼ CX; (2.13b)

where ~mðtÞ is the output of the input-projected system. We

look for the projection Ps that minimizes the 2-norm error

between the original impulse response G(x) and that of the

input-projected system, which is given by eGðxÞ ¼ GðxÞPs.

This error can be expressed by

jjG� GPsjj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðþ1
0

jjg†ðtÞ � Psg†ðtÞjj2dt

s
; (2.14)

since P†
s ¼ Ps. Furthermore, noting that g†(t)¼Y(t), we infer

that the projection that minimizes this error stands for the

projection onto the first s POD modes of the dataset

fY(t); t> 0g. In other words, Ps reduces to the orthogonal

projection onto the most observable modes which were intro-

duced in Sec. II C. Consequently, Ps can be written as

Ps ¼ RR†; (2.15)

where R is the matrix of size n� s whose columns are the

first s observable modes. Thus Ps is a matrix of size n� n
and of rank s.

By construction, only the s most important degrees of

freedom of the input g(t) have an effect on the output ~mðtÞ.
By considering ~gðtÞ ¼ R†gðtÞ as a new input of size s� 1,

the system (2.13) can then be written as

dX

dt
¼ AXþ R~gðtÞ; (2.16a)

~mðtÞ ¼ CX: (2.16b)

This new input-output system possesses the same controll-

ability and observability Gramians as those of system (2.13).
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It is referred to as the s input-projected system hereafter.

Interestingly, the computation of the balanced modes of this

new system becomes affordable since it only requires s direct

simulations, one for each column of R to get X(t)¼ eAtR.

The balanced basis of system (2.16) will be denoted by T
and S in the rest of the paper. It should also be emphasized

that these balanced modes depend on the parameter s and

that they approximate the balanced modes of the original

system (2.3).

Note that the idea to project the input state is analogous

to the method called output projection introduced by Row-

ley23 and performed by Ilak and Rowley24 and Ahuja and

Rowley.28 In their case, the output of the system is the entire

state space so that they optimally project the output on a

low-dimensional subspace. In fact, the input projection intro-

duced here can be interpreted as the output projection on an

adjoint system. This observation is presented in more detail

in Appendix C.

E. Model reduction

Reduced-order models are obtained by projecting the

input-projected equations (2.13) onto the basis of its leading

balanced modes. Keeping the first r balanced modes (col-

umns of T and S) the dynamics of the reduced state Xr,

which is of size r� 1, are given by

dXr

dt
¼ ArXr þ BrgðtÞ; (2.17a)

~mrðtÞ ¼ CrXr; (2.17b)

where ~mrðtÞ is the output of the reduced-order model and the

above-introduced matrices are defined by

Xr ¼ S†X Ar ¼ S†AT Br ¼ S†Ps

Cr ¼ CT;
(2.18)

where Ar is of size r� r, Br is of size r� n, and Cr is of size

1� r. The corresponding transfer function is then defined byeGrðxÞ ¼ CrðixIr � ArÞ�1Br, where Ir stands for the identity

matrix of size r.

ROMs based on the most observable modes are also

considered in the following. These models are obtained by

using the same procedure by replacing T and S by R.

III. APPLICATION TO A BACKWARD-FACING STEP
FLOW

A. Flow configuration

1. Geometry

We consider a two-dimensional rounded backward fac-

ing step of circular geometry, see Figure 1, and an incoming

flow from the left. This geometry was originally studied by

Duriez.32 The upstream velocity and the step height are used

to make all quantities non-dimensional. The beginning and

end of the step are located at (x¼ 0, y¼ 1) and (x¼ 2, y¼ 0),

respectively. The boundary conditions are the following: (i)

a uniform and unitary velocity field (u¼ 1, v¼ 0) is pre-

scribed at the inlet boundary x¼� 20. (ii) A free-slip condi-

tion with zero tangential stress (@yu¼ 0, v¼ 0) is prescribed

on the boundary (� 20 � x � � 2, y¼ 1). (iii) A laminar

boundary layer starts developing on the lower boundary at

x¼� 2 as no-slip boundary conditions (u¼ 0) are imposed

on (� 2 � x � 0, y¼ 1), on the step wall, and on the down-

stream wall (2 � x � 100, y¼ 0). (iv) Symmetry boundary

conditions are used at the upper boundary y¼ 20, and (v) a

free outflow condition pn�Re-1(ru)�n¼ 0 is used at the

outlet x¼ 100 (n being the outward normal unitary vector of

the boundary).

2. Problem discretization

We used a finite element approach to discretize the prob-

lem. The variational formulation of the governing equations

is spatially discretized using a mesh composed of triangular

elements. The velocity fields are projected onto six-node

quadratic triangular elements with quadratic interpolation

(P2-elements), whereas the pressure field is discretized using

three-node linear triangular elements (P1-elements). The

matrices resulting from the projection of the variational for-

mulations onto the basis of finite elements are sparse and are

built with the FreeFemþþ software (http://www.freefem.

org). The mesh considered in this work yields n � 360 000

degrees of freedom stemming from about 90 000 triangles.

3. Base flow

The base flow considered here is computed by using a

Newton-Raphson method33 for a Reynolds number

Re¼ 600. The solution is depicted in Figure 1. At this Reyn-

olds number, the flow is observed to be globally stable; the

matrix A does not have any unstable eigenvalues. The dis-

placement thickness at x¼ 0 is d* � 0.082, leading to a

Reynolds number based on the displacement thickness of

Red*� 49.2. The boundary layer separates at x � 0.6 and

reattaches at x � 11. Even if this base flow is globally stable,

it may sustain flow unsteadiness due to the transient energy

growth of perturbations. The Kelvin-Helmholtz instability

selectively amplifies the upstream low-level noise along the

shear layer to drive the flow dynamics downstream. As

shown in Figure 1 by the question-marks, the noise distribu-

tion is assumed to be unknown. The sensor is placed down-

stream in the vicinity of the reattachment point. The

measured quantity is chosen as the wall-normal shear stress

evaluated at and integrated over a localized region of the

wall, namely mðtÞ ¼
Ð x¼11:6

x¼11
@yu dx. This choice of measure-

ment also defines the output operator C.

B. Computation of the modes

The balanced and observable modes are computed from

the singular value decomposition of Y†X and Y†Y, respec-

tively. The computation of the matrices X and Y is based on

the frequential expressions of the Gramians22 derived from

the Parseval’s theorem

Gc ¼ 1
2p

Ðþ1
�1 ðjxI� AÞ�1RR†ð�jxI� A†Þ�1

dx

Go ¼ 1
2p

Ðþ1
�1 ð�jxI� A†Þ�1

C†CðjxI� AÞ�1dx

8<: : (3.1)
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By considering these expressions, we compute the matricesbXðxÞ ¼ ðjxI� AÞ�1R and bYðxÞ ¼ ð�jxI� A†Þ�1C† for a

discrete set of frequencies in order to stack them as the col-

umns of the matrices X and Y. To this end, we used 399

equidistant frequencies ranging from x¼ 0 to x¼ 4 and

quadrature coefficients corresponding to the 4th-order Simp-

son method. This choice proved to be sufficient for an accu-

rate computation since for a larger number of snapshots with

a finer spacing or a larger frequency interval, there is no con-

siderable change in the singular values and modes consid-

ered here. For each frequency, bYðxÞ is computed by one

matrix inversion since C† is a vector. Likewise, s inversions

are required to get bXðxÞ, one for each column of R. These

matrix inversions are performed through a direct multifrontal

sparse LU solver (MUltifrontal Massively Parallel sparse

direct Solver (MUMPS) (Ref. 34)). Further details on the dis-

cretized formulation of the Gramians resulting from our

choice of inner product are available in Appendix B.

It should be mentioned that the temporal expressions of

the Gramians are usually adopted to factor the Gramians in

Eq. (2.10).2,24,27,28 The present frequential approach has been

proved to be equivalent to the temporal one17,22 and it has

been applied to the same backward-facing step flow configura-

tion by Dergham et al.25 Whether using the temporal or the

frequential approach leads in the end to the same projection

basis and to the same ROMs; one may simply choose between

the two according to the available computational tools.25

IV. RESULTS

A. Observable modes

Using the procedure outlined in Sec. II C, we compute

the most observable modes by using Eq. (2.12). The singular

values kj, ranking the observability of associated states, are

represented in Figure 2(a). The observability of the modes is

seen to fall-off quite rapidly indicating that only the first

modes will have a significant contribution to the measured

energy. We have represented in Figures 2(b)–2(e) the first,

second, third, and 12th observable modes, visualized by their

streamwise velocity component. The first eigenvalues are in

pairs, indicating that the most significant modes are traveling

structures that are 90� out of phase, Figures 2(b) and 2(c)

illustrate this statement.

As one could expect, the flow structures which yield a

maximum energy on the sensor are located upstream. The first

modes are spatially located in the vicinity of the separation

point while higher modes, as the 12th, have a more extended

spatial support. These most observable structures are tilted in

the upstream direction, leaning against the shear layer. This

result is consistent with other recent works2,35 where it is

interpreted as a way to extract energy from the mean shear by

transporting momentum down the velocity gradient36 by the

so-called Orr mechanism. For the sake of simplicity, the

ROMs obtained by projection onto the most observable modes

are referred to as “observable models” in the following.

B. Balanced modes

Next, we compute the balanced modes of the input-pro-

jected system (2.16). Several values of the rank s of input-

projection, ranging from 1 to 20, have been considered. The

balanced basis (T;S) and its associated HSVs rj depend on

this rank. Figure 3 depicts the HSVs of input projected sys-

tems of rank 4, 10, 16, and 20. It is observed that increasing

the rank of input projection leads to a convergence of the

leading HSVs. In addition, the number of converged HSVs

FIG. 2. (Color online) (a) First 50 observable eigenvalues kj. Figures (b)–(e) represent the longitudinal velocity of the first, second, third, and 12th observable

modes.

FIG. 3. (Color online) First 50 HSVs rj corresponding to the input-projected

systems s¼ 4,10,16,20.
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for each input projection is approximately equal to the input-

projection rank s, which was also noticed in previous works

using the output projection procedure.23,24,28 It should be

emphasized that this convergence is also noted for the asso-

ciated leading balanced modes (not shown here). The first

Hankel singular values also come in pairs, indicating that the

most significant balanced modes are traveling structures. The

HSVs, assessing the controllability/observability of associ-

ated states are also observed to fall-off quite rapidly, indicat-

ing that only the first modes will have a significant

contribution to the overall input-output behavior.

We have represented in Figures 4(a)–4(f) the first, third,

and 12th balanced modes computed for the case s¼ 20. Fig-

ures 4(a), 4(c), and 4(e) depict the balanced modes (columns

of T) while Figures 4(b), 4(d), and 4(f) stand for their associ-

ated adjoint (columns of S). We observe that the leading bal-

anced modes appear as wavepackets that are somewhat more

spatially extended than the observable modes. We also note

a spatial separation between the balanced modes and their

adjoint. Essentially, this separation highlights the non-ortho-

gonality of the balanced modes. This point can be inter-

preted2,24 as a consequence of the convective nature of the

instabilities along the shear layer in which disturbances grow

in amplitude as they are convected in the downstream direc-

tion.37,38 As a result, the controllable and observable subspa-

ces are separated in the streamwise direction which implies

that the distribution of both the input (the full state) and the

output (the sensor) may hardly be captured by an orthogonal

projection onto the leading modes of only one subspace. The

ROMs resulting from the projection onto the leading bal-

anced modes are called the “balanced models” hereafter.

C. Performance of the ROMs

The leading observable and balanced modes are used to

build reduced-order models. Their performance in capturing

the original dynamics of the full system (2.3) is assessed by

scrutinizing how the input-output transfer function is cap-

tured. To that purpose, we compute the relative errors of the

reduced transfer functions. Both the 2-norm and the1-norm

have been considered. Their associated relative errors are

denoted by e2 and e1, respectively. They are defined for a

model of size r by

e2ðrÞ ¼
jjG� eGrjj2
jjGjj2

e1ðrÞ ¼
jjG� eGrjj1
jjGjj1

; (4.1)

where the full transfer function is computed from the snap-

shots bYðxÞ by GðxÞ ¼ bY†
ðxÞ, see Appendix B3. The evolu-

tion of these two errors with the size of the ROMs is

presented in Figures 5(a) and 5(b), respectively. Both yield a

FIG. 4. (Color online) Figures (a) and (b) represent the longitudinal velocity of the first balanced mode and its adjoint, respectively. (c) and (d) depict analo-

gously the third modes while (e) and (f) represent the 12th. These modes have been computed from an input-projected system with s¼ 20.

FIG. 5. (Color online) Relative error norm of observable and balanced models as a function of their size r. (a) represents the 2-norm while (b) accounts for the

1-norm. The 2-norm error limits due to input projection are depicted on (a) as a function of the projection rank s by dots. The dashed lines illustrate these error

limits for the ranks s¼ 4,10,16,20. The1-norm error bounds, computed on a s¼ 20 input-projected system, are represented on (b) by solid lines.
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good illustration of the effect of input projection on the per-

formance of the models.

First, let us examine the evolution of the 2-norm error of

the balanced and observable models in Figure 5(a). When

increasing the size of the models, the relative error is

observed to decrease much faster for the balanced models

than for the observable ones. Note that some points of the

observable models are missing which means that their asso-

ciated relative error considerably exceeds 100%. Notably,

owing to the input projection, a limit of accuracy is reached

by the balanced models as their size r is increased. Indeed,

the 2-norm error between the original impulse response G(x)

and that of an input-projected system eGðxÞ of rank s, which

was given in Eq. (2.14), can also be expressed as a function

of the observable eigenvalues kj by

jjG� eGjj22 ¼ Xn

j¼sþ1

kj: (4.2)

The resulting relative errors have been plotted in Figure 5(a)

by dots as a function of the input projection rank s. In other

words, for an input projection of rank s, the associated dot

yields the limit of accuracy of the corresponding balanced

model. This statement is illustrated by dashed lines which

account for the error associated with the input projections

of rank s¼ 4,10,16,20. Note that the observable eigenval-

ues can be directly used to compute the limit of accuracy of

the balanced models. Interestingly, provided that the limit

is not reached, the performance of the balanced models is

the same whatever the model size r. This observation is

consistent with our previous results where we have shown

that the first s HSVs and balanced modes are converged

when using an input projection of rank s. Consequently,

our procedure closely approximates the exact balanced

truncation on the original system (without input projection)

until the limit of accuracy due to the projection is reached.

Increasing the rank of input projection then delays this

limit.

Examining the evolution of the relative1-norm error in

Figure 5(b), the same conclusions arise. Yet, it is interesting

to consider this norm because of the availability of theoreti-

cal bounds on the discrepancy between the approximate and

exact transfer functions in the case of the balanced models.

The transfer function eGr of the ROM approximates that of

the input projected system eG while guaranteeing23 the

relation

rrþ1 < jjeG� eGrjj1 � 2
Xn

j¼rþ1

rj; (4.3)

based on the associated HSVs rj. The lower bound is valid

for any ROM, whereas the upper bound is valid for models

based on balanced truncation. Assuming the HSVs decrease

rapidly, as in the present flow configuration, the upper bound

is close to the lower bound achievable by any reduced-order

model and the procedure is said to be quasi-optimal. Consid-

ering the convergence of the HSVs previously mentioned, it

is reasonable to consider these bounds as approximate

bounds on jjG� eGrjj1. The representation of the associated

relative errors is depicted in Figure 5(b) by solid lines. As

these bounds are converged for ROMs of small size (in terms

of input projection rank s), the error of the balanced models

is observed to lie between these bounds until the limit of ac-

curacy is reached. Note that these error bounds are computed

from the HSVs of a s¼ 20 input-projected system. Interest-

ingly, the performance of the balanced models is very close

to the lower bound achievable by any ROM.

We conclude that both models succeed in capturing the

full input-output behavior of the original system. Observable

models are clearly outperformed by balanced models. In

addition, the performances of the balanced models are quasi-

optimal and subject to theoretical bounds, while those of

observable models are not.

D. Frequency response

In the case of a multiple input multiple output (MIMO)

system, a standard way of quantifying the synthesized fre-

quency response is to compute the maximum singular value

of the transfer function. For the full system, it is simply com-

puted by the norm introduced in Sec. II A 2 by

jjG†ðxÞjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðxÞG†ðxÞ

q
. For a ROM of size r, it is com-

puted similarly by using the corresponding transfer functioneGrðxÞ (see Appendix B3).

The representation of this quantity, see Figure 6, is

known as the singular value Bode plot. We have depicted in

Figures 6(a)–6(c) the frequency responses of the balanced

and observable models of size 10, 20, and 30, respectively.

Note that the balanced models are based on balanced modes

computed for an input projection rank s¼ 20. The exact fre-

quency response clearly highlights a preferred frequency

around x¼ 0.79 which corresponds to the amplification of

FIG. 6. (Color online) Singular value Bode plot

of the full system compared to those of balanced

and observable models. Figures (a)–(c) account

for ROMs of size 10, 20, and 30, respectively.

The balanced models are computed on a s¼ 20

input-projected system.
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perturbations through the shear layer due to the Kelvin-

Helmholtz instability. These plots are a clear demonstration

of the superiority of the balanced models in capturing the dy-

namics of the system. We see that even a balanced model of

size 10 roughly approximates the original response, while a

20 sized model yields a very good approximation of the fre-

quential response peak. Meanwhile, observable models are

completely unable to recover the most important trend of the

input-output behavior for these sizes. Observable models

eventually capture the exact transfer function for models of

size higher than approximately 30, see Figure 6(c).

E. Modeling the dynamics of some localized actuators

In this last part, we illustrate the ability of the ROMs to

capture the dynamics from any input to the sensor. To this

end, we arbitrarily choose four actuators in the upstream part

of the flow and investigate their impulse response on the sen-

sor. Their spatial distribution, denoted by B1, B2, B3, and B4,

are chosen of Gaussian shape on the vertical momentum

component, see Figure 7. These Gaussians have a width (full

width at half maximum) of 0.4, a height of 1, and are

centered at (� 0.3; 1.2), (4; 0), (6; 0.7), and (5; 1.5),

respectively.

Impulse responses of the full system are computed by

time-stepper simulations of the linearized Navier-Stokes

equations by taking these inputs as initial conditions, namely

X(t¼ 0)¼Bi for i¼ [1; 4]. Impulse responses of the ROMs

are also considered, they are directly computed by

Cre
Ar tS†Bi. Both are represented in Figures 8(a)–8(d) for the

four inputs. The balanced and observable models have a size

r¼ 20 and the balanced model was designed from an input

projection of rank s¼ 20. As expected, we observe that the

response from all the inputs investigated here is accurately

captured by the balanced model. Meanwhile, the observable

model is clearly not as efficient at modeling the main pulses

and even sustains undesired oscillations at larger times.

These results are consistent with our previous observa-

tions shown in Figures 5 and 6 since the balanced model has

already a low error for a size r¼ 20 which is not the case for

the observable model. These examples illustrate the ability

of the ROMs to represent the dynamics of localized inputs

that do not intervene in the model reduction process but also

the superiority of the balanced models to reach this goal.

V. CRITICAL ASSESSMENT

The results obtained in the present study illustrate the ef-

ficiency of the ROMs in capturing the original transfer func-

tion. However, the flow configuration considered here is

relatively simple; the dynamics are two-dimensional, and

there is only one sensor. Thus, we raise questions regarding

the applicability of input projection in realistic flows.

Let us first describe a situation where the present techni-

ques are readily usable to design a low-order closed-loop

controller. A flat plate boundary layer is subject to two-

dimensional instabilities (Tollmien-Schlichting (TS) waves).

We need one upstream sensor for the estimation (just

upstream of branch I), one actuator (near branch I), and one

sensor for the control objective (near branch II). If the noise

triggering the transition is unknown (which is usually the

case), then a ROM describing the dynamics from the whole

input space and the actuator to the two sensors is required.

Hence, the input projection technique applied with two

FIG. 7. (Color online) Representation of the

four chosen inputs by their vertical component.

The streamlines of the base flow and the posi-

tion of the sensor are also displayed.

FIG. 8. (Color online) Figures (a)-(d) represent

the impulse responses of the four different

inputs. The exact solutions come from direct nu-

merical simulations where the number of

degrees of freedom is about n � 360 000. The

dashed and solid lines account for balanced and

observable models of size 20, respectively. Note

that the balanced model has been computed

with an input projection of rank s¼ 20.
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sensors should be effective for this purpose. Note that

Bagheri et al.2 assume that the upstream noise is known,

which is unphysical in some sense. Also, in the control

objective, we only require the measurement at the down-

stream sensor to be reduced, not the whole perturbation

energy. Indeed, this would have required the output projec-

tion technique, which is not tractable here since the number

of inputs is too high.

As soon as considering three-dimensional perturbations

or when increasing the Reynolds number, the flow dynamics

may become much more complex. In addition, a larger num-

ber of sensors may be required to accurately estimate the

flow.4 In these cases, the use of input projection raises some

practical issues.

First, the present techniques still hold for three-dimen-

sional flows but with three-dimensional operators and discreti-

zations. Since the resulting dynamical systems are much

bigger, iterative techniques rather than direct inversion techni-

ques are required to compute the snapshots. For example, one

could use the temporal expressions of the Gramians and solve

the direct and adjoint linearized Navier-Stokes equations to

compute the snapshots and approximate the Gramians.4

Second, the number of direct and adjoint simulations

may be much larger. Indeed, one adjoint simulation is

required for each additional sensor. Furthermore, the flow

dynamics may be significantly more complex so that it may

not be represented by as few number of degrees of freedom

as in the numerical example exposed here. As a result, we

expect that more observable modes (i.e., additional direct

simulations) would be required for an accurate input projec-

tion. In addition, the singular value decompositions of the

matrices Y†Y and Y†X may even become challenging. For

these reasons, the possibly large number of sensors and of

required observable modes clearly constitutes the bottleneck

of the input projection procedure.

Lastly, the model reduction of more complex dynam-

ics would result in a slower fall-off of the observable

eigenvalues and HSVs. Consequently, more observable

and balanced modes would be required to design efficient

ROMs. In particular, these ROMs may be too large to be

used in the design of real-time closed-loop controllers.

However, one has to keep in mind that the input projec-

tion technique is quasi-optimal in capturing the dynamics

from unknown forcing and no other technique would per-

form better.

We voluntarily considered in this work all the degrees

of freedom as inputs in view of designing ROMs which are

robust with respect to uncertainties on the noise. Thus, if the

input projection procedure fails to design sufficiently low-

order models, then the alternative solution would be to gain

insight into the particular flow physics. For instance, one

may resort to experimental investigations or to receptivity

analyses to gain additional information on the noise that one

desires to reproduce.

VI. CONCLUSION

In this article, we have described how to approximate

balanced truncation for large linear systems when the num-

ber of inputs is large. The procedure has been derived on

the two-dimensional Navier-Stokes equations subject to an

unknown noise (the inputs) and with a single sensor (the

output). We introduced a technique called input projection

which consists of projecting the input space onto a low-

dimensional subspace while optimally preserving the

original transfer function. The optimal projection appears

as the orthogonal projection onto the most observable

modes, namely the leading eigenvectors of the observabil-

ity Gramian. Connections with the already existing output

projection technique introduced by Rowley23 are also

highlighted.

The whole procedure is applied to a stable linear sys-

tem: the flow over a rounded backward-facing step. A

time-dependent forcing term, viewed as a noise, is

assumed to act equally on each degree of freedom of the

flow state while the sensor is placed near the reattach-

ment point. As a first step, the most observable modes

are computed and seen to extend in the upstream part of

the flow. Then, the balanced modes of the input-projected

systems are computed and observed to converge when

increasing the rank of input projection. Reduced-order

models are obtained by projecting the input-projected

systems onto the leading balanced and observable modes.

These ROMs are evaluated by examining their synthe-

sized frequency response. For both projection bases, the

frequency selection process of the original system is

recovered as we accurately model the frequency response

peak associated with the Kelvin-Helmholtz instability. To

quantify this performance, the 2-norm and 1-norm of the

error between the reduced and exact transfer functions

were computed. We found that the balanced models have

an error fall-off that decreases quickly until a limit fixed

by the rank of input projection. Mostly, the performances

of the balanced models are subject to theoretical bounds

and observed to be quasi-optimal. On the other hand,

observable models are suboptimal in fulfilling the same

objective and do not yield any theoretical bounds on this

error. Nevertheless, it is observed to tend to zero when

increasing the size of the models. A better efficiency of

the balanced models to reach a desired accuracy is

clearly identified, which is consistent with the existing

literature.

In summary, the balanced truncation of input-projected

systems has been shown to yield efficient ROMs which cap-

ture the dynamics from any input to a given output. This

technique is (i) quasi-optimal in achieving this goal and (ii)

subject to theoretical bounds. This contribution may be a

promising tool in view of designing reduced models of sys-

tems where only a few flow measurements are available

while the position of the forcing is unknown. Therefore, it

may be a useful addition to the tools of modern flow control

theory to design real-time closed-loop controllers.
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APPENDIX A: EXPRESSING THE LINEARIZED
NAVIER-STOKES EQUATIONS AS AN INPUT-OUTPUT
STATE-SPACE SYSTEM

Considering a numerical approach, we proceed by dis-

cretizing equations (2.2). The system may be written in a fi-

nite-sized matrix form as

Q1 0

0 0

� �
d

dt

X1

X2

� �
¼ A1 A�2

A2 0

� �
X1

X2

� �
þ Q1 0

0 0

� �
gðtÞ

0

� �
; (A1a)

mðtÞ ¼ C1 0ð Þ X1

X2

� �
; (A1b)

where X1 denotes the velocity field and X2 represents the cor-

responding pressure field. The linearized Navier-Stokes opera-

tor has been decomposed so that A1 accounts for the

convection and diffusion, while A2 and A�2 are the parts rela-

tive to the incompressibility and pressure effects, respectively.

Q1 is the mass matrix, it also stands for the inner product asso-

ciated with the kinetic energy of perturbations, namely

X�1Q1X1 ¼
Ð
X u2 dX, where X is the fluid volume. (C1,0)

denotes the vector of the discretized sensing C operator.

To reformulate the above Eq. (A1) into a standard state-

space form, we restrict the system state to its divergence-free

velocity field.27 We first multiply the momentum equation

by A2Q
�1
1 , which yields, assuming that A2

_X1 ¼ 0, an expres-

sion for the pressure in terms of the velocity field

X2 ¼ � A2Q
�1
1 A�2

� ��1
A2Q

�1
1 A1

� �
X1 þ A2gðtÞ

� �
: (A2)

We can then eliminate the explicit divergence constraint to

write the equations in the desired form

dX1

dt
¼ P1A1X1 þ P1Q1gðtÞ; (A3a)

m ¼ C1X1; (A3b)

where we have introduced the matrix P1 defined by

P1Q1 ¼ I� Q�1
1 A�2 A2Q

�1
1 A�2

� ��1
A2: (A4)

Notably, P1Q1 reduces to the projection matrix onto the

divergence-free space and P1 is a Hermitian operator

P�1 ¼ P1

� �
. Since we assumed that g(t) is a divergence-free

state, we have P1Q1g(t)¼ g(t). Finally, by defining A¼P1A1

and C¼C1, we recover Eq. (2.3)

dX

dt
¼ AXþ gðtÞ; (A5a)

mðtÞ ¼ CX: (A5b)

APPENDIX B: INTRODUCING THE INNER PRODUCTS
IN THE DISCRETIZED EQUATIONS

Adjoint operators denoted by the superscript † are differ-

ent in general from the standard transconjugate *. We chose

the inner product associated with the kinetic energy for both

the states and the inputs, namely hZ1,Z2i¼Z*
1Q1Z2 for all

states or inputs Z1 and Z2. As a result, the mass matrix Q1

intervenes in the definition of the adjoint operators.

Considering the definition of A† and C† introduced in

Sec. II A 2, it is easily found that A† ¼ Q�1
1 A�Q1 and

C† ¼ Q�1
1 C�. The operator Ps¼RR† has been introduced as

the orthogonal projection onto the first s observable modes

acting on any flow state or input. Analogously, considering

our choice of inner product, it can be expressed as

Ps¼RR*Q1, so that R†¼R*Q1.

1. Observability Gramian

Observable modes are the eigenvectors associated with

the largest eigenvalues of the observability Gramian

Go ¼
1

2p

ðþ1
�1
ð�jxI� A†Þ�1

C†CðjxI� AÞ�1dx : (B1)

Replacing the adjoint quantities by their explicit expression,

the observability Gramian may be written as

Go ¼ Q�1
1

1

2p

ðþ1
�1
ð�jxI� A�Þ�1C�CðjxI� AÞ�1dx

� �
;

(B2)

and the flow states bYðxÞ introduced in Sec. III B are then

defined by Q1
bYðxÞ ¼ ð�jxI� A�Þ�1C�. Finally, the proce-

dure outlined in Sec. II to compute the observable modes can

be performed by replacing bY†
ðxÞ by bY�ðxÞQ1. The observ-

ability Gramian then reads Go � YY *Q1.

2. Controllability Gramian

Let us consider the controllability Gramian of the input-

projected system

Gc ¼
1

2p

ðþ1
�1
ðjxI� AÞ�1RR†ð�jxI� A†Þ�1dx: (B3)

Making explicit the adjoint operators, we obtain the new

expression

Gc ¼
1

2p

ðþ1
�1
ðjxI� AÞ�1RR�ð�jxI� A�Þ�1dx

� �
Q1:

(B4)

The input projection procedure previously introduced in

Sec. II can then be derived by using the statesbXðxÞ ¼ ðjxI� AÞ�1R and its adjoint bX†
ðxÞ ¼ bX�ðxÞQ1.

The resulting factored form of the controllability Gramian

can be written as Gc � XX
*Q1.

3. Generalized transfer functions

We see in this appendix how to compute the transfer

functions and their associated norms. First, let us consider

the full transfer function of system (2.3). It is defined by

GðxÞ ¼ CðixI� AÞ�1; (B5)

which is a vector of size 1� n. G(x) can also be expressed

as a function of the flow states bYðxÞ by
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GðxÞ ¼ bY†
ðxÞ ¼ bY�ðxÞQ1: (B6)

The transfer function can be quantified by its associated

standard 2-norm and1-norm23 given by

jjGjj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2p

ðþ1
�1
jjG†ðxÞjjdx

s
jjGjj1 ¼ max

x
jjG†ðxÞjj:

(B7)

Practically, we can easily compute these norms from the

flow states bYðxÞ since

jjG†ðxÞjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðxÞG†ðxÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðxÞQ�1

1 G�ðxÞ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibY�ðxÞQ1

bYðxÞq
: (B8)

Now, we consider the transfer function of the reduced sys-

tems obtained from the input projected system (2.13). It has

been defined by eGrðxÞ ¼ CrðixIr � ArÞ�1Br; (B9)

where Ar, Br, and Cr have been introduced in Sec. II E. The

2-norm and 1-norm of this transfer function can be com-

puted similarly to that of the full system by replacing

jjG†(x)jj by jjG†
r ðxÞjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GrðxÞG†

r ðxÞ
q

in Eq. (B7). The

quantity jjG†
r ðxÞjj accounts for the synthesized frequency

response of the ROMs. It can be computed analogously to

that of the full system by replacing bYðxÞ in Eq. (B8) with its

equivalent on the reduced system bYrðxÞ which is defined by

bYrðxÞ ¼ B†
r ð�ixIr � A�r Þ

�1C�r : (B10)

Note that Br is equal to S†RR† for balanced models and

reduces to R† for observable models. Notably, an equivalent

of Eq. (B6) can be expressed for the transfer function of the

reduced systems by

eGrðxÞ ¼ bY†

r ðxÞ ¼ bY�r ðxÞQ1: (B11)

APPENDIX C: LINK WITH OUTPUT PROJECTION

In this appendix, we show that the input projection

described in this paper is equivalent to the output projection

introduced by Rowley23 when applied to the adjoint system.

First, we consider the adjoint problem associated with Eq.

(2.3). It can be written as

dY

dt
¼ A†Yþ C†tðtÞ; (C1a)

fðtÞ ¼ Y; (C1b)

where Y is the adjoint state, t(t) and f(t) denote the

adjoint input and output, respectively. Using the definition

of the Gramians previously introduced, one can observe

that the controllability Gramian of the direct problem is

equal to the observability Gramian of the adjoint one and

vice versa. Note that, compared to the direct system,

input and output sizes have been exchanged. In particular,

the output space of this new system becomes the full state

space.

In the output projection method introduced by Rowley,23

the output dimension is very large and an output projected

system is considered. For the present adjoint system, the pro-

jection that minimizes the 2-norm error between the original

transfer function and the output-projected transfer function is

given by the POD of the dataset fY(t); t> 0g. In other words,

it stands for the projection onto the most controllable modes

of the adjoint system, or equally to the projection onto the

most observable modes of the direct system. As a result,

the output projected system can be expressed as a function of

the matrix R by

dY

dt
¼ A†Yþ C†tðtÞ; (C2a)

~fðtÞ ¼ R†Y; (C2b)

where we have introduced the low-dimensional projected

output ~fðtÞ. Returning to the direct problem, the input-output

system reduces to

dX

dt
¼ AXþ R~gðtÞ; (C3a)

~mðtÞ ¼ CX; (C3b)

which governs the dynamics of the input-projected system

introduced in Sec. II D.
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