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This paper deals with model reduction of high-order linear systems. An alternative method to

approximate proper orthogonal decomposition (POD) and balanced truncation is exposed in this

paper within the framework of the incompressible Navier-Stokes equations. The method of

snapshots used to obtain low-rank approximations of the system controllability and observability

Gramians is carried out in the frequency domain. Model reduction is thus performed using flow

states that are long-time harmonic responses of the flow to given forcings, we call them frequential

snapshots. In contrast with the recent works using time-stepping approach, restricted to stable

systems, this one can always be computed for systems without marginal modes while it reduces to

the same procedure for stable systems. We show that this method is efficient to perform POD and

balanced proper orthogonal decomposition reduced-order models in both globally stable and

unstable flows through two numerical examples: the flow over a backward-facing step and the flow

over a square cavity. The first one is a globally stable flow exhibiting strong transient growths as a

typical noise amplifier system while the second is a globally unstable flow representative of an

oscillator system. In both cases, it is shown that the frequency-based snapshot method yields

reduced-order models that efficiently capture the input-output behavior of the system. In particular,

regarding the unstable cavity flow, our resulting unstable reduced-order models possess the same

unstable global modes and stable transfer functions as those of the full system. VC 2011 American
Institute of Physics. [doi:10.1063/1.3590732]

I. INTRODUCTION

During the last decade, linear state space flow control

has become a new and promising research subject.1,2 Origi-

nally introduced for flows governed by linear instability

mechanisms,3,4 it brought control theoretical tools,5,6 such as

optimal control, within the reach of the fluid mechanics com-

munity. Optimal flow control obviously displays attractive

features. One may refer to previous works such as the control

of a transitional boundary layer,7,8 a transitional channel

flow,9 or also turbulent channel flows.10,11 Yet, as soon as

complex or more realistic flows are considered, the direct

application of many optimal flow control tools is no more

computationally tractable. One may then resort to a model-

ing of the dynamics by reduced-order models (ROMs) to al-

leviate this problem. In this context, modeling the dynamics

between some particular inputs, such as the actuators, and

some particular outputs, such as the sensors, may be suffi-

cient to perform effective optimal flow control. For instance,

let us mention the application of Linear Quadratic Gaussian

(LQG) closed-loop flow control12–15 to more complex flows.

The goal of this paper is to explore an alternative way of per-

forming such ROMs in the context of transitional separated

flows.

The proper orthogonal decomposition (POD) method

has been used extensively for reduced-order modeling of

fluid mechanics problems. It was proposed by Lumley16 as

an unbiased technique for identifying the most energetic pat-

terns (or structures) in a flow. In particular, POD has been

shown to yield a valuable analysis tool to discriminate coher-

ent structures in turbulent flows.17,18 Thus, POD modes stand

for natural candidates to design ROMs. This may be

achieved by projecting the original equations (either linear

or not) onto the POD modes. Such a reduced modeling of the

Navier-Stokes equations was first performed by Aubry

et al.19 Noticeably, a time-space deterministic version of the

POD has been introduced by Aubry et al.20 as a systematic

tool for complex system analysis. This latter consists of a bi-

orthogonal decomposition into spatial orthogonal modes

(similar to the POD modes) and temporal orthogonal modes

(standing for the deterministic time coefficients of the

modes). Since then, POD model reduction has spawned a

substantial body of literature on low-dimensional models for

flows.21–23 Recently, POD based ROMs have also been

incorporated into flow control strategies for the flow around

a cylinder24–26 or the flow over an open cavity.27 Although

this model reduction technique is tractable for very large

data sets and applicable to complex flows, POD modes may

not be the best structures for describing the dynamics, even

in a linearized case. Indeed, the truncated low-energy fea-

tures of a flow may contribute to a significant part of the

global dynamics, as in the typical example of acoustic modes

in cavity oscillations.28

Within the context of model reduction, both the controll-

ability, i.e., the ability of the applied forcing to reach flow

states, and observability, i.e., the ability of flow states to

register at the sensor locations, are equally important. An

expansion basis that balances these two concepts was
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introduced more than two decades ago for stable, linear

input-output systems by Moore.29 Introducing the controll-

ability and observability Gramians (which yield a measure of

controllability and observability of the system), it is shown29

that such a basis can be computed as the eigenvectors of the

product of these two Gramians. Model reduction is then per-

formed by considering a basis where the states that respond

most strongly to inputs (most controllable states) are also

states that have the most influence on the outputs (most

observable states). This powerful technique, commonly

applied in control theory, is known as balanced truncation

and constitutes a quasi-optimal basis in terms of modeling

the input-output dynamics. Further development of the

method extended its range to nonlinear control problems, see

Scherpen30 and Lall et al.31 An optimal and accurate algo-

rithm for the calculation of this basis has been found by

Laub et al.32 and has been used on some fluid problems of

small size33 but its associated computational effort is rather

high for systems of moderate size and quickly becomes unaf-

fordable for systems of large size and realistic complexity

(about 5000 states or more).

However, recent developments by Willcox and Peraire34

and Rowley35 combining computational methodology from

POD modes with a balancing procedure have overcome this

difficulty and have brought the model reduction of large-

scale control problems within reach of current computational

technology. It was shown that the Gramians can be approxi-

mated using two series of snapshots resulting from two dif-

ferent numerical simulations and that the algorithm of Laub

et al.32 can be generalized to take into account these approxi-

mate Gramians. This new method is referred as balanced

proper orthogonal decomposition (BPOD) due to the use of

flow snapshots and the connection to POD established by

Rowley.35 This new technique has been applied to several

linearized stable flows: the case of a channel flow,36,37 a one-

dimensional model equation mimicking an open flow,38 and

a boundary-layer flow.13

Regarding the reduction of linearized unstable systems,

the original method of Moore29 is no longer applicable. To

overcome this limitation, an extension was proposed by

Zhou et al.39 by introducing frequency-domain definitions of

controllability and observability Gramians. In contrast to

Gramians defined in the literature for stable systems, these

Gramians can always be computed for systems without mar-

ginal modes and they reduce to the standard controllability

and observability Gramians when the systems are stable.40,41

The model reduction procedure of Zhou et al.39 essentially

decouples the dynamics of the flow on the stable and unsta-

ble subspaces and then truncates the relatively uncontrollable

and unobservable modes of each of the two subspaces. Fol-

lowing this idea, Ahuja and Rowley14,42 performed a model

reduction of the unstable linearized flow over an inclined flat

plate by partitioning the system behavior into stable and

unstable dynamics. In this case, the stable subspace was

modeled by the standard BPOD algorithm of Rowley,35

while the unstable dynamics were treated similarly to the

work of Åkervik et al.12 by a projection onto global eigenm-

odes. The same partitioning has also been carried out by Bar-

bagallo et al.15 in the case of the unstable dynamics over a

square cavity flow. In both studies, the unstable global

modes are first computed via a shift-invert Arnoldi tech-

nique, and then used to project the series of snapshots

required by the BPOD process onto the stable subspace.

In this paper, we are interested in another method for the

balancing and reduction of possibly unstable systems. It con-

sists in using the frequency-domain definitions of the con-

trollability and observability Gramians proposed by Zhou

et al.39 and an approximation of these Gramians with fre-

quential snapshots. This way, the Gramians are no longer

approximated by using two series of snapshots arising from

time-stepping simulations but rather by using flow state

responses to harmonic forcings. These flow states involved in

the process are called frequential snapshots throughout this

work due to their natural link with the current time-based

snapshot method. The idea to use frequential expressions of

the Gramians and to compute frequential snapshots to per-

form reduced-order models has already been introduced by

Willcox and Peraire,34 although it has never been carried out.

The goal of this paper is to show that the use of these fre-

quential snapshots is able to build efficient reduced order

models for linearized and possibly unstable fluid systems in a

global framework. This issue is studied through two exam-

ples: a globally stable but convectively unstable flow over a

rounded backward-facing step and a globally unstable flow

over a square cavity. In both cases, a single actuator (input)

and a single sensor (output) are placed near separation and

reattachment, respectively. The approximate balanced trunca-

tion procedure is then derived considering this input and out-

put using the snapshot method in the frequential framework.

At the same time, the POD modes constructed from an

impulse released from the input, i.e., the most controllable

modes, are also considered and computed through the same

frequential snapshots. Both BPOD and POD reduced-order

models are eventually evaluated by comparing their impulse

and frequency responses to that of their associated full sys-

tem. In the case of the unstable flow over the square cavity,

particular care is given to the reduction performance of the

stable and unstable subspaces. Additionally, our results are

compared to a previous study15 on the same flow configura-

tion where partitioning of the two subspaces and separate

reduction was performed. The main contributions of this

work comprise (1) an illustration of the ability of harmonic

flow states responses (frequential snapshots) to build efficient

BPOD/POD reduced-order models and (2) a new algorithm

to perform model reduction for unstable linear systems with-

out partitioning the stable and unstable subspace and, thus,

without computing any global eigenmodes.

The article proceeds along the following outline. In Sec. II,

we first briefly describe the BPOD and POD model reduc-

tion procedure using frequential snapshots within the frame-

work of the linearized Navier-Stokes equations with

actuation and sensing. In particular, a comparison of the

computational costs of the temporal and frequential domain

based snapshot method is assessed. In Sec. III, we present

numerical results of ROMs using the example of a globally

stable flow over a backward-facing step. In Sec. IV, we

investigate the case of a globally unstable flow over a square

cavity and compare our ROMs performance with a previous
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work on this configuration.15 The paper concludes with a

brief discussion in Sec. V.

II. MODEL REDUCTION METHODOLOGY

A. Problem formulation

1. Governing equations

We consider the incompressible Navier-Stokes equa-

tions, with a small actuation and a sensing, governing the dy-

namics of the velocity u and pressure p fields

@tuþ ðu � rÞu ¼ �rpþ Re�1r2uþ eBcðtÞ
r � u ¼ 0

mðtÞ ¼ Cu

8<
: (1)

where the only parameter reduces to the Reynolds number

Re. The actuation is denoted by the term eBcðtÞ correspond-

ing to a momentum forcing. The parameter e indicates that

the forcing is small compared to the other terms of the equa-

tion and c(t) is the temporal law of the actuation also referred

to as the input of the problem. The quantity m(t) measured

by the sensor stands for the output of the system; it is

expressed as the result of a measure operator C applied on

the velocity field u. Note that we have assumed an actuation

and sensing based on the velocity components only for sim-

plicity. Considering this problem, we wished to design a

reduced-order model able to capture the linear input-output

dynamics of this system.

Before proceeding with model reduction, we first

express the governing equations in a linear state-space form.

To this end, a base flow (U, P) to linearize about has to be

determined. This is accomplished by setting the unsteady

terms of Eqs. (1) to zero and solving the resulting nonlinear

equations

ðU � rÞU ¼ �rPþ Re�1r2U
r � U ¼ 0

ms ¼ CU

8<
: (2)

where ms stands for the measure of the base flow. The flow

state can then be decomposed as the sum of the base flow

and a small perturbation by ðu; pÞ ¼ ðU;PÞ þ eðu0; p0Þ. Simi-

larly, the measure m(t) can be decomposed as the sum of the

steady part coming from the base flow and the small contri-

bution from the perturbation as mðtÞ ¼ ms þ em0ðtÞ, where

m0ðtÞ ¼ Cu0. Substitution of these decompositions into Eqs. (1),

neglecting the e2 term and omitting primes yields the linearized

Navier-Stokes equations

@tuþU � ruþu � rU¼�rpþRe�1r2uþBcðtÞ
r � u¼ 0

mðtÞ ¼ Cu

8<
: (3)

which govern the linear dynamics about the considered base

flow. It is furthermore assumed that the amplitude of the per-

turbation remains weak compared to the base flow so that the

validity of Eqs. (3) is guaranteed.

Using a numerical approach, one then proceeds by dis-

cretizing the problem on a mesh (ours is based on a finite

element method described in the end of this section). If we

write the discretized equations (3) in matrix form, we

obtain

Q1 0

0 0

� �
d

dt

X1

X2

� �
¼ A1 A�2

A2 0

� �
X1

X2

� �

þ Q1 0

0 0

� �
B1

0

� �
cðtÞ (4a)

mðtÞ ¼ ðC1 0 Þ X1

X2

� �
(4b)

where X1 denotes the velocity fields and X2 stands for the

corresponding pressure field. ðB1; 0Þ and ðC1; 0Þ denote the

vectors of the discretized actuation B and sensing C opera-

tors, respectively. The linearized Navier-Stokes operator has

been decomposed so that A1 stands for convection and diffu-

sion while A2 and A�2 are the parts relative to incompressibil-

ity and pressure effect respectively, the superscript *

denoting the transconjugate. For the design of reduced-order

models, we need to reformulate the above equations into a

standard state-space form. This is achieved by restricting the

system state to its divergence-free velocity field. A few cal-

culations exposed in Appendix A demonstrate that Eqs. (4)

can be formulated as the following standard linear input-out-

put system

dX1

dt
¼ AX1 þ BcðtÞ (5a)

mðtÞ ¼ CX1 (5b)

where we have introduced A¼P1A1, B¼P1Q1B1, and

C¼C1, so that the projection matrix onto the divergence-free

space reduces to P1Q1. The dimension of the full system is

called hereafter n1 and denotes the number of degrees of free-

dom in Eq. (5) or alternatively the size of the discretized state

velocity vector X1. Once defined, our linear input-output state

space system has to be associated with scalar products for the

input, the output and the state space. Since the input and out-

put are scalars, their associated inner product are naturally

chosen as the standard Hermitian product so that their associ-

ated energy are, respectively, jcj2 and jmj2. As mentioned in

the work of Ilak and Rowley,37 the choice of inner product on

the state space does not intervene in balanced truncation,

although it does for POD. We choose the inner product Q1

that takes into account the numerical discretization by adding

a weight matrix to the standard inner product. Its associated

energy is X�1Q1X1, i.e., the kinetic energy of the perturbation.

This choice is thus intuitively appealing, since POD will cap-

ture the true energy of the perturbations.

As recognized in existing literature,6,38,41 the input-out-

put behavior is the critical quantity that has to be carefully

taken into consideration within the framework of linear

input-output system dynamics and more particularly in con-

trol theory. Mathematically, the relevant quantities to assess

this performance are the impulse response and/or the transfer
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function. As a result, these are the criterions considered in

the following sections to quantify the performance of the

ROMs.

2. Model reduction phenomenology

Before proceeding with a precise and more technical

description of the model reduction procedure, we briefly

introduce its concept here. For an easier physical interpreta-

tion of the procedure, we first assume that the fluid system is

linearly stable; the case of unstable systems is discussed

afterwards.

The actuator (input) excites the flow dynamics while

the sensor yields a measure corresponding to the output. The

present model reduction procedure consists in projecting the

original Eqs. (5) onto a low number of flow structures. If we

denote the projection basis by the matrix T1 and its bi-or-

thogonal set by S1, then the Petrov-Galerkin projection of

the original system provided by Eqs. (5) leads to the follow-

ing reduced system:

dX1r

dt
¼ ArX1r þ BrcðtÞ (6a)

mrðtÞ ¼ CrX1r (6b)

which governs the dynamics of the reduced output signal

mr(t) and the reduced state X1r is such that X1¼T1 X1r and

X1r ¼ S�1Q1X1. We have also introduced in the above equa-

tions the reduced dynamical operator, actuation, and sensing

denoted by Ar, Br, and Cr, respectively. They are given by

Ar ¼ S�1Q1AT1; Br ¼ S�1Q1B; Cr ¼ CT1: (7)

The performance of such ROMs is then assessed by compar-

ing their input-output behavior to the original one. The

choice of the projection basis is obviously of primary impor-

tance if one plans to design efficient ROMs. For stable linear

systems, Moore29 showed that their controllability and

observability stand for critical quantities. By definition, a

flow structure is said controllable if it may be forced by a

small amount of energy from the input. Additionally, a flow

structure is said observable if its dynamics yield a high

energy contribution to the output. In this context, the two

candidates examined here to project the dynamics are (1) the

most controllable modes, denoted as POD modes, and (2) the

set of equally (and most) controllable and observable modes,

known as balanced modes.

Due to the linear nature of the equations, any harmonic

excitation will lead to a harmonic flow response and, conse-

quently, to a harmonic measurement. It is thus natural to

resort to a frequency framework when dealing with such sys-

tems. Incidentally, the particularity of our work is the intro-

duction of harmonic flow states meant to design efficient

ROMs. Let us first describe the procedure to design the POD

modes. We consider harmonic excitations from the input so

as to get harmonic flow responses. By covering a sufficiently

wide frequency range, we expect to capture the most ener-

getic responses from all possible harmonic forcings. Next,

based on these harmonic responses, we compute the set of

most controllable modes on that frequency range. The result-

ing so-called POD modes are thus conceptually designed to

optimally capture the energy triggered by the input on the

particular frequency interval of interest. Now, regarding the

balanced modes, we do not only look for structures which

are controllable (by the actuator) but also observable by the

sensor. Consequently, the balanced modes not only include

information from the input but also from the output. As we

will see in the rest of this section, it is possible to identify the

flow structures to which the sensor is most sensitive through

the adjoint Navier-Stokes equations. This is performed anal-

ogously in the frequency domain by computing the harmonic

flow states which yield the maximum energy contribution to

the sensor energy. Such harmonic flow structures, once com-

puted on a frequency interval, are included in the balanced

truncation procedure in order to find equally controllable and

observable modes on the considered frequency interval.

In the end, the POD modes only include information

from the actuator and the flow dynamics; they depend on the

operators A and B. On the other hand, the balanced modes

also rely on the sensor and depend on all three operators A,

B, and C. By construction, the balanced modes are expected

to be superior to the POD modes in capturing the input-out-

put behavior since they include additional information from

the original input-output system. Concerning linear unstable

systems, the concepts of controllability and observability are

no longer defined, neither are the harmonic responses of the

system to harmonic forcings. However, the overall procedure

introduced above will be shown to remain tractable, as illus-

trated later in Sec. IV.

How to obtain the POD and balanced modes stands for

our next concern. In the following, the balanced modes,

which rely on both the concepts of controllability and

observability, are first introduced. The presentation of the

POD modes (most controllable modes) is then given in a sec-

ond step.

B. Balanced model reduction

1. Controllability and observability Gramians

Balanced truncation originally emerged from the control

theory literature29 as a way to reduce linear input-output sys-

tems such as Eq. (5) while quasi-optimally preserving its

input-output behavior. Indeed, a useful property of balanced

truncation is that it yields a priori error bounds on the trans-

fer function that are close to the lower bound achievable by

any reduced-order model. It is conceptually expressed in

terms of controllability an observability of the modes used in

the model reduction process. A specific state is deemed con-

trollable if there exists a control law c(t) which is able to

modify the flow from any state toward this specific state. For

controllable states, the notion of controllability then quanti-

fies how easy (or difficult) the state can be reached from any

state. Similarly, observability measures how easy (or diffi-

cult) a given flow state can be detected by the sensors. At the

sensor location, almost unobservable flow states leave hardly

any footprint behind and are thus nearly invisible to the mea-

surement efforts. The key idea of balanced truncation is to

compute rank and select modes that are equally observable

and controllable in order to project the full original system
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onto them. For a given flow state, the mathematical quanti-

ties that enable measuring these two properties are the con-

trollability and observability Gramians Gc and Go.

Considering our input-output system (5) with a stable dy-

namical operator A, these Gramians are defined by

Gc ¼
Ðþ1

0
eAtBB�eA�tdt

Go ¼
Ðþ1

0
eA�tC�CeAtdt

(
: (8)

For unstable systems, this definition does not hold since the

integrals are not convergent anymore as t!1. Yet, one

may use a frequency domain definition of the Gramians, as

proposed by Zhou et al.,39 in order to avoid this problem

Gc ¼ 1
2p

Ðþ1
�1 ðjxI� AÞ�1BB�ð�jxI� A�Þ�1dx

Go ¼ 1
2p

Ðþ1
�1 ð�jxI� A�Þ�1C�CðjxI� AÞ�1dx

(
: (9)

It can be shown by using Parseval’s theorem that the two

definitions are equivalent for stable systems.39,41 It has been

furthermore demonstrated39 that the frequency domain defi-

nition (9) still works for unstable systems as far as there are

no marginal modes and that balanced truncation is then

equivalent to separating the stable and unstable parts of the

transfer function and doing the balanced realization for both

parts separately.

A technique referred to as balancing consists in finding

flow fields with equal emphasis on either controllability or

observability property. This latter is mathematically equiva-

lent to finding a transformation basis in which the Gramians

Gc and Go appear diagonal and equal.6 Otherwise, these bal-

anced modes can also be directly computed as the eigenvec-

tors of the product of the two previously defined Gramians.29

However, this is not computationally tractable for the com-

plex flows considered here where the number of degrees of

freedom is of order O(105–6). For systems of large dimension

such as those encountered here, the Gramians are huge mat-

rices which cannot be easily computed or stored. Instead, the

algorithm introduced by Rowley35 and referred to as BPOD

approximates balanced truncation while remaining tractable

even for very large systems and relies on the use of flow state

snapshots.

2. Introduction of the frequential snapshots

To compute the balanced modes by a low-cost algo-

rithm, a technique introduced by Rowley35 consists in factor-

ing the controllability and observability Gramians using flow

state snapshots. Until now, the snapshot technique was

achieved by considering the temporal expressions (8) of the

Gramians, as in the original method of Rowley35 or more

recent works.13–15,37 This approach is not adopted in our

work. In this paper, the frequential expressions of the Gra-

mians (8) are considered instead. Thus, introducing the flow

states X̂1ðxÞ and Ŷ1ðxÞ defined by

X̂1ðxÞ ¼ ðjxI� AÞ�1B; (10a)

Q1Ŷ1ðxÞ ¼ ð�jxI� A�Þ�1C�; (10b)

the frequential expressions of the Gramians (9) reduce to

Gc ¼
1

2p

ð1
�1

X̂1X̂
�
1ðxÞdx � 1

2p

X
i2Z

X̂1X̂
�
1ðxiÞdi; (11a)

Go ¼ Q1

1

2p

ð1
�1

Ŷ1Ŷ
�
1ðxÞdx

� �
Q1

� Q1

1

2p

X
i2Z

Ŷ1Ŷ
�
1ðxiÞdi

 !
Q1; (11b)

where fxi, i 2 Z g is a given set of discrete pulsations and

di denotes appropriate quadrature coefficient. Note that X̂1

and Ŷ1 are complex vector fields such that

X̂1ðxiÞ ¼ X̂1ð�xiÞ; (12a)

Ŷ1ðxiÞ ¼ Ŷ1ð�xiÞ; (12b)

where � denotes the complex conjugate so that we can fur-

ther expand Eqs. (11) to

Gc �
1

p

X
i2N

X̂1rX̂
�
1rðxiÞ þ X̂1iX̂

�
1iðxiÞ

h i
di; (13a)

Go � Q1

1

p

X
i2N

½Ŷ1rŶ
�
1rðxiÞ þ Ŷ1iŶ

�
1iðxiÞ�di

 !
Q1; (13b)

where we have introduced their real parts X̂1r, Ŷ1r and their

imaginary parts X̂1i, Ŷ1i. In practice, the set of frequencies

fxig is finite so that only a finite interval of frequencies is

considered. The numbers of real direct ðX̂1r; X̂1iÞ and adjoint

ðŶ1r; Ŷ1iÞ flow states used in the process are denoted by nd

and na, respectively (both are even). As a result, the controll-

ability and observability Gramians may be factored as

Gc � X1X�1; (14a)

Go � Q1Y1Y�1Q1; (14b)

by stacking these states as columns of the matrices X1 and

Y1 as follows:

X1 ¼
1ffiffiffi
p
p X̂1rðx0Þ

ffiffiffiffiffi
d0

p
X̂1iðx0Þ

ffiffiffiffiffi
d0

p
X̂1rðx1Þ

ffiffiffiffiffi
d1

p
X̂1iðx1Þ

ffiffiffiffiffi
d1

p
…

� �
; (15a)

Y1 ¼
1ffiffiffi
p
p Ŷ1rðx0Þ

ffiffiffiffiffi
d0

p
Ŷ1iðx0Þ

ffiffiffiffiffi
d0

p
Ŷ1rðx1Þ

ffiffiffiffiffi
d1

p
Ŷ1iðx1Þ

ffiffiffiffiffi
d1

p
…

� �
; (15b)
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where the dimension of X1 is n1 � nd and that of Y1 is

n1 � na. Interestingly, the flow state X̂1ðxÞ is solution (see

Appendix B1) of the following direct problem:

jx
Q1 0

0 0

� �
� A1 A�2

A2 0

� �� �
X̂1

X̂2

� �
¼ Q1 0

0 0

� �
B1

0

� �
(16a)

emphasizing that this state reduces to the harmonic flow

response resulting from the forcing of the linear Navier-

Stokes equations with an harmonic momentum actuation

(B1, 0) of pulsation x. Analogously, it is shown in Appendix

B2 that Ŷ1ðxÞ is the solution of the following adjoint

problem:

�jx
Q1 0

0 0

� �
�

A�1 A�2
A2 0

� �� �
Ŷ1

Ŷ2

 !

¼
Q1 0

0 0

� �
Q�1

1 C�1
0

 !
ð17aÞ

pointing out that this adjoint state stands for the harmonic

response flow state resulting from the forcing of the adjoint

linear Navier-Stokes equations with a harmonic momentum

actuation ðQ�1
1 C�1; 0Þ of pulsation x. Hereafter, these direct

and adjoint flow states are referred to as frequential snapshots

in order to draw a parallel with existing time-domain defini-

tions of the Gramians and associated temporal snapshots.

3. Computation of the balanced basis

The approximate Gramians (14) are not actually com-

puted due to the large storage cost, but the leading modes of

the transformation that balances these Gramians are com-

puted using a cost-efficient algorithm introduced by Laub et
al.32 and detailed below. It involves computing the singular

value decomposition of the direct X1 and adjoint Y1 snap-

shots cross product Y�1Q1X1, which is of size na � nd ,

Y�1Q1X1 ¼ MRN� (18)

where M and N are orthogonal matrices ( M�M ¼ I, N* N¼ I)
of dimension na � na and nd � nd, while R is diagonal and of

size na � nd. For the fluid systems we are interested in, the

typical number of snapshots is of order O(102–4), thus result-

ing in a reasonable computational cost. In a final step, denot-

ing the balanced basis by the matrix T1 and its bi-orthogonal

set by S1, we have

T1 ¼ X1NR�1=2; (19a)

S1 ¼ Y1MR�1=2: (19b)

It is easily confirmed that the bi-orthogonality condition

S�1Q1T1 ¼ I is satisfied and that, once transformed into these

bases, the Gramians Gc and Go appear diagonal and equal to R

ðQ1S1Þ�GcðQ1S1Þ ¼ R; (20a)

T�1GoT1 ¼ R; (20b)

and also that they are the eigenvectors of their product,

GcGoT1 ¼ T1R
2; (21a)

GoGcðQ1S1Þ ¼ ðQ1S1ÞR2: (21b)

The diagonal entries of the transformed Gramians R,

called Hankel singular values (HSVs), decrease monotoni-

cally and are directly related to the controllability and

observability of the corresponding states. It can be shown35

that the columns of T1 form the first columns of the balanc-

ing transformation and the columns of Q1S1 constitute the

first columns of the inverse transformation.

C. POD model reduction

For the sake of completeness, POD modes are also con-

sidered in this study and their ability to capture the input-out-

put dynamics is evaluated and compared to that of BPOD

models. For stable systems, we have previously introduced

the POD modes as the most controllable modes relative to the

actuator. This means that they stand for the structures, the

most easily triggered by the actuation. The POD modes,

denoted by the matrix R1, are given by the eigenvectors of the

product GcQ1
15,35 that is,

GcQ1R1 ¼ R1K (22)

where the diagonal entries of the matrix K are called the

POD eigenvalues. The POD eigenvalues decrease monotoni-

cally and are directly related to the controllability of the cor-

responding modes. Their computation is performed by using

the classical snapshot method introduced by Sirovich.17 We

have previously shown that Gc ¼ X1X�1, where the collected

dataset X1 stands for the direct frequential snapshots. We

proceed by computing the eigenvalue decomposition of

the product X�1Q1X1, which is of size nd � nd , by

X�1Q1X1 ¼ LKL�, where L is orthogonal (L�L ¼ I). The POD

modes can then be computed by

R1 ¼ X1LK�1=2: (23)

Note that, as expected, the POD modes are orthogonal with

respect to the kinetic energy inner product, that is,

R�1Q1R1 ¼ I. It should be emphasized at this stage that this

definition of the POD modes is not general since the consid-

ered dataset X1 is directly linked to the input (B1, 0) location.

Reduced-order models are obtained by a Galerkin projection

of the initial full system onto the modes with the highest

POD eigenvalues. The procedure is similar to that described

in Sec. II A 2, where we substitute T1 and S1 by R1 in

Eq. (7).

D. Discussion

1. Practical considerations

Frequency information may be the most accessible

quantity from many mechanical systems. In fluid mechanics,

a physical interpretation of the flow behavior often relies on

the frequency decomposition of its response to different forc-

ings. For instance, some flows may behave as “oscillators”
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which impose their own frequency on the intrinsic dynamics,

insensitively to external noise. On the other hand, some

flows known as “noise-amplifiers” selectively amplify

upstream noise, which often leads to a broad-band low-fre-

quency spectrum of the downstream flow response. Due to

this natural way to describe unsteady flows, frequency-based

methods play a central role in the design of low-order mod-

els. Let us mention some examples such as the dynamic

mode decomposition (DMD),43,44 which decomposes dy-

namical modes in the frequency domain or also the partition-

ing of modes into low, dominant, and high frequency in view

of designing robust ROMs.19,21,45

Concerning our linear state space formulation, the ex-

citation by the actuator over a frequency interval is a way

of extracting relevant information about the flow dynam-

ics. Similarly, the adjoint frequency snapshots are intro-

duced as a way to extract sensitivity information of the

sensor over the same range of frequency. From an experi-

mental point of view, the direct snapshots may be naturally

obtained from harmonic excitations from the actuator.

Suppose that the actuation law is given by B cosðxtÞ, then

the associated harmonic response of the flow will be given

by X̂1rðxÞ cosðxtÞ � X̂1iðxÞ sinðxtÞ. Accordingly, the

direct snapshots X̂1r and X̂1i may be simply recovered by

extracting the flow states at successive times t and tþT/4,

where T ¼ 2p=x is the period of the flow. The procedure

to approximate the balanced modes requires the knowl-

edge of adjoint states which cannot be directly extracted

from experiments. However, we refer interested readers to

the recent attempts to determine balanced ROMs without

having to resort to adjoint information reported by Or and

Speyer46 and Ma et al.47

An important point should also be noticed at this stage:

Secs. III and IV include comparisons between POD and

BPOD models in terms of modeling the input-output dynam-

ics. As already mentioned earlier, the balanced modes are

superior to the POD modes to reach this goal since they are

conceptually designed to do so. However, even if BPOD

models may yield the correct input-output dynamics, there is

no guarantee that the original flow state may be captured. On

the contrary, POD modes are meant to gradually capture the

energy of the flow response in order to accurately recover its

associated flow field, or at least its predominant energetic

patterns. In fact, the superiority of the BPOD models comes

from their potential to represent non-physical flow states

which yield the correct input-output signal.

2. Computation of the snapshots

As previously mentioned, the snapshot method was

achieved by considering the temporal expressions of the Gra-

mians. Technically, the impulse response required to com-

pute these temporal snapshots are computed by a direct and

adjoint direct numerical simulation of the linearized Navier-

Stokes equations. This time-stepping approach has been used

so far in previous works on BPOD model reduction to yield

the terms eAtB and eA�tC�. On the contrary, in a frequential

framework, the snapshots correspond to harmonic responses

to harmonic forcings. In this case, one has to invert a direct

and adjoint system to get the terms ðjxI� AÞ�1B and

ð�jxI� A�Þ�1C� for each selected frequency x. The large-

scale matrices associated with these systems, which are of

size n1 � n1 here, are often sparse (depending on the numeri-

cal method used). The availability of efficient methods to

inverse these huge systems is thus of utmost importance if

one plans to adopt this strategy. Practically, the numerical

methods to achieve these inversions can be either direct48,49

or iterative.50 A valuable asset for proceeding in the frequen-

tial framework is the possibility to compute separately each

snapshot, contrary to the time-stepping approach where the

previous snapshots are required to compute the next one. This

latter observation makes the frequential approach intrinsically

fitted to parallel computation of the snapshots.

3. Fall-off of the snapshots norm

The snapshot method yields an approximation of the

temporal [Eq. (8)] and frequential [Eq. (9)] expressions of

the Gramians by discretizing and truncating the unbounded

integrals to a maximum time and a maximum frequency,

respectively. It is thus of primary interest to know how

quickly does the norm of the snapshots cross-product within

these integrals decrease at long times and high frequencies.

It can easily be shown that the temporal snapshots norm

decreases exponentially as O(e–at) for long time where a is

the growth rate of the least damped mode, whereas the fre-

quential snapshots have an algebraic fall-off norm as

Oð1=xnÞ for high pulsation (n¼ 2 in the case of the Navier-

Stokes equations due to viscous terms). This point leads to

the first conclusion that, for any stable system (a < 0), the

temporal snapshots norm fall-off in time always become

faster, for sufficiently long time, than the frequential snap-

shots norm fall-off in frequency. In spite of this observation,

it is not possible to say in general if one approach would

require less snapshots than the other one. All the same, it

should be emphasized that, in a majority of fluid mechanics

problems, the frequential responses norm remains centered

and peaked at a well specified frequency corresponding

physically to the promoting of natural hydrodynamic insta-

bilities. This robust observation can be supported by men-

tioning the cases of boundary layers, separated flows, or

wake flows that are subject, respectively, to the Tollmien-

Schlichting, the Kelvin-Helmholtz, and the Benard-von Kàr-

màn instabilities. In this framework, the frequential approach

may be very appreciative for weakly stable systems, i.e., for

systems where a is close to 0. In these cases, the impulse

response relaxation time is very high so that the temporal

approach would require very long time stepping simulations

to compute the snapshots while the frequential responses

would remain peaked at a given low frequency.

E. Numerical methods

Our numerical approach is based on a finite element

method. All the equations are first rewritten in a variational

formulation and then spatially discretized using a mesh com-

posed of triangular elements. In particular, the velocity fields

are projected onto six-node quadratic triangular elements

with quadratic interpolation (P2-elements), whereas the
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pressure field is discretized using three-node linear triangular

elements (P1-elements). All the discrete matrices resulting

from the projection of the variational formulations onto the

basis of finite elements are sparse; they are built with the

FreeFemþþ software (http://www.freefem.org).

The frequential snapshots X̂1ðxiÞ and Ŷ1ðxiÞ at discrete

pulsations xi are obtained by inverting the linear systems

(16) and (17). These snapshots are then recombined to com-

pute the matrices X1 and Y1 by using an equidistant spacing

Dx between the snapshots and quadrature coefficients di cor-

responding to the fourth-order Simpson method. The matrix

inversion required to compute these snapshots are handled

through a direct multifrontal sparse LU solver (MUMPS

(Ref. 49)). Hence, the cost of this algorithm is approximately

given by the cost of the LU decomposition of a large sparse

complex matrix since the following successive inverses are

cheap.

III. GLOBALLY STABLE CASE: THE ROUNDED
BACKWARD-FACING STEP FLOW

Here, we provide an example of BPOD/POD model

reduction using the snapshot method in the frequency do-

main as described in Sec. II. The case of a globally stable

flow is first studied in this section by considering the input-

output dynamics over a backward-facing step flow.

A. Flow configuration

We consider the two-dimensional rounded backward-

facing step depicted in Figure 1. It consists of a circular part

designed so that its length is twice its height (this geometry

stems from the experimental work of Duriez51). The

upstream velocity and the step height are used to make all

quantities non-dimensional. The beginning and ending of the

step are located at (x¼ 0, y¼ 1) and (x¼ 2, y¼ 0). The

upstream, downstream, and upper boundaries are, respec-

tively, located at x¼ –20, x¼ 100, and y¼ 20. A uniform

and unitary velocity field (u¼ 1, v¼ 0) is prescribed at the

inlet boundary (x¼ –20) and a laminar boundary layer starts

developing on the lower boundary at (x¼ –2, y¼ 1). A free-

slip condition with zero tangential stress ð@yu ¼ 0; v ¼ 0Þ is

prescribed on the boundary ð�20 � x � �2; y ¼ 1Þ. No-slip

boundary conditions (u¼ 0) are imposed on ð�2 � x � 0;
y ¼ 1Þ, on the step wall, and on the downstream wall

ð2 � x � 100; y ¼ 0Þ. Symmetry boundary conditions are

used at the upper boundary and a free outflow condition pn – Re–1

ðruÞ � n ¼ 0 is used at the outlet (n being the outward nor-

mal unitary vector of the boundary).

The resulting base flow is computed by solving a New-

ton-Raphson method.52 We choose a Reynolds number

Re¼ 600 where the flow is globally stable to two-dimensional

perturbations, and its corresponding base flow is represented

in Figure 1. The displacement thickness at x¼ 0 is

d� � 0:082, leading to a Reynolds number based on the dis-

placement thickness of Red� � 49:2. This choice of parame-

ters rules out instabilities related to the boundary layer

dynamics. The boundary layer separates at x � 0:6 and reat-

taches at x � 11 exhibiting a long shear layer responsible for

strong transient growths. The input-output behavior is inves-

tigated by introducing one actuator and one sensor as

sketched in Figure 1. The actuator is located on the step, just

before the boundary layer separation, so as to trigger the

most efficient response and the sensor is placed downstream,

in the vicinity of the reattachment point. Once discretized,

the equations governing the dynamics of small perturbations

with actuation and sensing are given by the linear input-out-

put system previously introduced in Eqs. (5). The actuator B
stands for a volume forcing of Gaussian shape on the vertical

velocity component centered on the step wall at x¼ 0.6, with

a width of 0.6 and a height of 1. As the measured quantity, we

consider the wall-normal shear stress evaluated at and inte-

grated over a localized region of the wall (the sensor location)

so that mðtÞ ¼
Ð x¼11:6

x¼11
@yu dx, which yields the vector C.

To give an idea, a typical discretization yields

n1 � 360 000 degrees of freedom stemming from about 90 000

triangles.

B. Frequential snapshots

The frequential direct and adjoint snapshots required for

the model reduction are computed by solving Eqs. (16) and

(17). We have computed 399 equispaced complex frequen-

tial snapshots X̂1 and Ŷ1 from x ¼ 0 to x ¼ 4 (resulting in

nd¼ na¼ 798).

As expressed in Sec. II, the direct snapshots correspond

to the long time responses of the system to harmonic forcings

of pulsation x from the input location. We have represented

in Figure 2(a), the evolution of the kinetic energy of the

direct snapshots kX̂1k2 ¼ X̂�1Q1X̂1 as a function of x to high-

light the noise amplifier behavior of this flow. The most

amplified frequency x � 0:72 is associated with the Kelvin-

Helmholtz instability of the separated shear layer. Figures

2(b)–2(e) depict the real part of the longitudinal velocity of

the direct snapshots X̂1 for different frequencies. As

expected, the corresponding patterns extend downstream

from the actuator through the shear layer. The triggered

wavepackets shown on these figures exhibit a spatial sup-

port that strongly depends on x. Excitation to higher fre-

quencies leads to smaller flow structures and to a faster

diffusion. In particular, the highest frequency responses

remain spatially localized in the vicinity of the actuator

while the smallest frequency responses are widely extended

downstream.

FIG. 1. (Color online) Streamlines of

the base flow at Re¼ 600. The actuator

and sensor locations are also depicted.
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Figure 3 is devoted to the same purpose for the adjoint

snapshots. In a similar manner, the adjoint snapshots corre-

spond to the long time responses of the adjoint system to a

harmonic forcing of pulsation x from the sensor. The energy

kQ1Ŷ1k2
displays a peak at a nearby frequency of x � 0:64,

and analogously, the adjoint flow patterns are convected

backward in time from the sensor to the upstream flow. A

physical interpretation of the adjoint snapshots may arise by

considering the transfer function of the system (5). The trans-

fer function ĜðxÞ links the Fourier transform of the input

ûðxÞ to that of the output m̂ðxÞ by

m̂ðxÞ ¼ ĜðxÞûðxÞ (24)

and can be computed by ĜðxÞ ¼ CðjxI� AÞ�1B or, intro-

ducing the adjoint snapshot Ŷ1ðxÞ, by

ĜðxÞ ¼ Ŷ�1ðxÞQ1B: (25)

This means that, given a frequency x0, the component

m̂ðx0Þ of the measure is proportional to Ŷ�1ðx0ÞQ1B, i.e.,

the inner product between the actuator B and the frequen-

tial snapshot Ŷ1ðx0Þ. In other words, the flow structures

excited by the output and shown in Figures 3(b)–3(e) are

also the states to which the sensor is the most sensitive at

this given frequency excitation. In our case, we observe

that these forcing structures leading to maximum measure-

ments at the sensor are upstream-tilted patterns located

along the shear layer. They are leant against the shear so as

to optimally trigger the Orr mechanism and are then ampli-

fied through the shear layer. Analogously to the direct

snapshots, the spatial support of the adjoint states strongly

depends on x. For higher frequencies, smaller flow struc-

tures are localized in the vicinity of the sensor due to a

higher diffusion while smallest frequency responses are

largely extended upstream.

C. Reduced-order models

The previously computed frequential snapshots are used

within the procedure outlined in Sec. II to build BPOD/POD

based reduced-order models. We have represented in Figure

4(a), the first 14 HSVs rj. As expressed in Sec. II, the HSVs

provide a way to assess the controllability and observability

of its associated modes. This quantity is naturally used to

decide on a truncation point and thus on the size of the

reduced-order models. A significant drop in the HSVs is

observed and justifies the truncation of the balancing basis.

Similarly, we have represented in Figure 4(d) the first 140

POD eigenvalues kj. Note that they rank the associated POD

FIG. 2. (Color online) The left plot (a)

shows the energy of the direct snapshots

X̂1 as a function of x. (b), (c), (d), (e)

represent the real parts of the longitudi-

nal velocity of the direct snapshots asso-

ciated with the frequencies xi ¼ 0.2,

0.72, 2, and 3, respectively.

FIG. 3. (Color online) The left plot (a)

shows the energy of the adjoint snap-

shots as a function of x. Note that,

owing to the definition (10) of the snap-

shots, the relevant quantity to be meas-

ured is Q1Ŷ1. Figures (b), (c), (d), and

(e) represent the real parts of the longitu-

dinal velocity of the adjoint snapshots

associated with the frequencies x¼ 0.2,

0.64, 2, and 3, respectively.
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modes according to how easily they can be influenced by the

input, i.e., their controllability. We have represented in

Figures 4(b) and 4(c) the first and third BPOD modes, visual-

ized by their streamwise velocity component. They consist of

wavepackets resulting from the amplification of vortices along

the shear layer and spatially localized between the actuator

and the sensor. Figures 4(e) and 4(f) are devoted to the same

purpose for the first and third POD modes. It should be noted

that they reduce to the structures that are most easily influ-

enced by the input. In other words, low energy is needed to

force these large-scale structures downstream owing to the

amplification provided by the intrinsic flow dynamics. They

also appear as wavepackets but are somewhat more spatially

extended downstream where the energy of the response to

forcing is the largest. This latter observation is consistent with

other recent works.13,38

Interestingly, we notice a pairwise occurrence of the

eigenvalues. Looking at Figure 4(a), the first 6 HSVs come

in pairs while it is even more obvious in Figure 4(d) for

the first 30 POD eigenvalues. According to the previous

work of Aubry et al.53 based on the time-space bi-orthogo-

nal decomposition of complex signals,20 the POD modes of

a traveling wave consist of degenerated pairs of modes,

having the same eigenvalues and having shifted spatial

structures of one another. In our case, it is indeed recov-

ered that the eigenmodes of a given pair are a quarter pe-

riod out of phase. This result holds for both BPOD and

POD modes. This confirms that our models are predomi-

nantly governed by the dynamics of traveling waves. Recall-

ing that POD models are meant to recover the exact flow

field response, contrary to BPOD models (see Sec. II D 1),

it is natural to observe a clearer representation of the origi-

nal traveling wave packet in the case of POD modes. For

higher BPOD or POD modes, the pairwise occurrence of the

eigenvalues gradually vanishes. One may attribute this result

to a deviation from traveling waves due to the modulation

of the wave packet in the streamwise direction according to

the work of Aubry et al.54,55

It should be mentioned at this stage that our 399 com-

plex and equally spaced snapshots are sufficient for accurate

computation of the BPOD and POD modes, since for a larger

number of snapshots, with finer spacing or larger frequency

interval, there is no considerable change in the eigenvalue

spectrum.

D. Impulse response and transfer function

By definition, the input-output behavior links the effect

of the actuator on the flow to the information extracted by

the sensor. It can be described by the impulse response or,

equivalently, by the transfer function. The impulse

response of a linear system is important, since the response

of the system to any input can be found from the convolu-

tion of the impulse response with the input. The impulse

response G(t) of the full system is obtained numerically

from a time-stepper simulation of the linearized Navier-

Stokes equations (4) for the control law cðtÞ ¼ dðtÞ, dðtÞ
being the Dirac function. In other words, the impulse

response is G(t)¼CX1(t), where X1(t) is solution of the ini-

tial-value problem

FIG. 4. (Color online) (a) First 14 HSVs rj and (d) first 140 POD eigenvalues kj. (b) and (c) stand for the streamwise velocity component of the first and third

BPOD modes. Analogously, (e) and (f) stand for the first and third POD modes.
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dX1

dt
¼ AX1; (26a)

X1ðt ¼ 0Þ ¼ B: (26b)

The corresponding simulation is integrated in time using a

second-order accurate scheme. The impulse responses of the

ROMs Gr(t) are computed directly by GrðtÞ ¼ Cre
Ar tBr,

where Ar, Br and Cr stand for the matrices A, B, and C pro-

jected onto r modes. Figures 5(a) and 5(b) display the

impulse response of the full system and those of the BPOD

and POD reduced-order models, respectively. The impulse

response of BPOD models with r¼ 6, r¼ 10, and r¼ 14 are

represented in Figure 5(a) and those of POD models with

r¼ 40, r¼ 60, and r¼ 100 are represented in Figure 5(b).

With r¼ 14 BPOD modes or r¼ 100 POD modes, we

observe that reduced models register the same signal as the

full model. The impulse at the actuator B generates a wave-

packet that travels along the shear layer until it reaches the

sensor at t � 10. The effect of this wavepacket is measured

by the sensor until t � 35 and is then further convected

downstream to eventually leave the computational domain.

Since all frequencies are equally excited by an initial

impulse, a convenient and alternative way of expressing the

input-output behavior of a linear system is to switch to the

frequency domain. The frequency response of the full system

and the ROMs are compared next. The transfer function of

the full system is simply given by ĜðxÞ ¼
Ð1

0
e�jxtGðtÞdt

while those of the ROMs are obtained, using equivalent nota-

tions, by ĜrðxÞ ¼ CrðjxIr � ArÞ�1Br, where Ir stands for the

identity matrix of size r. Note that the exact transfer function

is easily computed by measuring (multiplying by C) each al-

ready computed direct snapshots X̂�1ðxiÞ ¼ ðjxiI� AÞ�1B.

Figures 6(a) and 6(b) depict the absolute values of the trans-

fer functions of the full system together with those of BPOD

and POD models, respectively. We recover a preferred

frequency around x ¼ 0:78 which corresponds to the

pseudo-pulsation observed in Figure 5. Note that this pulsa-

tion is also associated with the amplification of the impulse

perturbation through the shear layer due to the Kelvin-Helm-

holtz instability. In terms of models efficiency, the same con-

clusion arises since 14 BPOD and 100 POD modes are,

respectively, sufficient to capture the most important trends

of the input-output behavior.

For the sake of completeness, we also quantify the per-

formance of the models in capturing the input-output behav-

ior by computing the H1 relative norm of the error. For a

model of size r, this error, denoted by e1ðrÞ, is given by

e1ðrÞ ¼
maxx2RjĜðxÞ � ĜrðxÞj

maxx2RjĜðxÞj
: (27)

The choice of this norm is motivated by the availability of the-

oretical bounds on the discrepancy between the approximate

and exact transfer functions for balanced truncation. In

Figures 7(a) and 7(b), we have represented the error e1ðrÞ for

the BPOD and POD models, respectively. As expected, the

error falls off in both cases, assessing the efficiency of these

models. In particular, we observe that the number of required

POD modes to reach a given error e1 is significantly higher

than the number of required BPOD modes. Indeed, the BPOD

error falls quite rapidly and remains bounded between the

lower (valid for any ROM) and the upper (valid for balanced

truncation models) theoretical bounds,35,41 given by

rrþ1 < jjĜðxÞ � ĜrðxÞjj1 � 2
Xn1

j¼rþ1

rj (28)

where n1 is the dimension of the full system. We conclude

that both models succeed in capturing the full input-output

behavior of the system with a superiority of BPOD models

over POD ones. This latter point is consistent with existing

literature.15

FIG. 5. (Color online) (a) Impulse

response of the full system G(t) and of

the reduced-order models Gr(t) for (a)

BPOD models and (b) POD models.

FIG. 6. (Color online) Transfer func-

tion of the full system ĜðxÞ and of

the reduced-order models ĜrðxÞ for (a)

BPOD models and (b) POD models.
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IV. GLOBALLY UNSTABLE CASE: THE SQUARE
CAVITY FLOW

Here, we deal with the case of a two-dimensional square

cavity flow. We consider the same configuration, input and

output as those used by Barbagallo et al.15 whose base flow

exhibit eight unstable global modes. Due to the unstable na-

ture of the flow, any initial disturbance is amplified, leading

to large-amplitude perturbations for sufficiently large times.

Recalling the linear dynamics assumption introduced in Sec.

II, we are concerned here with the early development of the

perturbations, i.e., the stage where the perturbation amplitude

remains weak. In the reference work,15 the authors have

designed reduced-order models for flow control purpose. Par-

ticularly, they showed that BPOD and POD modes were suc-

cessful in capturing the input-output behavior of their flow.

They used a snapshot method based on a temporal definition

of the Gramians, restricting their approach to the stable sub-

space dynamics. Consequently, they had to model the unsta-

ble dynamics separately, using the unstable global modes.

The second numerical example presented here is used as a

reference case to show that frequential snapshots enable to

reduce the system without separating the unstable and stable

subspaces and that the resulting ROMs yield the correct full

input-output dynamics (meaning both the correct stable and

unstable input-output behaviors). To this end, we reduce the

system using BPOD and POD modes, as in Sec. III, and we

next compare our results to those of Barbagallo et al.15

A. Flow configuration

We briefly describe the flow configuration studied in

this section. The square cavity flow of interest has first been

introduced in Sipp and Lebedev52 where a more detailed

description of the geometry and boundary conditions is

available. It consists of a uniform incoming flow over a

square cavity. The Reynolds number based on the uniform

upstream velocity and cavity depth is fixed to Re¼ 7500.

The corresponding base flow, defined as a solution of the

steady Navier-Stokes equations, is displayed in Figure 8 by

its streamlines together with the actuator and sensor location.

Note that the boundary layer starts developing at x¼ –0.4

(the origin of the coordinate system coincides with the top

left corner of the square cavity).

Regarding the input, Barbagallo et al.15 chose an actua-

tor consisting of a parabolic normal velocity blowing near

the upstream edge of the cavity, over the streamwise extent

ð�7=20 � x � 0; y ¼ 0Þ. Additionally, they adopted a trans-

formation referred to as lifting in order to formulate the

problem as a driven homogeneous state space system. We

will not go into further details about this matter as it is not

our point. Yet, it is important to note that their input B used

to perform BPOD or POD ROMs is solution of the steady

but inhomogeneous Navier-Stokes equations with boundary

conditions given for ð�7=20 � x � 0; y ¼ 0Þ by the velocity

profile

uðx; y ¼ 0; tÞ ¼ 0 (29)

vðx; y ¼ 0; tÞ ¼ � xð1600xþ 560Þ
147

: (30)

The solution of this steady problem and associated inhomo-

geneous boundary conditions constitutes the actuation which

is referred to as the input B on the finite input-output system

(5). The sensor is located near the downstream edge of the

cavity, on the segment ð1 � x � 1:1; y ¼ 0Þ. The output is the

wall-normal shear stress evaluated at and integrated over a

localized region of the wall

mðtÞ ¼
ðx¼1:1

x¼1

@u

@y

				
y¼0

ðtÞ dx: (31)

Similarly, this measurement is expressed by the matrix C on

the finite system (5), resulting from the discretization on a

given mesh. Note that we choose the same numerical finite

element approach based on the same non-structured triangu-

lar mesh as that used in Barbagallo et al.15 in order to avoid

any numerical effect. This one results in n1 � 780 000

degrees of freedom stemming from about 200 000 triangles.

As previously mentioned, the base flow is globally

unstable at Re¼ 7500. A global stability analysis of the flow

FIG. 7. (Color online) H1 Relative norm of the

error e1 as a function of the size r of the reduced-

order models for (a) the BPOD and (b) the POD

modes. Note that the upper and lower bounds on the

error, computed by Eq. (28), have been reported in

(a) by solid lines.

FIG. 8. (Color online) Streamlines of the base flow at Re¼ 7500. The actua-

tor and sensor locations are also depicted.
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is presented in the work of Barbagallo et al.,15 and we briefly

summarize their results here. The system of Eqs. (5) allows

the computation of a temporal global spectrum and associ-

ated modes via the common assumption of an exponen-

tial time-dependence expressed as X1ðx; y; tÞ ¼ ~X1ðx; yÞect,

where c 2 C is the eigenvalue and ~X1 the eigenvector

given by

A~X1 ¼ c~X1: (32)

Eigenvalues are decomposed into c ¼ aþ jx, where a is the

amplification rate and x the pulsation so that unstable modes

are characterized by a > 0. The low-frequency part of the

eigenspectrum, corresponding to the most unstable global

modes, has been represented in Figure 9. This stability analy-

sis displays four unstable “physical” global modes, i.e., eight

if the complex conjugates are counted. These four unstable

modes are denoted by E–3, E–2, E–1, and E0 as in the refer-

ence paper.15 Furthermore, we have also highlighted a stable

global mode, denoted by E2, which displays15 a prominent

contribution to the input-output dynamics. The role of this

particular mode is illustrated below.

B. Frequential snapshots

Similarly to the flow over the backward-facing step, the

frequential direct and adjoint snapshots required for the

model reduction are computed by solving Eqs. (16) and (17).

We have computed 499 equispaced complex frequential

snapshots X̂1 and Ŷ1 from x ¼ 0 to x ¼ 35, resulting in

nd¼ na¼ 998. Since the full system is unstable, these com-

plex flow states can no longer be interpreted physically as

long time responses to harmonic forcings. However, the

inversion required to solve Eqs. (16) and (17) remain tracta-

ble as far as there are no marginal modes, which is the case

here. We have represented in Figure 10 the evolution of the

snapshots kinetic energy kX̂1k2
and kQ1Ŷ1k2

as a function

of x. We observe that both quantities display five peaks and

eventually decrease quite abruptly for higher frequencies.

These peaks are actually resulting from a pseudo-resonance

with nearby global modes. This statement is argued by the

representation of the frequencies of the corresponding global

modes by dashed lines. To be more precise, the four highest

frequencies depicted in Figure 10 correspond to the four iso-

lated unstable global modes labeled E–3, E–2, E–1, and E0 in

the reference work.15 Within this set, we observe that the

modes having the smallest growth rate lead to the highest

energy peak, emphasizing the pseudo-resonance phenom-

enon. As for the first low frequency peak at x � 4:54, it is

related to the stable global mode E2. This particular mode

has been shown15 to have an important contribution to the

input-output behavior, more precisely, it is both strongly

controllable and observable. Interestingly, we recover a peak

of energy for both the direct and adjoint snapshots at its

frequency.

C. Reduced-order models

Following the procedure introduced in Sec. II, the snap-

shots are used to build BPOD and POD based ROMs as in

the case of the backward-facing step flow. The first 40 HSVs

rj and first 200 POD eigenvalues kj computed for the square

cavity flow are represented in Figures 11(a) and 11(b),

respectively. Analogously to the results presented in Sec. III,

a significant drop in the HSVs is observed and the first ones

are seen to come in pairs due to the representation of travel-

ing structures by the superposition of modes that are 90
	

out

of phase. Moreover, the same observations hold for the POD

eigenvalues. Similarly to the previous numerical example, it

was found that the 499 computed snapshots are sufficient for

an accurate computation of the BPOD/POD modes and

eigenvalues.

The resulting ROMs defined by Eq. (6) are found to be

unstable with both BPOD and POD models. In other words,

the reduced matrices Ar now possess unstable eigenmodes,

which is not surprising since the original system is unstable.

FIG. 9. (Color online) Part of the global eigenspectrum of the square cavity

flow at Re¼ 7500 (taken from Barbagallo et al. (Ref. 15).

FIG. 10. (Color online) Energy of the direct X̂1 and adjoint Q1 Ŷ1 snapshots

as a function of x. The lines indicate the frequencies of nearby global modes

E2, E–1, E–3, E–2, and E0 (ordered from left to right).
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For unstable systems, the usual transfer functions are no more

defined. Yet, one can still compute the “frequency response”

of the full unstable system ĜðxÞ ¼ CðjxI� AÞ�1B and of the

ROMs ĜrðxÞ ¼ CrðjxIr � ArÞ�1Br as long as there are no

marginal modes. This latter quantity may be useful to assess

the performance of the ROMs in capturing the full input-out-

put dynamics, all the more so as Zhou et al.39 demonstrated

that the upper theoretical bound on the H1 transfer function

error e1ðrÞ, given in Eq. (28), still holds for the balanced

truncation of possibly unstable systems. We have represented

in Figure 12 the relative error e1ðrÞ defined by Eq. (27), in

the case of the cavity flow together with theoretical bounds

given by Eq. (28). The error is indeed observed to lie between

these bounds and decrease while increasing the size r of the

ROMs, linking favorably our results to theoretical predictions

of Zhou et al.39 This first result illustrates the relevancy and

ability of BPOD models to capture the over-all input-output

dynamics of our unstable system. However, we next provide a

deeper insight into the performance of the BPOD and POD

models to accurately model the unstable and stable input-out-

put behavior. This issue has been largely investigated by

Barbagallo et al.15 as they showed that the accurate modeling

of each subspace is essential when it comes to effective

closed-loop control design. As a result, particular attention is

given to them in the remaining of this section.

1. Comparison of the unstable subspaces

Because of their ability to model the inherent instabil-

ities and because of their low dimensionality, the unstable

global modes come out as the most natural basis of the unsta-

ble subspace. Besides, Ahuja and Rowley14 and Barbagallo

et al.15 directly used them to represent the dynamics of their

unstable subspace, leading to an “exact” model since no

modeling assumptions are invoked. The unstable dynamics

of the ROMs is thus compared to the original one through

their unstable modes.

The eigenspectrum and global modal decomposition of

the ROMs is obtained by directly computing the eigenval-

ues/eigenvectors of the reduced matrix Ar. We have repre-

sented in Figure 13(a) the number of unstable eigenmodes as

a function of the size r of the BPOD models. It is observed

that models of sufficiently high size eventually exhibit eight

unstable global modes just like the full system. The number

of unstable modes rise quickly to reach eight for a model of

size r¼ 15, which is highlighted on the figure by a dashed

line. We note that BPOD models of size 24 and 32 possess

nine unstable global modes which may be attributed to the

sensitivity of the procedure to numerical issues.15 Figure 13(b)

represents the same information for POD models. Similarly,

the number of unstable modes rises until the value of eight

but this increase is much more erratic than for BPOD mod-

els. Additionally, the model size required to get the eight

unstable modes is r¼ 82 (depicted by a dashed line on the

figure), which is far more important than for BPOD models.

The unstable part ða > 0Þ of the eigenspectrum of the

full system and those of several BPOD and POD models are

depicted in Figures 14(a) and 14(b) respectively. Since all

eigenspectrum are symmetric about the axis (x ¼ 0), only

the upper complex half-plan (x > 0) is represented. The

computation of the full system eigenspectrum (and eigenvec-

tors) is based on a classical shift and invert iterative Arnoldi

algorithm and yields the same results as those in Barbagallo

et al.15 The results on BPOD models, depicted in Figure

14(a), show that the unstable eigenvalues of the ROMs

quickly tend to those obtained by Barbagallo et al.15 for the

full system as the model size r is increased. As for POD

models, a similar behavior is observed in Figure 14(b)

though much more modes are required to recover the unsta-

ble global modes of the full system.

FIG. 11. (Color online) (a) First 40

HSVs rj and (b) first 200 POD eigenval-

ues kj.

FIG. 12. (Color online) Relative error e1 as a function of the size r of the

ROMs for the BPOD models. The upper and lower bounds on the error,

computed by Eq. (28), are also displayed by the upper and lower solid lines.
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This convergence of the unstable eigenmodes is further

outlined in Table I, where we have listed the growth rate a
and pulsation x of the unstable modes of the full system and

those of several ROMs. Note that the column titled “Size”

stands for the eigenvalue problem size, that is r for the

ROMs and n1 for the full system. We considered that the

unstable modes labeled E–3, E–2, E–1, and E0 could be clearly

identified for BPOD models with r 
 15 and POD models

with r 
 82 as their unstable global modes frequency

approximates correctly those of the full system with a two

digits accuracy. The superiority of BPOD models over POD

ones is more quantitatively illustrated by these results. Note

that some further information on the eigenspectrum of POD

models is provided in Appendix C.

We now turn our attention to the unstable subspaces. In

our case, they are low dimensional (eight in the case of the full

system), and their most natural basis is simply given by the

unstable eigenvectors. By computing the unstable eigenvectors

of the ROMs, we come to the conclusion that, for models of

sufficient size, they match those of the full system once rebuilt

in their original basis. This is illustrated in Figures 15(a)

and 15(b), where we depict the real part of the longitudinal ve-

locity of the most unstable global mode E–3 associated, respec-

tively, with the full system and a POD model of size 150. Note

that the mode built from the POD ROM is computed by R1
~X1r

where ~X1r is the reduced unstable eigenvector. The two result-

ing flow structures are observed to be almost indistinguishable.

Furthermore, this latter observation holds (not shown here) for

the three other unstable modes and for BPOD ROMs

(computed by T1
~X1r). In this subsection, we have thus

demonstrated that both the BPOD and POD procedures (for

models of sufficient size) are successful in modeling the origi-

nal unstable subspace insofar as the unstable subspace of the

ROMs possesses the same natural basis.

2. Comparison of the stable input-output dynamics

The stable subspace is, as often, high dimensional and

the main effort in reducing the system’s dimension is

expended reducing the dynamics in the stable subspace. Fur-

thermore, it contains substantial physical information about

the input-output behavior we are interested in. Similarly to

previous studies,14,15 we assess the accuracy of the ROMs in

modeling the exact stable input-output dynamics by comput-

ing their stable transfer function.

The stable transfer function of the full system can be

computed either by ĜsðxÞ ¼ CðjxI� AsÞ�1B, where As is

the restriction of A on its stable subspace, or by the Fourier

transform of the stable impulse response defined by

GsðtÞ ¼ CeAstB. In this work, the exact transfer function is

taken from the work of Barbagallo et al.,15 where they

adopted the second solution. As for the ROMs, the stable

transfer functions ĜrsðxÞ are directly computed by

ĜrsðxÞ ¼ CrðjxIr � ArsÞ�1Br, where Ars is the restriction

of Ar on its stable subspace. Figures 16(a) and 16(b) depict

the transfer function of the full system superimposed on

those of several BPOD and POD models respectively. It is

observed to be very well approximated in both cases for

ROMs of sufficiently high size. We recover a preferred fre-

quency around x ¼ 4:6, which corresponds to the

FIG. 13. (Color online) Number of unstable modes for (a) the BPOD models and (b) the POD models. Both ROMs exhibits eight unstable modes from the

dashed lines standing for r¼ 15 and r¼ 82 respectively.

FIG. 14. (Color online) Unstable

eigenspectrum of the full system versus

those of (a) BPOD and (b) POD models.
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frequency of the stable mode E2 and to the first peak

observed in Figure 10. For a model of size r, this perform-

ance is quantified by computing the H1 relative norm of

the error e1sðrÞ defined by

e1sðrÞ ¼
maxx2RjĜsðxÞ � ĜrsðxÞj

maxx2RjĜsðxÞj
: (33)

This error is plotted in Figures 17(a) and 17(b) for BPOD

and POD ROMs, respectively. It is meant to convey the

convergence behavior of the transfer functions of the ROMs

as a function of the size r of the models. Similarly to the

backward-facing step flow case, the error converges to zero

as the number of modes increases and a faster error decrease

is observed for BPOD models compared to POD ones.

Comparing these error convergence to those observed

in Barbagallo et al.,15 we notice that both our BPOD/POD

models require more modes to reach a given error e1s. This

is not surprising as our procedures perform the reduction of

both the stable and unstable dynamics at the same time

while theirs are focused on the stable dynamics. Given this

fact, the performance of our models in capturing the correct

stable input-output behavior is delayed compared to theirs

due to the constraint of modeling the unstable subspace at

the same time. This assertion is further argued in Figures 17(a)

and 17(b), where we have drawn by dashed lines the limits

r¼ 15 and r¼ 82 from which the models possess eight

unstable global modes. We clearly notice a sudden fall-off

on the error starting from these limits, that is, a sudden

improvement of the models in capturing the stable input-

output dynamics.

3. Assessment

We conclude from this section that both ROMs not only

succeed in capturing the full unstable subspace but also the

stable input-output dynamics. Furthermore, BPOD models

proved to capture these dynamics with less modes, which is

in agreement with our previous results on the backward-fac-

ing step flow.

It should be mentioned here that the present BPOD pro-

cedure based on frequential definitions of the Gramians

reduces the stable and unstable subspaces simultaneously.39

In other words, it is equivalent to separating the stable and

unstable parts of the transfer function and performing the

model reduction for both parts separately. This may explain

the quick ability of BPOD ROMs to capture simultaneously

and gradually the unstable (see Figures 13(a) and 14(a)) as

well as the stable input-output dynamics (see Figure 17(a)).

Concerning POD models, the same idea does not hold

and, as a result, their ability to model both dynamics is not as

progressive. Indeed, observing Figure 13(b), we note that the

modeling of the unstable subspace is not gradual and, most

importantly, we show in Figure 17(b) that the POD ROMs

are completely unable to model the correct stable dynamics

until the unstable subspace is well captured from r � 82.

This latter point may indicate that a bad modeling of the

unstable subspace involves the incapability of POD ROMs

to correctly model the stable dynamics.

Finally, it should be emphasized that our frequential

approach to perform BPOD and POD model reduction is not

based on a partition of the unstable and stable subspaces con-

trary to the previous works on the literature.14,15 In their

case, they had to (1) compute the global eigenmodes by a

TABLE I. Growth rate a and pulsation x of the unstable modes labeled E–3, E–2, E–1, and E0 of the full system and those of several ROMs. The size column

stands for the size r of the ROMs and is equal to n1 for the full system.

E–3 E–2 E–1 E0

Size a x a x a x a x

BPOD 15 0.874806 10.77852 0.723728 13.8188 0.464693 7.884405 0.032403 16.73146

20 0.889216 10.8997 0.728018 13.8042 0.465734 7.88121 0.0324203 16.7315

30 0.890282 10.9011 0.728619 13.8037 0.465488 7.88134 0.0324236 16.7315

40 0.890204 10.9004 0.728317 13.8039 0.465577 7.88133 0.0324238 16.7315

POD 82 0.540170 10.93990 0.417714 14.20645 0.401845 7.842179 0.020019 16.74988

120 0.915394 10.8931 0.748506 13.7754 0.47076 7.88286 0.0303051 16.7293

160 0.88925 10.9022 0.722727 13.8058 0.466002 7.88255 0.0215329 16.7345

200 0.891552 10.9028 0.727882 13.8094 0.466655 7.88173 0.0275948 16.7415

Full System 778 410 0.890451 10.9008 0.728513 13.8037 0.465557 7.88173 0.032426 16.7315

FIG. 15. (Color online) Real part of the longitudinal velocity of the most unstable eigenvector E–3. (a) Solution obtained with the full system with a shift and

invert Arnoldi algorithm. (b) Solution obtained with a reduced-order model built with 150 POD modes.
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shift and invert Arnoldi algorithm and (2) perform a direct

and adjoint time-stepping simulation, while projecting at

each time step (with the global modes), the resulting states

onto the stable subspace. Their unstable dynamics is then

modeled by the unstable global modes while their snapshots

arising from the direct and adjoint simulations are used to

build BPOD models14,15 (and POD models15) of the stable

input-output dynamics. The square cavity flow configuration

studied in this section has thus illustrated the ability of the

frequential snapshots to build BPOD and POD ROMs of an

unstable flow system without separating the unstable and sta-

ble subspaces. This proved to be a valuable asset insofar as

we neither had to compute any global modes nor to perform

any projection onto the stable subspace.

V. CONCLUSION

In this paper, we have described how the use of frequen-

tial responses of a flow to a given actuator enables to com-

pute the basis of the most controllable modes (POD modes).

Analogously, the harmonic flow states yielding the maxi-

mum contribution to the sensor energy have been introduced

to compute the most and equally controllable and observable

modes: the balanced modes (BPOD modes). ROMs have

been designed by the projection of the full original system of

equations onto BPOD/POD modes computed from the so-

called frequency snapshots.

As a first step, the whole procedure has been carried out

on a stable linear system: the flow over a rounded backward-

facing step. The first example stands for a well-known noise

amplifier flow in the sense that small perturbations can be

strongly amplified through the shear layer. The computation

of the frequency snapshots highlighted the frequency selec-

tion process of the flow. In particular, an energy peak of the

flow response to harmonic actuation has been observed

nearby the frequency associated with the Kelvin-Helmholtz

instability. These frequential snapshots have then been used

to build the BPOD and POD models that proved to be effec-

tive in modeling the linear input-output behavior of the flow.

Both the impulse response and transfer function are recovered

by the ROMs and a better efficiency of BPOD models to do

so was observed as expected from the literature.

As a second step, we moved on to the case of a linear

unstable system. To assess and quantify the ability of our pro-

cedure to reduce unstable systems, we applied the same tech-

nique on a well-known oscillator system: the flow over a

square cavity. On the one hand, the resulting ROMs were

shown to capture the same unstable global modes as those of

the original system and, on the other hand, an accurate model-

ing of the stable dynamics has also been recovered by investi-

gating the stable transfer functions. Similarly, a superiority of

BPOD models over POD ones was noticed. Contrary to the

reference work on this flow configuration15 where the authors

made a partition to model the stable (using BPOD/POD

ROMs based on temporal snapshots) and unstable (using

global modes) subspaces separately, our model reduction

technique has proved to model efficiently at the same time

both dynamics.

In summary, we proved the possibility and efficiency of

frequential snapshots to yield BPOD and POD models that

are (1) identical to those computed from temporal snapshots

for stable systems and (2) operational for unstable systems

without separating the unstable and stable subspaces. There-

fore, this contribution on model reduction seems to be a

promising alternative tool to compute POD modes or to ap-

proximate balanced truncation. We hope that the present

contribution will somehow aid in the design of frequency-

based ROMs in view of building efficient closed-loop flow

controllers.

FIG. 16. (Color online) Transfer func-

tion of the full system stable part com-

pared to those of (a) BPOD and (b) POD

models.

FIG. 17. Relative norm of the error e1s as a

function of the size r of the ROMs for (a) the

BPOD and (b) the POD models. The limits from

which the ROMs exhibit eight unstable global

modes are depicted by dashed lines standing for

r¼ 15 and r¼ 82 respectively.
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APPENDIX A: FORMULATION OF THE
INCOMPRESSIBLE LINEARIZED NAVIER-STOKES
EQUATIONS AS A STANDARD STATE-SPACE SYSTEM

The design of reduced-order models requires to refor-

mulate the linearized Navier-Stokes equations into a stand-

ard state-space form. Yet, this is not trivial since the matrix

before the time derivative is not invertible because of incom-

pressibility. To this end, we proceed as in Barbagallo et al.15

We first multiply the momentum equation by A2Q
�1
1 ; which

yields, assuming that A2
_X1 ¼ 0, an expression for the pres-

sure in terms of the velocity field

X2 ¼ � A2Q
�1
1 A�2


 ��1
A2Q

�1
1 A1


 �
X1 þ A2B1cðtÞ

� �
: (A1)

This relation can be used to eliminate the explicit divergence

constraint and allows us to write the governing linearized

equations in the desired form

dX1

dt
¼ P1A1X1 þ P1Q1B1 cðtÞ; ðA2aÞ

mðtÞ ¼ C1X1; (A2b)

where

P1Q1 ¼ I� Q�1
1 A�2 A2Q

�1
1 A�2


 ��1
A2 (A3)

is the projection matrix onto the divergence-free space. It is

noteworthy that P1 is a Hermitian operator, so that we can

take advantage of the relation P�1 ¼ P1. By defining A¼P1

A1, B¼P1Q1B1, and C¼C1, we recover Eq. (5).

APPENDIX B: EXPRESSING THE FREQUENTIAL
SNAPSHOTS IN RELATION TO THE LINEARIZED
NAVIER-STOKES EQUATIONS

1. Direct snapshots

The direct flow states X̂1 involved in the snapshots

method are defined in Eqs. (10). Substituting A and B by

their expression calculated in Appendix A leads to

ðjxI� P1A1ÞX̂1 ¼ P1Q1B1: (B1)

If we introduce the pressure X̂2 associated to X̂1 by

X̂2 ¼ � A2Q
�1
1 A�2


 ��1
A2Q

�1
1 A1


 �
X̂1 þ A2B1

h i
; (B2)

we get

jxX̂1 � Q�1
1 A1X̂1 � Q�1

1 A�2X̂2 ¼ B1 (B3)

so that we recover Eq. (16)

jx
Q1 0

0 0

� �
� A1 A�2

A2 0

� �� �
X̂1

X̂2

� �
¼ Q1 0

0 0

� �
B1

0

� �
:

(B4)

The finite number of flow fields X̂1ðxiÞ at discrete pulsations

xi can be obtained by inverting this linear system and are

stacked as columns of the matrix X1. The above demonstration

shows that the controllability Gramian Gc, defined in Eq. (14),

can be thought of as the spatial correlation matrix for the har-

monic responses to harmonic forcings at the actuator location.

2. Adjoint snapshots

The adjoint flow states Ŷ1 involved in the snapshot

method are defined in Eqs. (10). In a similar manner, a sub-

stitution of the expressions of A and C calculated in Appen-

dix A leads to

ð�jxI� P1A
�
1ÞP1Q1Ŷ1 ¼ P1Q1 Q�1

1 C�1

 �

: (B5)

If we omit the incompressibility constraint P1Q1 on Ŷ1,

which is already applied through the evolution operator

ð�jxI� P1A
�
1Þ, we have

ð�jxI� P1A
�
1ÞŶ1 ¼ P1Q1 Q�1

1 C�1

 �

: (B6)

Similarly, if we introduce the adjoint pressure Ŷ2 associated

to Ŷ1 by

Ŷ2 ¼ � A2Q
�1
1 A�2


 ��1
A2Q

�1
1 A�1


 �
Ŷ1 þ A2Q

�1
1 C�1

h i
(B7)

we get

� jxŶ1 � Q�1
1 A�1Ŷ1 � Q�1

1 A�2Ŷ2 ¼ Q�1
1 C�1 (B8)

so that we recover Eq. (17)

�jx
Q1 0

0 0

� �
� A�1 A�2

A2 0

� �� �
Ŷ1

Ŷ2

� �
¼ C�1

0

� �
: (B9)

The finite number of flow fields Ŷ1ðxiÞ at discrete pulsations

xi can be obtained by inverting this linear system and are

stacked as columns of the matrix Y1. Analogously, The

observability Gramian Go can be thought of as the spatial

correlation matrix for the harmonic responses of the adjoint

system to harmonic forcings at the sensor location.

APPENDIX C: EIGENSPECTRUM OF POD MODELS

This appendix is devoted to showing an interesting ob-

servation on the eigenspectrum of POD models. We have

represented in Figure 18(a) a larger part of the eigenspectrum

corresponding to models of size r¼ 120, r¼ 140, and

r¼ 200 together with the spectrum of global eigenmodes

(taken from the work of Barbagallo et al.15). As detailed in

Sec. IV, the unstable eigenvalues of POD models tend to
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those of the full system. Here, we take a closer look at the

stable part of the eigenspectrum (a < 0). The global eigens-

pectrum, depicted by triangles, is characterized by eigenmo-

des organized in branches. We notice that each POD

eigenspectrum displays a branch of modes that tends to the

most unstable branch of the global eigenspectrum as the

model size r is increased.

Figure 18(b) represents the same global eigenspectrum

focused on the region �0:8 < a < 0:2 and that of a POD

model of size 200. It is strikingly noticed that the first unsta-

ble POD eigenvalues superimpose onto the first global

eigenmodes. Note that BPOD models do not yield the same

observation (not shown here). This result suggests that the

POD procedure somehow rebuilds the original spectrum of

the original full system.
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7M. Högberg, and D. S. Henningson, “Linear optimal control applied to

instabilities in spatially developing boundary layers,” J. Fluid Mech. 470,

151 (2002).
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