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The two-dimensional, incompressible flow over a rounded backward-facing step at
Reynolds number Re = 600 is characterized by a detachment of the flow close to
the step followed by a recirculation zone. Even though the flow is globally stable,
perturbations are amplified as they are convected along the shear layer, and the
presence of upstream random noise renders the flow unsteady, leading to a broadband
spectrum of excited frequencies. This paper is aimed at suppressing this unsteadiness
using a controller that converts a shear-stress measurement taken from a wall-mounted
sensor into a control law that is supplied to an actuator. A comprehensive study
of various components of closed-loop control design – covering sensor placement,
choice and influence of the cost functional, accuracy of the reduced-order model,
compensator stability and performance – shows that successful control of this flow
requires a judicious balance between estimation speed and estimation accuracy, and
between stability limits and performance requirements. The inherent amplification
behaviour of the flow can be reduced by an order of magnitude if the above-mentioned
constraints are observed. In particular, to achieve superior controller performance, the
estimation sensor should be placed upstream near the actuator to ensure sufficient
estimation speed. Also, if high-performance compensators are sought, a very accurate
reduced-order model is required, especially for the dynamics between the actuator and
the estimation sensor; otherwise, very minute errors even at low energies and high
frequencies may render the large-scale compensated linearized simulation unstable.
Finally, coupling the linear compensator to nonlinear simulations shows a gradual
deterioration in control performance as the amplitude of the noise increases.
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1. Introduction
Many industrial fluid devices are afflicted by undesirable flow behaviour – such

as unsteadiness, separation, instabilities and transition to turbulence – which limits
performance, endangers safe operation or is detrimental to structural components. Flow
control is quickly becoming a key technology in engineering design to overcome
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inherent limitations, to advance into unexplored parameter regimes, to extend safety
margins and to ensure operation under optimal conditions. A prototypical and much-
studied example is the compressible flow over a cavity, which is characterized by
instabilities that manifest themselves in a buffeting motion, in induced drag (Gharib
& Roshko 1987) and in intense noise emission (see Rossiter 1964). In the air intakes
of aircraft engines, separated flow can act as an amplifier for incoming perturbations,
causing unsteadiness, which in turn results in loss of performance and material fatigue.
Transitional and turbulent boundary layers have long attracted the attention of the
flow control community (see e.g. Joslin 1998; Kim 2003; Saric, Reed & White 2003;
Archambaud et al. 2008; Boiko, Dovgal & Hein 2008), mainly as a result of their
ubiquity in vehicle aerodynamics and their central role as the source of skin friction.
For all three examples, flow control techniques that effectively eliminate instabilities,
efficiently reduce noise amplification or successfully diminish drag are essential in
maintaining the desired flow conditions.

The design procedure of flow control laws critically depends on the nature of the
flow to be controlled. Oscillator-type flows, which are defined by a global instability
resulting in self-sustained oscillatory fluid behaviour, are more easily controlled, since
the flow is dominated by a limited number of structures of well-defined frequencies.
Sensitivity to noise is comparatively low, and the estimator and controller can simply
reconstruct the flow state from measurements and act upon it according to the
control objective. A second type of flow behaviour, referred to as noise amplifiers,
is substantially more challenging to control. This type of flow is globally stable but
is characterized by a strong propensity to amplify noise and a broadband spectrum
of responsive frequencies. These characteristics make the flow and the control
performance highly sensitive, not only to physical noise sources and uncertainties,
but also to the methodological approximations, modelling inaccuracies and truncation
errors that inevitably arise during estimator and control design. The propagation of
small perturbations, whether of physical or computational origin, is appropriately
tracked and quantified by frequency-based transfer functions, which reveal preferred
frequencies or confirm the successful reduction of the flow’s amplification potential.

Optimal flow control techniques have been widely applied for active control
purposes. In particular, the linear quadratic Gaussian (LQG) framework has been
adopted for the control of small-amplitude perturbations in oscillator and amplifier
flows. Examples of oscillator flows include, among others, supercritical flow over a
shallow or deep cavity (Åkervik et al. 2007; Barbagallo, Sipp & Schmid 2009), flow
over a shallow bump (Ehrenstein, Passaggia & Gallaire 2010) and flow past a flat
plate (Ahuja & Rowley 2010). In all cases, stabilization of the flow by feedback
control strategies could be accomplished. Amplifier flows are dominated by convective
and transient processes, and successful control is defined by a marked reduction of
the flow’s inherent amplification potential. Control of amplifier flows using LQG
techniques was first attempted for very idealized geometries (see e.g. Joshi, Speyer
& Kim 1997; Bewley & Liu 1998; Chevalier et al. 2007), namely, in simple, one-
dimensional configurations. For more complex and higher-dimensional flows, direct
application of the LQG framework becomes prohibitively expensive, and reduced-order
models have to be introduced for the practical design of the compensator. LQG-
based compensators using reduced-order models have been applied by Bagheri, Brandt
& Henningson (2009) to control the amplification of perturbations in a spatially
developing boundary layer and by Ilak & Rowley (2008) to control transitional
channel flow. In Bagheri & Henningson (2011), strong emphasis has been placed
on the model reduction technology; in particular, it has been demonstrated that the
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reduced-order model (ROM) had to capture accurately the input–output behaviour
between actuators and sensors to ensure a positive compensator performance (Kim
& Bewley 2007). Despite the first successful attempts at applying LQG-feedback
control to amplifier flows, many questions remain open about the design and practical
implementation of compensators for this type of flow. Owing to the flow’s tendency to
amplify perturbations transiently, sensitivity becomes the key concept in the design and
performance evaluation of compensators: sensitivity to sensor and actuator placement,
to the accuracy of the ROM and to nonlinear effects. Some of these issues have been
addressed using an idealized (parallel base flow) model problem in Ilak (2009); a
comprehensive analysis of closed-loop control for amplifier flows, however, is missing.

The goal of the present study is an identification of the various environmental and
procedural factors and the assessment of their influence on the performance of the
compensator for a specific amplifier flow: the case of a two-dimensional, laminar
flow over a rounded backward-facing step (see Blackburn, Barkley & Sherwin 2008;
Marquet et al. 2008; Dergham et al. 2011). This configuration is characterized by a
detachment of the flow close to the step, followed by a recirculation zone; even though
the flow is globally stable, perturbations are amplified as they are convected along
the shear layer. This is due to a Kelvin–Helmholtz type of instability, which creates
a convectively unstable region, extending approximately from the detachment to the
reattachment point. If upstream residual noise is present, for example white, Gaussian
noise, the flow will be unsteady, with a broadband spectrum in the bubble. Our
control objective consists in suppressing this unsteadiness using an optimal controller,
which converts a measurement signal obtained from a wall-mounted sensor into a
control law that is subsequently supplied to an actuator. We believe that the results
obtained for this specific configuration also hold, at least qualitatively, for other
convectively unstable flows, such as, for example, a supercritical boundary layer
developing over a flat plate subject to Tollmien–Schlichting instabilities. A discussion
about the similarities of and differences between these two configurations is postponed
to § 2.

The present study is structured as follows. After a brief description of the flow
configuration, its noise amplification behaviour and the basic principles of LQG
control and model reduction (§ 2), we start by considering the estimation problem
(§ 3) and address sensor placement and estimation speed. In § 4 the controller will
be introduced, performance limitations of the compensator will be discussed and the
influence of the choice of control objective will be assessed. Section 5 will present
the application of the LQG controller to linearized numerical simulations; specifically,
the sensitivity to model inaccuracies and its relation to stability margins for the
compensated system will be treated, based on both classical stability concepts and
worst-case optimization. In § 6 we apply linear control to a nonlinear simulation
and discuss the validity range of the linear compensator. A summary of results and
conclusions are given in § 7.

2. Configuration and mathematical model
2.1. Flow configuration and governing equations

We study the laminar and incompressible flow over a two-dimensional rounded
backward-facing step, which is sketched in figure 1, together with the geometric
measures, the base flow stream-function and the set-up of control inputs and sensor
outputs. Only a reduced part of the computational domain is shown. The step height h
and the inflow velocity U∞ are chosen as the characteristic length and velocity scales
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FIGURE 1. Sketch of the geometry for flow over a rounded backward-facing step, showing
the stream-function of the base flow at Re = 600 (dashed values refer to negative values).
The stream-function is set to zero at the lower boundary of the computational domain. The
upstream, downstream and top boundaries are respectively located at x = −20, x = 100 and
y = 20. A typical mesh yields n = 400 775 degrees of freedom from 88 181 triangles. The
positions of the input (B1,2) and output (C1,2,3,4,p) devices are also shown.

of the problem. The rounded part of the step consists of a circular arc extending
from (x = 0, y = 1) to (x = 2, y = 0). The flow enters the computational domain from
the left (at x = −20) with a constant streamwise velocity. A free-slip condition is
imposed on the upstream part of the lower boundary (−20 6 x 6 −2, y = 1), beyond
which a laminar boundary layer starts to develop; no-slip conditions are enforced
on the remaining lower boundary given by −2 6 x 6 100. On the top part of
the computational domain, at y = 20, a symmetry condition is implemented, and a
standard outflow condition is prescribed at the outlet (x = 100). The symmetry and
outflow boundary conditions have been placed far from the backward-facing step to
ensure negligible influence of the choice of boundary conditions on the inherent flow
dynamics.

The Reynolds number based on the step height and inflow velocity is chosen as
Re = 600 and held constant throughout our study. For this Reynolds number, the
flow separates at x ≈ 0.6 and reattaches at x ≈ 11, forming an elongated recirculation
bubble. The displacement thickness of the incoming boundary layer at x = 0 is equal
to δ∗ ≈ 0.082, which yields a Reynolds number based on the displacement thickness of
Reδ∗ ≈ 49.2. The base flow, a solution of the nonlinear steady Navier–Stokes equations,
is visualized by iso-contours of its stream-function in figure 1.

Flow over a rounded backward-facing step is a prototypical example for an amplifier
flow since small upstream perturbations may be selectively amplified in the shear
layer due to a Kelvin–Helmholtz instability (see next section for details). Characteristic
unsteadiness arises from low-level noise via a linear amplification mechanism, which
subsequently saturates nonlinearly once sufficiently high amplitudes have been reached.
It is the goal of this paper to devise and assess an active feedback control strategy
that decreases the convective amplification of random perturbations. We will consider
small-amplitude noise; the dynamics of the perturbations is thus linear, which justifies
using the Navier–Stokes equations linearized about the base flow as a mathematical
model. The governing equations are spatially discretized using finite elements of
Taylor–Hood type (P2–P2–P1) and implemented using the FreeFem++ software (see
Hecht et al. 2005). In matrix form, these read

Q
dX
dt
= AX, (2.1)

where X denotes the state vector containing the velocity and pressure fields, A
represents the Navier–Stokes operator linearized around the base flow (shown in
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FIGURE 2. (a) Optimal energy response of the linear system to a harmonic forcing
of frequency ω. (b) Optimal forcing visualized by contours of the streamwise velocity.
(c) Optimal response visualized by contours of the streamwise velocity.

figure 1) and Q stands for the mass matrix, which simultaneously defines the
perturbation kinetic energy according to E = X∗QX .

2.2. Noise amplification behaviour
For the chosen Reynolds number of Re = 600, the flow is globally stable and the
matrix A does not show any unstable eigenvalues. Yet, sustained unsteadiness may
arise from the continuous excitation of the flow by upstream noise. This noise
amplifier behaviour can be analysed and quantified in terms of the optimal harmonic
forcing and its response in the frequency domain (see Alizard, Cherubini & Robinet
2009; Sipp et al. 2010). For a given frequency ω, a periodic forcing of the form
Fω exp(iωt) yields a corresponding response Xω exp(iωt), where Xω is given by
Xω = (iωQ − A)−1 QFω. The optimal forcing is defined as the forcing Fω of unit
energy (i.e. F∗ωQFω = 1) that maximizes the energy of the response. The corresponding
response Xω is referred to as the optimal response; its energy X∗ωQXω is the optimal
energy gain due to external forcing at a prescribed frequency ω. We will use the
subscript ω to indicate quantities defined in the frequency domain.

In figure 2(a), the optimal energy gain is presented as a function of the forcing
frequency. The semi-logarithmic graph shows a parabolic curve, with the highest
response to forcing around a frequency of ω = 0.8. For frequencies above ω ≈ 2, the
energy gain decays monotonically. In figure 2(b,c), the spatial shapes of the optimal
forcing and response (real part only) taken at the highest energy gain are visualized by
contours of the streamwise component. In accordance with the convective nature of the
flow, we observe that the optimal forcing is concentrated upstream near the step, while
the associated response is located further downstream. Hence, a noise source situated
near the rounded step (mimicking an upstream, stochastic disturbance environment)
can efficiently trigger perturbations whose maximum amplitudes are attained near
x ≈ 12. Based on this result, we model the noise as a Gaussian-shaped momentum
forcing located at (x=−1, y= 1) with a width of 0.6. After discretization, this forcing
appears in form of the matrix B1 in the linear system

Q
dX
dt
= AX + QB1w(t), (2.2)

with w(t) describing the temporal behaviour of the noise. For the sake of simplicity,
the noise will be taken as white in time with zero mean 〈w〉 = 0 and variance 〈w2〉
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denoted by W2. We have chosen a compact source of disturbances located upstream
in accordance with the physical conditions of advection-dominated flows. Even though
an alternative global forcing by noise is conceivable, this particular set-up, besides
running counter to the principal physical mechanisms, would not be amenable to
effective flow control strategies owing to a poor sensing and estimation process. In
addition, we assume that a linear model is sufficient in describing the flow behaviour;
in this sense, we restrict ourselves to small-amplitude processes, as mentioned above.

In continuing to set up our flow control problem, an appropriate objective or cost
functional has to be specified. To this end, two quantities will be considered. The first
quantity consists of the shear stress measured at the wall and is computed following
mp = CpX =

∫ x=11.6
x=11 ∂yu′ dx. The placement of this sensor has been motivated by the

location of maximum response of the flow to harmonic excitation (see figure 2c).
For higher frequencies (ω > 2), the optimal response moves upstream towards the
detachment point and is no longer observable by the sensor Cp; for lower frequencies,
the spatial support of the optimal response extends both upstream and downstream
(with the most energetic region remaining near the reattachment point). Hence, sensor
Cp will detect all perturbation frequencies with ω 6 2. The second quantity of interest
is the total kinetic perturbation energy contained in the entire domain; it is given by
E = X∗QX . The control to be designed will aim at diminishing either mp or E. It is
interesting to note that, under random forcing, the two quantities of interest, mp and E,
display a frequency response strikingly similar to that given in figure 2(a); the spatial
structure of the stochastic response resembles that given in figure 2(c) (the reader is
referred to figure 9 for verification).

2.3. Linear quadratic Gaussian (LQG) control
A closed-loop control strategy is considered in order to weaken or suppress the
amplification of perturbations. In contrast to open-loop control strategies, this method
extracts information from the system via measurements, which is then processed to
apply real-time actuation. This technique allows flow manipulation with rather low
expended energy and permits the application and adaptation of control laws to a
variety of flow situations, provided the model is representative of and robust to
physical and parametric changes. The approach taken in our study is based on a
compensator designed within the linear quadratic Gaussian (LQG) control framework
(see Burl 1999). The actuator through which control efforts are exerted on the flow
consists of a body force acting on the vertical momentum component; the location,
shape and type of the actuator is summarized in the matrix B2 (see figure 1). The
control law u(t) that describes the temporal behaviour of the actuator is based on
real-time measurements of the flow from sensors, which extract shear stresses and
are located at various positions along the wall. The governing system of equations,
including the actuators and sensors, can be cast into the familiar state-space form

Q
dX
dt
= AX + QB1w+ QB2u, m= CX + g(t), (2.3)

where g(t) is a zero-mean measurement noise of variance G2, which contaminates
the measure m. The link between the measurement signal m and the actuation law
u is provided by the compensator. Figure 3 presents a sketch of a typical LQG
control set-up, including the system to be controlled as well as the two components
of the compensator: the estimator and the controller. The module labelled ‘Plant’
represents our fluid system whose flow characteristics we wish to modify; it is given
mathematically by (2.3). The plant depends on the initial condition X(t0), the noise
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FIGURE 3. Sketch of a typical LQG control set-up.

input w(t) and the control law u(t), and provides as an output the state vector X . A
measurement signal m can be extracted at all times from the state vector, which is then
passed to the compensator. In a first step, the estimator will reconstruct an estimated
state Ŷ(t) from the measurement m, which is, in a second step, used by the controller
to compute the control law u(t). More details about the design of the estimator and the
controller will be given below.

It is important to stress that the placement of the actuator and sensor is critical
for the success of closed-loop control. In our case, the actuator is positioned near
the separation point (see control input B2 in figure 1), which corresponds to the
location where the optimal forcing structures are most prominent, independent of the
frequency (see figure 2b, which illustrates the case for ω = 0.8). This placement
optimally exploits the sensitivity of the flow to external forcing and suggests that low-
amplitude control at this location may exert sufficient influence on the flow behaviour
to accomplish our control objective. In other words, the chosen actuator location
should ensure low control gains.

Analogously, the placement of the sensor requires care and thought. Commonly,
measurements are taken at locations where the flow feature we wish to suppress
is particularly prevalent. Recalling the spatial structure of the most amplified flow
response to optimal forcing (see figure 2c), this would suggest a sensor placement
downstream of the reattachment point near x ≈ 12. Nevertheless, we will demonstrate
that this particular choice does not yield an efficient and effective closed-loop control,
and we will methodically explore the estimator performance based on sensors placed
further upstream in the recirculation bubble (see figure 1). In particular, four discrete
sensor locations, denoted by C1,2,3,4, will be assessed; these are distinct from the
performance sensor Cp.

More generally, to ensure low control gains and a physically relevant control
objective, the actuator should be placed at the transition location from the stable
to the convectively unstable flow regime (branch I) and the performance sensor Cp at
the transition location from convectively unstable to the stable flow regime (branch II).
Indeed, in a convectively unstable flow, the instability is cumulative in the downstream
direction: branch I is the point where an action has largest effect on the perturbation,
while branch II is the point where the perturbation is strongest. The locations of
branches I and II usually depend on the frequency of the perturbation; in the present
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flow over a backward-facing step, however, branches I and II are located for all
frequencies near the flow separation and reattachment points (not shown here). Hence,
a single actuator and a single performance sensor (plus one estimation sensor) are
sufficient to stabilize the flow for all frequencies. In the case of a convectively unstable
boundary layer developing over a flat plate, the locations of branches I and II strongly
depend on the perturbation frequency. Hence, multiple input–output triplets (each
consisting of actuator, performance sensor and estimation sensor) are necessary, where
each triplet is designed to stabilize the flow in a bounded area in the downstream
direction and in a restricted frequency band.

2.4. Reduced-order model based on proper orthogonal decomposition
The design of the estimator and controller involves the numerical solution of two
Riccati equations for the Kalman and control gain, respectively. The numerical effort
is proportional to the dimension of the system matrix A, which makes the direct
solution of the Riccati equation excessively expensive or even impossible. It is thus
necessary and common practice to substitute the full system by an equivalent system
of considerably smaller dimensions and to compute the two gains based on this ROM
of the flow. A standard technique to arrive at a ROM of the flow uses a Galerkin
projection of the governing equations onto proper orthogonal decomposition (POD)
modes (see Sirovich 1987). This method proves to be efficient (see Bagheri et al.
2009; Barbagallo et al. 2009; Bagheri & Henningson 2011) in capturing the main
characteristics of the original system required for closed-loop control, namely the
dynamics between the inputs (given by B1 and B2) and the outputs (given by C1,2,3,4

and the control objectives E and Cp). The governing equation for the ROM is similar
to (2.3) and is given by

dX̂
dt
= ÂX̂ + B̂1w+ B̂2u, m= ĈX̂, (2.4)

where the superscript ‘hat’ indicates reduced quantities. The energy of the state E is

simply given by ‖X̂‖2 = X̂
∗
X̂ , since the projection basis is orthonormal with respect to

the energy inner product. The use of a ROM decreases the dimension of our system
from O(106) to ∼150 degrees of freedom and thus allows the application of standard
direct algorithms for LQG control design. The choice of POD modes as a projection
basis has essentially been motivated by the requirement for capturing the energy
output. A standard balanced-truncation technique (see Bagheri et al. 2009; Barbagallo
et al. 2009; Ahuja & Rowley 2010) is not able to cope with large-dimensional outputs,
unless the ‘output projection technique’ is used (Rowley 2005); this technique however
is beyond the scope of this study. Accounting for disturbances in the entire flow
domain would require a ROM capturing the entire input space. Since our goal is to
target the kinetic energy of the perturbations, we need to represent the full output
space accurately. This choice prohibits the consideration of disturbances in the entire
flow domain, since standard model-reduction techniques are not capable of dealing
with both large-scale input and large-scale output spaces. A comparison between the
transfer function from u to m1 of the linearized direct numerical simulation (DNS)
and the ROM based on 150 POD modes is displayed in figure 4(a). It shows
excellent agreement for frequencies in the range 0 6 ω 6 4. For larger frequencies,
small discrepancies appear; the absolute error, however, remains below 3 × 10−3. It is
noteworthy that the maximum absolute error occurs at a frequency of ω ≈ 1, rather
than at higher frequencies. In appendix A, we show that all transfer functions from
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FIGURE 4. (Colour online available at journals.cambridge.org/flm) (a) Transfer functions
from u to m1 of the linearized DNS and the ROM based on 150 POD modes versus frequency
ω. The absolute error between the two transfer functions is included as the dashed line.
(b) Same for a ROM based on 550 POD modes.

w and u to m1,2,3,4,p and E(t) can be captured with an H2 error of less than 1 %.
This error seems quite small, which, at first glance, should ensure that a study of
compensated systems with the ‘ROM as a plant’ is representative of compensated
systems with the ‘linearized DNS as a plant’. This point of view is taken in § 3 for
the estimation problem and in § 4 for the complete estimation–control problem. The
above-mentioned error of 1 % is nonetheless appreciable, and § 5 is thus devoted to the
question whether this 1 % error between the linearized simulation and the POD model
is sufficiently small to guarantee in all cases the equivalence between a ROM-based
and a linearized DNS-based study of the compensated system. In fact, one of the
objectives of the present paper is to assess quantitatively the performance robustness
of the compensator. Such issues become even more pertinent under more realistic
conditions (e.g. in experimental realizations), as errors inevitably corrupt the quality of
a ROM. It is essential to understand the minimum requirements on the quality of the
ROM for acceptable or required control performance; it is equally essential to know
how the compensated system will fail if these requirements are not met. In addition,
should specific inputs and/or outputs be more accurately captured than others? In what
follows we will try to address some of these points.

2.5. Validation of the reduced-order model
Since the objective of this paper is a study of performance robustness with respect
to sensor placement, signal-to-noise ratios and control-cost parameters – all of which
is accomplished based on a ROM – it is important to eliminate influences stemming
from the truncation of the expansion basis for the underlying ROM. To this end,
we have computed a ROM model using 550, rather than 150, POD modes. This
extended model is able to capture accurately the exact input–output behaviour beyond
the above-mentioned frequency of ω ≈ 4 with an absolute error below 10−3 for ω > 3.
The transfer function from u to m1 for this extended model is shown in figure 4(b).
Higher frequencies are more accurately represented, compared to the 150-mode model,
with a reduced absolute error. Each of the performance analyses that follow in the
subsequent sections of this paper (with the exception of the internal stability margins
in figure 14; the internal stability margins have only been recomputed for specific

http://journals.cambridge.org/flm
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parameters, cases 1–4, see below) have been recomputed to ensure results that are
independent of the ROM’s truncation error and to confirm the conclusions drawn in
the text. This exercise proved that our working model (based on 150 POD modes,
as described above) is more than adequate to yield converged results and to provide
confidence in our conclusions.

3. Estimation and sensor placement
As a first step of the full control design and performance evaluation process, we

concentrate on the estimator, in particular its performance with respect to the location
of the sensors. We would like to reiterate that our analysis is based on the ROM
introduced in the previous section.

3.1. Presentation of the estimator
In general, the estimator’s task is the approximate reconstruction of the full state
vector using only limited information from the measurement. This approximate state
vector will then be used by the controller to determine a control strategy that
accomplishes our objective. The estimated state Ŷ is assumed to satisfy a set of
equations similar to that governing the original system (2.4). We have

dŶ
dt
= ÂŶ + B̂2u(t)− L̂(m− ĈŶ), (3.1)

where the original noise term B̂1w(t) has been replaced by the forcing term
−L̂(m − ĈŶ). The latter term represents the difference between the true measurement
signal m(t) = ĈX̂ and the estimated measurement signal ĈŶ and is applied as a
forcing term premultiplied by L̂. This term is to drive the estimated state Ŷ towards
the true state X̂ . In the forcing term, the so-called Kalman gain L̂ can be computed
from an optimization problem in which the cost functional is taken as the error
between the full and estimated states, i.e. Ẑ = X̂ − Ŷ , and is subsequently minimized.
The resulting optimality condition yields a Riccati equation, from which the Kalman
gain L̂ follows (see Burl 1999). Commonly, the energy of the estimation error is
formulated in the time domain; it will prove advantageous in our case, though, to
recast the energy in the frequency domain. Using Parseval’s theorem we obtain for the
objective functional

Z̄=
∫ ∞
−∞
‖Ẑω‖2

dω, (3.2)

where Ẑω denotes the Fourier transform of the error Ẑ. Two sources of noise – both
assumed as white in time – are taken into account in the derivation and solution of
the Riccati equation: a plant noise w(t) of variance W2 driving the dynamics of the
original system (2.4) and a measurement noise g(t) with variance G2 contaminating
the measurement m(t). The ratio of the two standard deviations, i.e. G/W, can be
taken as a parameter that governs the speed of the estimation process, but can also
be interpreted as the noise-to-signal ratio of the sensor. For example, considering a
constant standard deviation W of the plant noise, the parameter G/W represents a
quality measure of the sensor. Large values of G/W indicate that the measurement
noise g(t) is too high to ensure a correct signal; the corresponding Kalman gain L̂
tends to zero. Consequently, the forcing term in (3.1) has a negligible effect on the
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system, which, in turn, leads to a poorly performing estimator. This parameter regime
is referred to as the small-gain limit (SGL). Contrary to the small-gain limit, for
G/W � 1 the corruption of the measurement signal by noise is low compared to the
stochasticity arising from the system itself. As a consequence, the estimation process
becomes highly effective owing to the substantial Kalman gains. This parameter
regime, referred to as the large-gain limit (LGL), comprises the most performing
estimators for a given configuration.

By construction, the performance of the estimator crucially depends on details
related to the measurement signal, and the type of sensor (in terms of its noise-to-
signal ratio) as well as its location have to be chosen judiciously if overall success of
the closed-loop control effort is to be expected. In what follows, we will consider four
sensors Ĉ1,2,3,4 that are identical in type but placed at four different positions within
the recirculation bubble, and assess their capability of efficiently estimating the flow
state.

3.2. Performance of the estimator

In this section, we further elaborate on estimating the flow state X̂ governed by (2.4).
The estimation problem is decoupled from the control problem (see Burl 1999). For
this reason, we can set the control law to zero (u(t) = 0) without loss of generality
and continue our study of the estimation problem without actuation. The system is
driven by white noise represented by w(t); but, owing to the linearity of (2.4), the
performance of the estimator can equivalently be studied by considering harmonic
forcings w(t) = exp(iωt) of a given frequency ω. It is then convenient to reformulate
the coupled plant–estimator system in the frequency domain and state the governing
equations for the harmonic response as(

X̂ω

Ŷω

)
=
(

iωI − Â 0̂

L̂Ĉ iωI − (Â+ L̂Ĉ)

)−1(
B̂1

0̂

)
, (3.3)

where, as before, the subscript ω indicates variables defined in the frequency domain.
The estimation error in frequency space is given as Ẑω = X̂ω − Ŷω.

In figure 5(a) the frequency dependence of the estimation error ‖Ẑω‖2
is displayed

for the shear-stress sensor placed at C1 (see figure 1) and for selected values of
the noise-to-signal parameter G/W. For comparison, the norm of the state vector

‖X̂ω‖2
, which is similar to figure 2(a), is included as a dashed line. In the small-gain

limit (red line), the estimator, as expected, does not succeed in identifying the state,
producing an error as large as the norm of the original state. As the parameter G/W
decreases though, the estimation process improves due to a less contaminated input
from the sensors, and the estimation error is reduced – mainly at frequencies where
the system reacts strongly to external excitations. As the parameter G/W approaches
the large-gain limit (blue lines), the error curve eventually converges to the lowest
possible value. This curve then defines the best attainable performance for sensor Ĉ1.

This general behaviour is observable for each of the four sensors (not shown here).
The final errors in the large-gain limit, however, are not identical for all sensors: the
best performance is achieved by sensor Ĉ1. As the location of the sensor is moved
further downstream in the separation bubble (considering successively the sensors Ĉ1,
Ĉ2, Ĉ3 and Ĉ4), the frequencies that are naturally amplified by the system are less well
predicted.
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FIGURE 5. Performance of the estimator versus frequency using four different sensors and
selected values of the estimation (noise-to-signal) parameter G/W. (a) Sensor Ĉ1; normalized
performance of the estimator, integrated over all frequencies, versus the estimation parameter
G/W for four different sensor locations. (b) Measuring shear stress.

An instructive way of assessing the performance of an estimator over all frequencies
is to directly compute the cost functional Z̄ (see (3.2)) normalized by the energy of the

state. We thus introduce
√
Z̄/Ē0, with Ē0 =

∫∞
−∞ ‖X̂ω‖2

dω and X̂ω = (iωI − Â)
−1

B̂1.

When this quantity is close to 1, the estimation process has failed with a 100 %
estimation error; the smaller the value, the better performing the estimator. This
quantity is displayed in figure 5(b) versus the estimation parameter G/W for each
of the four sensors. The red curve represents the estimator performance based
on sensor Ĉ1. For this sensor location and for noise-to-signal ratios above 1, the
sensor noise prohibits a correct estimation, resulting in an estimation error of 100 %.
As the noise-to-signal ratio diminishes further, the performance of the estimator
progressively increases until it reaches the large-gain limit for values of G/W less
than approximately 10−2. Below this value of G/W, the estimator performs at its
optimum. Similar behaviour can be observed for the remaining sensor locations given
by Ĉ2, Ĉ3 and Ĉ4: the small-gain limit regime is clearly detectable at high values of
G/W. However, the exact values for which the estimator reaches the large-gain limit
become less sharply defined as the sensor location is moved further downstream in
the separation bubble. Comparing the performance of estimators based on different
sensors, we conclude, in agreement with figure 5, that the performance in the large-
gain limit is best for the sensor Ĉ1 and decreases as the sensor is moved further
downstream. It is surprising, though, that the estimator based on Ĉ4, which performs
worst in the large-gain limit, shows better performance at high values of the noise-to-
signal ratio G/W. For example, if we consider the value G/W = 100, the estimator
based on Ĉ4 displays a relative error of 20 % while the estimator based on Ĉ1 still
shows an error of 100 %. If a constant noise level of the system-generated signal
is assumed (W = const.), this implies that the estimator based on Ĉ4 can cope with
higher levels of measurement noise than the estimator based on Ĉ1. In practice, this
means that lower-quality sensors can be used as long as they are placed further
downstream; this point will be discussed further in the next section.
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Sensor W ′/W G/W|SGL G/W|MGL G/W ′|SGL G/W ′|MGL

1 0.14 1.25 0.21 8.9 1.5
2 0.31 6.4 1 10.5 1.64
3 1.87 21 3.5 11.2 1.87
4 4 52 7 13 1.75

TABLE 1. Estimation parameters G/W and true noise-to-signal ratios G/W ′ for the four
sensors Ĉ1,2,3,4 in the small-gain limit (SGL) and medium-gain limit (MGL). The critical
values for the small-gain limit are based on

√
Z̄/Ē0 = 0.95; the critical values for the

medium-gain limit are based on
√

Z̄/Ē0 = 0.5. Values for W ′/W may be obtained by
inspection of the impulse responses (see figure 7).

It seems fitting to mention here that, although the term G/W parametrizes the
performance quantities via the governing equations, a more intuitive and physically
relevant quantity is the ratio of the sensor noise variance G to a measure of the noise
covariance localized near the sensor location. Denoting the actual amplitude of the
signal detected by the sensor by W ′, we can define the true noise-to-signal ratio G/W ′.
Values for all four sensors are presented in the second column of table 1. We proceed
by introducing the small-gain limit (SGL) at a threshold value of

√
Z̄/Ē0 = 0.95 and

a medium-gain limit (MGL) at a threshold value of
√
Z̄/Ē0 = 0.5 and determine, for

all four sensors, critical values of the true noise-to-signal ratio G/W ′ for the estimation
process using G/W ′ = (G/W)/(W ′/W). Values for W ′/W can be determined by
analysing the maximum measurement amplitudes m from a simulation starting with
an impulse at B1 (see figure 7 for example). Referring back to figure 5(b) for results
on sensor Ĉ1, we observe that estimation becomes effective for G/W < 1.25, which
corresponds to G/W ′ < 8.9. Analogous results for the other sensors are reported in
table 1. It appears that the estimation process for each of the four sensors starts
being efficient for values of the true noise-to-signal ratio G/W ′ ≈ 10, i.e. when the
magnitude of the signal from the plant (measured by W ′) is 10 times smaller than
the noise intrinsic to the sensor (measured by G). If G/W ′ is of order one (see sixth
column of table 1), the estimation process performs significantly better: the estimation
performance parameter in figure 5(b) has reached the mean value between the small-
gain limit performance (unity for all sensors) and the large-gain limit performance (e.g.
0.02 for sensor Ĉ1). Optimal performance is obtained for true noise-to-signal ratios
G/W ′ of the order of 10−2.

To conclude, the estimation errors are rather small (<10−1) for all sensors in the
large-gain limit. Yet, the estimator based on Ĉ1 is most efficient, with a performance
measure of 2× 10−2, while the estimator based on Ĉ4 only reaches a value of 10−1 in
the large-gain limit. At first glance, this difference in performance may seem small and
insignificant, but it will be shown below (§ 4) that it nonetheless has a strong influence
on the efficiency of the compensator. But first, the next section will offer a physical
explanation for the observed loss of estimation performance by analysing the above
results in the time domain rather than the frequency domain.

3.3. Interpretation in the time domain
Even though a formulation of the estimation problem in the frequency domain is
the proper choice for designing closed-loop control strategies for open flows, it
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FIGURE 6. Temporal evolution of the energy of the error vector ‖Ẑ‖2
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nevertheless remains challenging to attach physical meaning to the frequency-based
results; an interpretation of our findings in the time domain seems more intuitive.
The main result – the estimator’s performance deteriorates as the sensor is gradually
moved from the upstream Ĉ1 to the downstream Ĉ4 position – suggests that the travel
time of a perturbation, before it is detected by the sensor, plays a critical role. To
validate this proposition, we start by rewriting the estimation performance parameter in

the time domain using Parseval’s theorem. We obtain
∫∞
−∞ ‖Ẑω‖

2
dω = 2π

∫∞
0 ‖Ẑ‖

2
dt,

with Ẑ= X̂ − Ŷ , and X̂ and Ŷ satisfying the following system of equations in the time
domain:

d
dt

(
X̂
Ŷ

)
=
(

Â 0̂
−L̂Ĉ Â+ L̂Ĉ

)(
X̂
Ŷ

)
,

(
X̂
Ŷ

)
t=0

=
(

B̂1

0̂

)
. (3.4)

The above system determines an impulse response triggered by the noise term B̂1:
the initial condition X̂ t=0 = B̂1 is advected downstream while being amplified along

the shear layer of the recirculation bubble. The energy ‖X̂‖2
of this perturbation is

displayed versus time by the thick grey line in figure 6. In addition to the time
axis, a second axis is displayed at the top of the figure where the location of
the advected wave packet, evaluated by the energy-weighted x centroid xc defined
as xc(t) =

∫
xk′(x, y, t) dx dy /

∫
k′(x, y, t) dx dy with k′(x, y, t) = (u′ 2 + v′ 2

)/2 as the
pointwise kinetic energy at time t, is shown. The initial condition is associated with

the non-zero state energy ‖X̂‖2 = ‖B̂1‖2
at t = 0. The energy then decreases for

0 < t . 1.5 as the perturbation traverses the stable region of the flow between the
noise location and the separation point. Beyond the separation point of the shear
layer, the wave packet enters the convectively unstable region and its energy grows
until the perturbation reaches the attachment point. At time t ≈ 19 the energy reaches
a maximum; the corresponding energy-weighted x centroid xc is located at x ≈ 9.5.
The perturbation continues through a convectively stable region and the state energy
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FIGURE 7. (Colour online) Measured impulse response at the four sensor locations, Ĉ1,4 (top
to bottom). The solid grey (blue online) vertical lines correspond to the times when the curves

in figure 6 deviate from ‖X̂‖2
. The solid black vertical lines indicate the times when the

energy-based x centroid of the wave packet xc reaches the sensor. The dashed black vertical
lines give the times when xc ± σ reaches the sensor, with σ denoting the standard deviation of
the wave packet.

decreases accordingly. During this advective process, the estimator tries, in real time,
to reconstruct the actual state from the information provided by one sensor, and
the estimation performance parameter is given by the integral in time of the actual
estimation error Ẑ. In the following analysis, all estimators (Ĉ1 to Ĉ4) will operate
at their respective large-gain limit, which ensures the best attainable performance for
each estimator.

In figure 6 the thin solid lines display the energy of the estimation error ‖Ẑ‖2

as a function of time for all four sensors. The red curve traces the estimation error
associated with sensor Ĉ1. For short times (0 < t . 3), the estimation error energy is
comparable to the state energy, indicating a relative estimation error of 100 %. Starting
at t ≈ 3, the error drops abruptly by one order of magnitude before a more gradual
decrease sets in for t ' 6. The estimator becomes effective as soon as the error curve
clearly detaches from the state energy curve (thick grey solid line); the state is hence
well estimated beyond t ≈ 4 using sensor Ĉ1. The estimation error curves (green,
blue and black curves) for the remaining sensors Ĉ2,3,4 display a similar behaviour:
a relative estimation error of 100 % for early times, followed by a pronounced drop
after a critical time and finally a gradual decay. The abrupt decline in the estimation
error energy, however, occurs considerably later than for sensor Ĉ1, and this delay
increases steadily as the sensor location is moved further downstream. Nevertheless, in
all cases the estimation error ultimately decreases, and the flow state appears to be
well estimated for large times. We thus conclude that the principal difference between
the estimators is the time at which they start to become effective: sensor Ĉ1, located
furthest upstream, yields the earliest accurate estimates of the state, followed by Ĉ2, Ĉ3

and finally Ĉ4.

More insight is gained by displaying the measurements from the different sensors
for the above impulse-response simulation (see figure 7). For sensor Ĉ1 (figure 7a)
we observe a quiet phase (0 < t . 4), after which a sinusoidal signal, the footprint
of the wave packet travelling downstream in the shear layer above the sensor, is
detected. The measurement returns to zero for t ' 16. Similar features can be observed
for the other three sensors and in particular for sensor Ĉ4 (figure 7b). However, the
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time of first detection is delayed and the amplitude of the signal is substantially
increased (by nearly 40 times between Ĉ1 and Ĉ4) as we move the sensor location
further downstream. The time delay in detecting the wave packet is closely linked
to the overall performance of the four estimators: early detection yields better results.
The detection times in figure 7 (blue vertical bars) correspond to the critical times
in figure 6. After the wave packet has been captured by the sensor, the estimation
proceeds rapidly due to the large Kalman gains (large-gain limit). If noise is generated
at B̂1, the Ĉ4 estimator, for example, is able to identify the associated response in the
region x > 5 but is incapable of detecting any response in the region −1 < x < 5.
The performance of the estimator is thus determined less by the quality of the
reconstructed state – all energy curves in figure 6 tend to zero – than by its reaction
time, which translates into a spatial range where state responses to noise are detectable.
It is this distinction that will have a marked impact on the performance of closed-loop
control (see § 4) and will reveal the effectiveness of seemingly performing estimators
when incorporated into a compensator.

Larger amplitudes are detected at sensors located further downstream, which stems
from the amplification of the wave packet due to a convective instability along the
shear layer of the separation bubble; the four sensors Ĉ1,2,3,4 capture the wave packet
at various stages of this instability. This difference in amplitude also explains some
features observed in figure 5(b). Comparing the curves associated with the different
sensors Ĉ1,2,3,4, we note that the estimation process becomes effective for different
values of the noise-to-signal ratio G/W. For example, sensor Ĉ1 starts to perform well
for G/W < 1.25, while sensor Ĉ4 only requires G/W < 52, which leads us to conclude
that higher-quality sensors are required when one plans to place them further upstream
where signals are generally weaker.

In summary, two competing mechanisms have been isolated in the estimation
process for flow over a backward-facing step: (i) for an effective estimator, the
sensor has to be located sufficiently upstream to allow a rapid identification of
the perturbation; and (ii) on the other hand, the noise-to-signal ratio G/W has to
be sufficiently small to enable an accurate estimate, thus favouring or forcing the
placement of noisy sensors further downstream where the signal amplitudes are higher.
In short, a balance between speed and accuracy of the estimation process has to be
struck. Whereas the upstream placement of the sensors runs somewhat counter to the
intuitive placement of the sensor near the reattachment line, it will be shown that,
for our prototypical configuration, the speed of estimation appears more critical for a
successful compensator performance than the capture of highly accurate measurements.

4. Closed-loop control based on reduced-order model

After our analysis of the estimator and its performance, we now direct our attention
to the complete compensator. After a brief presentation of the controller and its design
steps, we investigate the performance of the compensator built on the four sensors
Ĉ1,2,3,4. Two objective functionals for the controller will be studied: (i) the square of
the measurement based on Ĉp and integrated over time; and (ii) the time integral of
the entire perturbation energy. Within this section, the plant is modelled by the ROM
introduced in § 2.
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4.1. Presentation of the controller

We will aim at suppressing perturbations in our fluid system by employing an optimal
control strategy, which will be designed to minimize a predefined cost functional. In
mathematical terms, a control law of the form u(t) = K̂ X̂ will be assumed, where
the control gain K̂ arises from the solution of a Riccati equation (see Burl 1999).
Traditionally, the cost functional is related to a quantity measuring the energy of the
state, but also takes into account the control effort in terms of its expended energy.

In our study, two measures of the state will be considered in the minimization
process: the energy contained in the measurement extracted at location Ĉp (see
figure 1), yielding a cost functional of the form

Jm =
∫ ∞

0
(X̂
∗
Ĉ
∗
pĈpX̂ + l2u2) dt, (4.1)

or the perturbation energy contained in the entire domain, leading to a cost functional
of the form

Je =
∫ ∞

0
(X̂
∗
X̂ + l2u2) dt. (4.2)

The parameter l appears in either choice and is referred to as the cost of control,
as it quantifies the user-specified weighting of the control energy compared to the
quantity to be minimized. Similar to the estimator, a small-gain limit (respectively,
large-gain limit) parameter regime exists where the controller exerts nearly no action
(respectively, maximum action) on the flow. Invoking the separation principle (see
Burl 1999), the controller design can be carried out independently of the estimator
design.

The performance assessment of the compensator will follow the frequency-based
framework outlined in §§ 2 and 3. Considering the state-space system (2.4) driven
by a harmonic excitation w(t) = exp(iωt), the response of the compensated system
reads (

X̂ω

Ŷω

)
=
(

iωI − Â −B̂2K̂

L̂Ĉ iωI − (Â+ B̂2K̂ + L̂Ĉ)

)−1(
B̂1

0̂

)
. (4.3)

The above equation will form the basis for our performance analysis of the
compensated system, where we will focus on the influence of controllers designed
with Jm or Je as well as on the impact of the control cost l and the noise-to-signal
ratio G/W.

4.2. Performance of the compensator using a cost functional based on the measurement

We start by considering a compensator whose controller has been designed using the
cost functional Jm, i.e. the state is measured by the energy output of the sensor Ĉp and
the resulting controller aims at minimizing the energy of the measurement mp = ĈpX̂ .

4.2.1. Effect on the perturbation measure mp

Figure 8(a,b) shows the performance of the compensator designed to minimize
the measurement using, respectively, sensors Ĉ1 and Ĉ4 for the estimator. Results
related to sensors Ĉ2 and Ĉ3 display intermediate results and are not shown here. The
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FIGURE 8. Contours of the performance measures Pm and Pe as a function of noise-to-signal
ratio G/W and control cost parameter l: (a) Pm|cf :m using estimation sensor Ĉ1; (b) Pm|cf :m
using Ĉ4; (c) Pe|cf :m using Ĉ1; and (d) Pe|cf :e using Ĉ1.

measurement-based performance Pm of the compensator is defined as

Pm =


∫ +∞
−∞
|ĈpX̂ω|2 dω

m̄2
0


1/2

, (4.4)

where X̂ω is given by (4.3) and m̄2
0 is the measurement energy related to the

uncontrolled case. Each plot shows iso-contours of Pm in the (G/W, l)-plane. Contours
with ‘hot’ colours (red) indicate parameter combinations where the control has
been ineffective in reducing the measurement energy; contours with ‘cold’ colours
(blue) point to values of (G/W, l) where the perturbation measure has been reduced
successfully. The convergence of the performance Pm towards one (ineffective closed-
loop control) is common to all sensor configurations as either the control cost l
or the noise-to-signal ratio G/W exceeds a critical value. This parameter regime
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Case l G/W Pm|cf :m Pe|cf :m Pm|cf :e Pe|cf :e

1 103 101 1.000 1.000 1.000 1.000
2 101 10−1 0.566 0.574 0.784 0.707
3 100 10−2 0.135 0.254 0.292 0.157
4 10−3 10−4 0.026 1.084 0.037 0.005

TABLE 2. Performance measures based on measurement energy (subscript m) or global
perturbation energy (subscript e). The compensator has been designed using a cost
functional based on measurement energy (subscript cf : m) or on global perturbation energy
(subscript cf : e). Four selected cases, ranging from the small-gain limit to the large-gain
limit, are presented.

corresponds to small-gain limit situations where either the control gain K̂ or the
Kalman gain L̂ approach zero. For small noise-to-signal ratios G/W and small control
parameters l (inexpensive control), the estimator provides an accurate approximation
of the state, which is subsequently multiplied by a non-zero control gain to obtain
a positive action on the perturbation. As a result, the performance measure Pm is
rather small in this parameter regime since both the estimator and the controller reach
their large-gain limit and behave at their best. The compensator based on sensor Ĉ1

is, by a considerable margin, the most efficient, with a performance parameter Pm

equal to 0.026 in the large-gain limit; this means that only 2.6 % of the uncontrolled
measurement energy remains after control is applied. As the sensor location for the
estimator is moved further downstream, though, the performance parameter Pm rises
substantially in the large-gain region: 17, 36 or 71 % of the uncontrolled measurement
energy could not be removed by the compensator using sensors Ĉ2, Ĉ3 or Ĉ4,

respectively. This exercise clearly demonstrates that an actuator placed near the edge
of the step requires a sensor located in its vicinity, if satisfactory performance of the
compensator is to be expected. In what follows, we will concentrate on sensor Ĉ1 and
further probe its performance behaviour and limitations.

More physical insight into the compensated system can be gained by computing
the transfer function between the noise w and the performance measurement mp.

Four cases, labelled accordingly in figure 8(a), are analysed in detail: case 1 is
representative of an ineffective compensator in the small-gain limit, both cases 2
and 3 characterize a system with average performance, while case 4 corresponds to
a compensator operating in the large-gain limit. As we shall see later, case 4 has
been included to probe the edge of performance robustness and the characteristics
of its breakdown beyond this limit. The governing parameters, i.e. the noise-to-signal
ratio and control cost, for theses cases are summarized in table 2 (second and third
columns) together with values of various performance measures.

In figure 9(a) the magnitude of the transfer function from w(t) to mp(t) for each
of the four cases is displayed, and results pertaining to the uncontrolled system are
overlaid in black symbols. As expected, the compensator operating in the small-gain
limit (case 1, shown in red) does not act on the flow and the transfer function
is identical to the uncontrolled one. By progressively reducing the noise-to-signal
ratio and the control parameter (light blue and dark blue curves), the most amplified
frequencies are considerably reduced and the compensator becomes effective over
a wider range of frequencies, even though frequencies above ω ≈ 1.5 are slightly
more amplified compared to the uncontrolled case. This tendency continues until the
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FIGURE 9. (a) Magnitude of the transfer function |mpw| for four different (G/W, l) parameter
settings, as well as the uncontrolled case. (b) Transfer function between noise and global
energy for the same four parameter settings. The full-state control (FSC) transfer function has
been obtained for l= 10−3 (large-gain limit).

large-gain limit (in green) is reached: the low frequencies (ω < 2), which would be
naturally amplified by the uncontrolled system, have been successfully suppressed,
which explains the very good performance of the compensator with Pm = 0.026 (see
table 2, fourth column).

The results above confirm the successful manipulation of the inherent amplification
behaviour (see figure 2a) of the uncontrolled flow: the pronounced response to low
frequencies has been strongly reduced by the compensator.

4.2.2. Response in the frequency domain: effect on the perturbation energy
Even though the controller is designed based on the measurement mp only, the

performance of the compensator can also be evaluated by the reduction of the
perturbation energy in the entire domain. This is possible in the present case since
our ROM is based on POD modes, and therefore accurately captures the energy of the
original system. This point has particular implications for experimental control set-ups
where reduced-order models are typically obtained by identification techniques based
on input and output data. By construction, such models cannot express or capture state
information, and the question arises whether targeting the measurement energy in the
cost functional produces commensurate reductions in the entire perturbation energy.
While the control gain is still based on the measurement-based cost functional Jm, we
therefore evaluate the global energy performance measure

Pe =

∫ +∞
−∞
‖X̂ω‖2

dω

Ē0
, (4.5)

with X̂ω from (4.3) and Ē0 as the energy based on the uncontrolled system. The ratio
Pe of the perturbation energy for the compensated case to the perturbation energy for
the uncontrolled case is depicted in the (G/W, l)-plane in figure 8(c). This plot shows
similar characteristics to figure 8(a) but also displays important differences. For large
values of G/W and l (the small-gain limit for estimator and controller), the control
action is negligible and no reduction in the perturbation energy is achieved (Pe = 1).
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For moderate estimation and control cost parameters, the performance parameter Pe

decreases, and it appears that a reduction in measurement energy (measured by Pm)
brings about a proportional reduction in the overall perturbation energy. However, as
the large-gain limit is approached (case 4), the value of Pe increases again, even above
one, indicating that the perturbation energy of the controlled case exceeds the energy
of the uncontrolled case. The measurement energy, however, is efficiently reduced, as
by design.

As before, the transfer function between the noise and the energy in the domain

‖X̂ω‖2
provides more details of the observed behaviour (see figure 9b). Case 1 (in

red) represents the small-gain limit, and the transfer function coincides with that for
the uncontrolled flow since no control action is exerted on the flow. As G/W and l
are reduced (light blue curve), the dominant, inherently amplified frequencies around
ω = 1 are reduced by the compensator but higher frequencies appear near ω = 1.8.
Nonetheless, the energy in the entire domain diminishes (Pe = 0.458) – see values in
table 2 (fifth column). This trend continues as the governing parameters are further
decreased (dark blue curve). Finally, in the large-gain limit (green curve), the dominant
frequencies of the uncontrolled system (ω ≈ 1) have been reduced by four decades,
while the energy in higher frequencies (ω > 2) has been amplified by four orders of
magnitude. This amplification outweighs the control effort on the lower frequencies,
thereby leading to an increase in the overall energy of the system (Pe = 1.085) and
a failure of the compensator when measured in the global energy norm. The reason
for this behaviour may stem from the location of the spatial support of the optimal
response at high frequencies. As mentioned in § 2.2, this support is upstream of
sensor Cp for ω > 2. Hence, mp cannot capture the naturally amplified perturbations
(the optimal response) in this frequency range. This may explain the failure of the
compensator to stabilize the energy in high frequencies, since the objective functional
of the compensator is precisely the measurement energy based on mp.

4.3. Performance of the compensator using a cost functional based on the energy

We conclude by basing the controller design on the cost functional Je and by directly
targeting the perturbation energy in the entire domain. In figure 8(d), we show in the
(G/W, l)-plane the performance parameter Pe. We observe that in the large-gain limit
(small values of G/W and l), the compensator now efficiently reduces the perturbation
energy Pe = 0.005. From table 2 (column 6), we also note that the perturbation
measurement is significantly reduced, i.e. Pm = 0.037.

5. Closed-loop control using linearized Navier–Stokes simulations
In the last section, we have studied the performance of the designed compensator

with the reduced-order model ROM150 as the plant. We will now assess the
performance of this compensator in the case of the large-scale LDNS, i.e. the full,
unreduced model for flow over a rounded backward-facing step, as the plant. In many
flow control studies, this represents the essential performance test of the compensator.
As the ROM reproduces all input–output dynamics from the LDNS with an error less
than 1 %, we expect that the results of the study presented in §§ 3 and 4 remain
valid for the case of the compensated LDNS. We will see that this is indeed true
for the case of small and medium gains (§§ 5.1 and 5.2) but, for larger gains (§ 5.3),
instabilities arise in the compensated system.
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FIGURE 10. (Colour online) Temporal evolution of the energy based on an LDNS
continuously forced by random noise. The compensator has been designed under linear
assumptions (case 3). (a) Perturbation energy for the uncontrolled (grey/red online) and
controlled (black) cases. (b) Measurement energy for the uncontrolled (grey/red online) and
controlled (black) cases.

5.1. Analysis of case 3 (l= 100 and G/W = 10−2)

We first consider the medium-gain case (case 3 with l = 100 and G/W = 10−2) and
use the cost-functional Je as our objective for the controller. We choose again the
best-performing estimator based on sensor C1, which will be referred to by C in
what follows. The plant is given by the discretized system of (2.3); a second-order
scheme is used for the time integration. A white Gaussian noise is supplied to w(t),
and a statistically steady state is obtained after some time. The performance measures
Pm and Pe defined in (4.4) and (4.5) may be evaluated in the simulations by time
averaging |CpX |2 and X∗QX, respectively. The results should be comparable to those
of the ROM study (§ 4) since the simulation has been given a white Gaussian noise in
time, which statistically feeds all frequencies by an equal amount.

Figure 10(a) juxtaposes the temporal evolution of energy for the uncontrolled
simulation (in grey/red online) and the evolution of energy for the compensated
simulation (in black), where the same excitation sequence w(t) has been used to ensure
a fair comparison. Starting from a zero initial state, a transient phase is observed
that quickly evolves into a statistically stationary state. The time for a particle to
be convected from the actuator location B2 to the reattachment point (sensor Cp)
is approximately 20 time units. The total simulation time T = 1800 is almost 100
times larger, thus ensuring adequate convergence of the statistical properties of the
flow. At t = 200 the compensator is switched on (black curve). The energy rapidly
decreases to levels nearly one decade smaller than in the uncontrolled simulation.
For completeness, the measurement signal mp(t) is displayed in figure 10(b) for the
uncontrolled (grey/red online) and compensated (black) simulation. Again, a distinct
reduction in variance of the signal can be observed.
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FIGURE 11. Pointwise mean perturbation kinetic energy k′/W2 of simulations with random
forcing: (a) uncontrolled LDNS; (b) compensated LDNS (case 3).

ROM LDNS DNS DNS DNS
(W = 1) (W = 0.1) (W = 1) (W =√10)

Pe 0.157 0.17 0.17 0.41 0.63
Pm 0.292 0.30 0.31 0.64 0.84

k′max/U2
∞ (%) 0.42 0.0042 0.31 1.96

k′max |c/U2
∞ (%) 0.07 0.0007 0.12 1.34

k′max |c/k′max 0.16 0.16 0.37 0.69

TABLE 3. Performance evaluation of linear and nonlinear simulations: column 2, based on
the ROM (§ 4); column 3, based on LDNS with random noise (§ 5); and columns 4–6,
based on DNS with random noise with W = 0.1, W = 1 and W =√10 (§ 6).

The third column of table 3 contains the performance measures Pe and Pm

corresponding to the above simulation. The values are nearly identical to those
obtained for the ROM (the numbers from table 2 have been reproduced in the second
column). It is evident that the overall perturbation energy Pe and the perturbation
measurement energy Pm have been reduced by a factor of 0.17 and 0.30, respectively.
These results underline the validity of the overall procedure followed within this paper.

Finally, figure 11 displays contours of the pointwise perturbation mean kinetic
energy (normalized by the variance of the input noise) k′/W2 for the uncontrolled
(figure 11a) and controlled (figure 11b) simulations. The pointwise kinetic energy of
the perturbation is taken as k′(x, y, t) = (u′ 2 + v′ 2

)/2, and the overline designates
the time average. The perturbation energy increases along the shear layer due to
a convective instability; its maximum is reached near x = 10. This pointwise mean
kinetic energy distribution for the uncontrolled case is closely related to the optimal
response given in figure 2(c). The mean kinetic energy contours for the controlled
simulation deviate significantly, as the effectiveness of the compensator is clearly
demonstrated by the greatly reduced energy levels in the shear-layer region. Table 3
(column 3) shows that the maximum (over space) perturbation mean kinetic energy is
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lowered by a factor of 1/0.16 ≈ 6. Figure 11 is of interest to experimental studies of
flow control, as it provides a direct comparison of local turbulence levels throughout
the recirculation bubble for the uncontrolled and controlled case.

5.2. Analysis of control cost
We will next assess the characteristics of the control cost. We first note that the
penalization term u2, appearing in the objective functionals Jm and Je introduced
in § 4, is not representative of the true energy expended by the user for control.
We therefore resort to an analysis of the energy budget: evaluate the user-supplied
power to the system associated with u(t) and compare it to a physical quantity that
describes the realized gain by controlling the flow. To this end, we recall the linearized
Navier–Stokes equations (2.3) in continuous form,

∂tv′ + V ·∇v′ + v′ ·∇V =−∇p′ + Re−1∇2v′ + w(t)b1 + u(t)b2, ∇ ·v′ = 0, (5.1)

where v′ is the perturbation velocity and V the base flow. Taking the inner product of
this equation with v′, averaging over time and integrating in space over a domain Ω
(which includes the spatial support of b2, but excludes that of b1) yields∫

∂Ω

(k′V ·n+ p′v′ ·n− 2Re−1D ′ ·v′ ·n) ds

=
∫∫

Ω

(
u(t)b2 ·v′ −R ′ :D − 2Re−1D ′ : D ′

)
dΩ (5.2)

where : denotes the contraction operator or Frobenius inner product, defined as
A : B =∑ijAijBij = trace(A∗B). This equation governs the flux of the mean kinetic
perturbation energy k′ across the boundary ∂Ω, given by

∫
∂Ω

k′V · n ds. It is written in
conservative form, and various volume source terms appear on the right-hand side of
the equation that contribute to this flux. The mean external power u(t)b2 ·v′ represents
the mean power supplied by the user during the control effort. The production term
−R ′ : D involves the Reynolds stress tensor R ′ and the strain-rate tensor D of the
base flow. In the case of an amplifier flow, this term will supply the main power
(drawn from the base flow V ), which in turn will trigger high values of the mean
fluctuating kinetic energy flux. Even though this term may be positive or negative, in
the case of an amplifier flow it should be predominantly and strongly positive. The
dissipation term 2Re−1D ′ : D ′ contains the strain-rate tensor D ′ of the perturbations
and accounts for the mean power lost due to viscous stresses. Lastly, not only the
power supplied to the system enters the mean fluctuating kinetic energy flux, there are
two other terms: the mean velocity–pressure correlation

∫
∂Ω

p′v′ · n ds and the viscous
diffusion term

∫
∂Ω
−2Re−1D ′ ·v′ ·n ds.

We have evaluated the various integrals appearing in (5.2) for the case described in
§ 5.1. For Ω we chose the domain −0.1 6 x 6 11.3. The left boundary at x = −0.1
is downstream of b1, but upstream of b2, such that the domain Ω comprises the
actuator b2 and extends downstream beyond the reattachment point. The line integrals
along the wall and in the far field yield zero contributions, and we are thus left
only with contributions from the line integrals at x = −0.1 and x = 11.3. In table 4,
the numerical values of the non-zero line integrals at x = −0.1 and x = 11.3 as well
as the various source terms in −0.1 6 x 6 11.3 are listed for the uncontrolled and
controlled simulations. For the uncontrolled case, we identify the kinetic energy flux
at the boundaries as the dominant term among the line integrals, with a pronounced
increase between the inlet (x = −0.1) and the outlet (x = 11.3). This feature is linked
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FIGURE 12. (Colour online) Instabilities in the compensated linearized numerical simulation.
The grey (red online) squares (respectively, black squares) represent unstable (respectively,
stable) results. The circles refer to the ‘medium-gain’ and ‘large-gain’ cases studied in depth
in § 5.3.2.

Control At x=−0.1 At x= 11.3 Sources in
−0.1 6 x 6 11.3

k′V p′v′ Visc. k′V p′v′ Visc. Power Prod. Dissip.

Off −0.0058 −0.000 82 −0.000 025 1.5 0.69 0.0017 0 3.8 −1.7
On −0.0058 −0.000 79 −0.000 025 0.16 0.068 0.0023 0.004 0.56 −0.34

TABLE 4. Evaluation of the control cost in the linearized simulations. All values are to
be multiplied by 10−3. The compensator has been designed for l = 100 and G/W = 10−2

(case 3).

to the convective Kelvin–Helmholtz instability, which gives rise to strong disturbance
growth along the shear layer of the separation bubble. Closer inspection of the source
terms shows that this growth in kinetic energy flux is mainly due to the production
term, which is more than twice the dissipation term in magnitude (while the power
term is zero due to the absent control input). The production term is the ‘engine’
of the instability, located along the shear layer of the separation bubble. Clearly,
any effective control effort should target this term in order to reduce the amount
of unsteadiness in the flow. For the controlled simulation, similar features can be
observed; yet the increase in kinetic energy flux between the boundaries of the domain
Ω is significantly smaller (by a factor of 10, as shown in column 5 of table 4). The
source terms (columns 8–10) show that the production and dissipation terms have
decreased accordingly, while the user-supplied power term from the control effort
remains negligible in the process. For a minute cost of control (for our case, a value
of 0.004) we have attained a substantial reduction of kinetic energy flux between the
uncontrolled and controlled simulation (in our case, 1.50 − 0.16 = 1.34) – indeed a
highly efficient effort. Of course, this efficiency is due to the fact that we control an
instability, i.e. the strong convective instability as the source of unsteadiness is taken
advantage of to actively suppress it.

5.3. Behaviour of compensated systems for larger gains – robustness and sensitivity
This section is devoted to a performance evaluation of the compensator for the
case of larger gains. Simulations with the randomly forced, linearized Navier–Stokes
equations for a range of control costs l and noise-to-signal ratios G/W have shown
that strong instabilities can arise in the compensated system. Figure 12 reports stable
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FIGURE 13. Block diagram for the robustness and internal stability analysis, showing the
plant and compensator transfer function as well as relevant input and output signals.

(black symbols) and unstable (grey symbols, red online) parameter combinations. For
sufficiently large l or G/W (black symbols), the response behaviour of the linearized
simulation is close to the response of model ROM150 (as observed in the medium-gain
case in § 5.1). The linearized DNS then reaches the same performance measures as
the ones displayed in figure 8(d). Cases 1–3, studied in §§ 3 and 4, belong to this
category as well, with equivalent performances of the linearized DNS. On the other
hand, we also encountered cases in which the linearized DNS exhibited instabilities
as a compensator was applied (indicated by grey symbols (red online) in figure 12).
These cases concentrate at the large-gain limit in the (G/W, l)-plane; case 4, studied
in §§ 3 and 4, falls into this category. This instability phenomenon should not come
as a surprise, since it is well known from the control literature (see Doyle 1978) that,
although stability bounds for the LQR problem can be stated, the same is not true for
the LQG problem. In the latter cases, a case-by-case sensitivity analysis will detect
and quantify the presence of an instability in the compensated system.

A discrepancy between the model of the plant on which a compensator is based and
the model of the plant the compensator is intended to ultimately control can cause
a decline in compensator performance or, in more severe cases, an instability in the
compensated system. In what follows, we will address robustness and sensitivity issues
due to uncertainties in the model.

It is worth mentioning that for our case a robustness study is necessary and relevant,
since the estimation sensor has been placed downstream of the control location, and,
consequently, the influence of the control u on the measurement m may render the
feedback loop unstable. An analysis of the stability margins of the compensated
system, as presented below, is thus sensible. The work of Bagheri et al. (2009) also
treats convectively unstable flows (boundary layers), but, in contrast, the estimation
sensor is invariably located upstream of the controller. This configuration is thus in
pure feed-forward mode, and the compensated systems are never unstable. For this
reason, the issue of robustness for boundary layer studies did not have to be raised.

Robustness analysis for compensated systems is closely linked to the concept of
internal stability. It is based on the feedback loop consisting of the plant and
the compensator, which is externally driven by either measurement noise g or the
external noise environment w (see figure 13). Two transfer functions, describing the
dynamics between w and measurement m and the dynamics between g and m, have
to be analysed as to their amplification characteristics. Physically, the external noise
environment w is an essential component of any amplifier flow since it drives its
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w→ m m= Ĉ (sÎ − Â)
−1

B̂1

1− T̂ PT̂ K

w

g→ m m= T̂ PT̂ K

1− T̂ PT̂ K

g

TABLE 5. Transfer functions between noise sources g and w and the measurement m for
the compensated system.

dynamics. Consequently, it provides a pervasive and bounded excitation. Internal
stability then ensures that all internal signals of the feedback loop remain bounded
as well. In our case, we will concentrate on the measurement m as the internal signal.
The measurement noise g may also act as a source of excitation, and the dynamics
between g and m also has to be probed. The transfer functions for either noise to
measurement dynamics are given in table 5. They have a common denominator given
by 1− T̂ PT̂ K , where

T̂ P(s)≡ Ĉ (sÎ − Â)
−1

B̂2, (5.3a)

T̂ K(s)≡ K̂ (sÎ − (Â+ B̂2K̂ + L̂Ĉ))
−1

L̂ (5.3b)

are the transfer functions for the plant (subscript P) and for the compensator (subscript
K). It can be shown that the numerators of both transfer functions (i) do not contain
unstable poles, as in the case w→ m, or (ii) may contain unstable poles that are
cancelled by the denominator, as in the case g→ m. As a result, zeros of the
denominator in the right half-plane can be the only cause of instabilities. We will
thus investigate internal stability by tracking the zeros of 1− T̂ PT̂ K in the unstable half-
plane. Internal stability is given for LQG compensators in the absence of modelling
uncertainties in the plant. However, under practical circumstances, this is rarely true,
and robustness analysis is required to quantify the internal stability margins by
modifying the plant transfer function while keeping the compensator transfer function
constant (i.e. based on the nominal plant transfer function).

Two approaches will be taken. Both assess the internal stability of the feedback
loop with respect to modifications of the plant transfer function. In the first, standard
approach, these perturbations consist of frequency-independent amplitude and phase
modifications of the plant transfer function, while in the second case, an optimization
will be performed to determine the worst-case perturbations to the plant transfer
function.

5.3.1. Presentation of a standard robustness analysis
To probe the stability margins, two type of perturbations are applied: a change in the

magnitude of the transfer function, and a change in the phase of the transfer function.
Mathematically, we have

T̂ P→ aT̂ P, (5.4a)
T̂ P→ eiφT̂ P. (5.4b)

The first modification represents an error in the growth rates of the convective
instabilities; the second modification represents an error in the travel time of
perturbations between the actuator and the sensor.
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We define the minimum gain margin GM+ as the minimum value of the amplitude
a, greater than one, that achieves marginal stability in the transfer functions w→ m
or g→ m. For this we seek a which ensures that 1 − aT̂ PT̂ K has one zero with
zero real part while all other zeros are located in the left half-plane. The maximum
gain margin GM− is defined analogously: it corresponds to the maximum value of
amplitude a, less than one, that achieves marginal stability. Lastly, the phase margin
PM is the minimum positive value of φ such that 1 − eiφT̂ pT̂ K exhibits a marginal
zero (i.e. with zero real part). More formally, if we define a function of the amplitude
a as f (a) = maxk Re{sk(a) | 1 − aT̂ P(s)T̂ K(s) = 0}, the minimum gain margin GM+ is
the smallest zero of f greater than one, while the maximum gain margin GM− is
the largest zero of f less than one. If we define a function of the phase angle φ as
g(φ) = maxk Re{sk(φ) | 1 − eiφT̂ P(s)T̂ K(s) = 0}, the phase margin PM is the smallest
positive zero of g.

The robustness analysis described above has been applied to our compensated
system, and results are given in figure 14, which displays iso-contours of the various
internal stability margins as a function of control cost l and noise-to-signal ratio
G/W. The coloured contours are overlaid by black contours showing the performance
measure Pe. In addition, symbols have been added to the (G/W, l)-plane to indicate
stable (black circles) or unstable (white circles) compensated simulations. In the limit
of small gains and low noise-to-signal ratio, we observe significant internal stability
margins and thus good robustness, with gain margins of more than 6 dB for the
amplitude and 60◦ for the phase angle. In contrast, for large gains the stability
margins are substantially reduced, in both gain and phase margin. Case 3, which
results in an efficient compensated DNS, is characterized by internal stability margins
of GM+ = 1.91 dB, GM− =−9.41 dB and PM = 14.1◦. For only slightly larger gains,
GM+, 1/GM− and PM drop off rather precipitously since case 3 is located in a
parameter regime distinguished by large gradients for GM+, GM− and PM. For case
4, we obtain GM+ = 0.047 dB, GM− = −0.138 dB and PM = 0.68◦, which amounts
to exceedingly small stability margins. This explains the observed (in)stability of the
compensated DNS.

5.3.2. Presentation of a worst-case sensitivity analysis
A technique that is more common in fluid dynamics aims at determining the

worst-case scenario for internal instability. For this analysis, we consider general
perturbations to all components of the plant transfer function and write

T̂ P→ T P = C (sI − A)−1 B2, (5.5)

where A, B2 and C deviate from the nominal system matrices Â, B̂2 and Ĉ. The
stability condition based on the zeros of 1 − T PT K translates into finding the unstable
eigenvalues of the matrix

M =
(

A B2K̂

−L̂C Â+ B̂2 + L̂Ĉ

)
. (5.6)

We look for A, B2 and C that lead to marginal stability of the matrix M, with a
given eigenvalue displaying a zero amplification rate. To constrain the optimization, we
introduce an error measure that describes the disparity between the transfer function of
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FIGURE 14. (a) Iso-contours of gain margin as a function of noise-to-signal ratio G/W and
control cost l. (b) Same as (a) for the downside gain margin. (c) Same as (a) for the phase
margin. Superimposed on the plots (in black) are contours of the performance measure Pe.
Furthermore, the black symbols indicate stable compensated numerical simulations, while
white symbols mark unstable compensated simulations.

the original plant model and of the nominal plant. We have

err(A,B2,C)=


∫ i∞

−i∞
|T P − T̂ P|2 ds∫ i∞

−i∞
|T̂ P|2 ds


1/2

, (5.7)

with T̂ P = Ĉ (sÎ − Â)
−1

B̂2 and T P = C (sI − A)−1 B2. We will then determine the
minimal distance to instability of M by adjusting the components A, B2 and C of the
plant model (taken as matrices of size 150 × 150, 150 × 1 and 1 × 150, respectively)
while maintaining a given error err between the respective transfer functions. Details
of the optimization procedure are given in appendix B.
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FIGURE 15. (Colour online) Example from the sensitivity analysis. (a,b) Spectra of plant A
and compensated system M for the medium-gain case. The circles indicate the plant based
on (Â, B̂2, Ĉ) while the grey (red online) squares indicate the plant governed by the optimal
(A,B2,C) found by the optimization algorithm. (c) Modulus of the transfer functions T̂ P
and T P for the medium-gain case (l = 100, G/W = 10−2, err = 0.003 75, ωopt = 3.3) and the
large-gain case (l= 10−1, G/W = 10−2, err = 0.001 25, ωopt = 3.3).

Figure 15 shows a typical example from our sensitivity analysis where the
compensated system becomes unstable for a particularly small error err of the transfer
function. For the medium-gain case, the optimization process, performed for ωopt = 3.3
and err = 0.003 75, yields a nearly unmodified spectrum for A (figure 15a) but strong
modifications of the compensated spectrum for M (figure 15b). In both panels, the
circles represent the spectrum of the plant based on (Â, B̂2, Ĉ) while the grey squares
(red online) pertain to a plant governed by the optimal (A,B2,C) determined by
the optimization algorithm. The compensated system clearly displays a marginal
eigenvalue at the optimization frequency ωopt = 3.3 (see figure 15b), which is in
accordance with the high value of λω = 7.5 × 104 found for the singular value of
R−1. Further insight can be gained from a comparison of the transfer functions T̂ P

and T P; the modulus of the respective transfer functions is depicted in figure 15(c).
It is evident that the response behaviour u→ m for the optimized plant (dark grey
line, red online) exhibits a small error near the optimization frequency ωopt = 3.3.
For comparison, the transfer function modulus for the large-gain case, obtained for
ωopt = 3.3 and err = 0.001 25, is also displayed (in grey, green online). The large-
gain transfer function is even closer to the original transfer function (black curve)
but, nonetheless, displays a very high value for the largest singular value of R−1,
namely, λω = 2 × 104. This latter finding corroborates, for the large-gain case, the
high sensitivity of the compensated system to minute variations in the transfer function
u→ m in the frequency band ω ≈ 2.6–6. The sensitivity is less pronounced for the
medium-gain case.

It may appear that, in certain parameter ranges, the LQG design is particularly
sensitive to modelling errors; one should keep in mind, however, that the above
sensitivity analysis is based on worst-case scenarios, and that under realistic conditions
the observed sensitivity may be less severe.
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FIGURE 16. (Colour online) Temporal evolution of the mean perturbation energy based on
a DNS continuously forced by finite-amplitude noise W = √10. The compensator has been
designed under linear assumptions (case 3). The linear case has been added in dashed lines
and scaled to the initial energy of the nonlinear simulations.

6. Nonlinear effects
The controller has been designed for perturbations governed by linear dynamics.

With nonlinear governing equations, this situation is recovered if the amplitude of
the perturbations is and remains very small over the entire domain, which may be
achieved using very small amplitude for the upstream noise, i.e. W � 1. In the
previous section, we have seen that small-amplitude noise may be suppressed by a
controller designed under the assumption of a linear governing equation. In the present
section, we will gradually increase the amplitude W of the incoming perturbations;
nonlinear effects will progressively be introduced and their impact on the overall
performance of the linear compensator under off-design conditions can be studied. A
similar test has been conducted by Ilak (2009) for impulsive initial conditions.

We have tested three different amplitudes: W = 0.1 (see the supplementary movie
available at journals.cambridge.org/flm), W = 1 and W = √10. The performance
measures Pe and Pm corresponding to the three cases are reported in table 3 (columns
4–6). The simulations have been run up to t = 1800, as in the linear simulation of § 5.
The random noise sequence from the linear case has been used, which allows a direct
comparison with the linear results (reported in column 3). In table 3, the maximum
pointwise mean kinetic energy of the uncontrolled and controlled (indicated by |c)
simulations are listed together with their ratio. For a small noise amplitude W = 0.1,
the evolution of the uncontrolled perturbation is quasi-linear, and the performance of
the compensator is nearly the same as in the linear case (compare columns 3 and 4 of
table 3). The performance measures Pe and Pm, however, gradually deteriorate as the
noise amplitude W increases (compare columns 4–6 of table 3).

In figure 16, the temporal evolution of the mean perturbation energy is displayed for
the large-amplitude case W =√10; the uncontrolled simulation is shown in grey (red
online), the compensated one in black. The oscillations of the energy curves for the
nonlinear case (solid curve) are less pronounced than in the linear case (dashed line).
The same observation can be made for the compensated simulation. It is seen that
the mean energy level of the perturbation is reduced by the linear compensator, but a
noticeable loss in performance is apparent.

As before, the pointwise perturbation mean kinetic energy k′/W2 gives further
insight into the temporal evolution of the energy as the disturbances advect along the
shear layer. In figure 17(a,b) the pointwise perturbation mean kinetic energy from the
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FIGURE 17. Pointwise perturbation mean kinetic energy k′/W2 of simulations with random
forcing for W =√10: (a) uncontrolled DNS; and (b) compensated DNS (case 3).

nonlinear simulation with random noise is displayed for the case with W =√10. The
colour map has been adjusted to permit direct comparison with the equivalent linear
results given in figure 11; significant differences from the linear case can be observed.
Figure 17(a), illustrating the uncontrolled case, displays saturation effects caused
by nonlinearities; the overall shape of the maximum energy contours are, however,
similar to the linear case – concentrating on the dynamics in the shear layer and the
reattachment area. For the compensated case (figure 17b), the energy is maximal in the
shear layer but is, again, lower than in the uncontrolled case; in contrast, the energy
is higher than in the linear case for x > 10, indicating the appearance of nonlinear
structures, which are more difficult to control. We notice that the energy could be less
attenuated by control efforts than in the linear case: in table 3 (column 6), a maximum
perturbation mean kinetic energy of 1.96 % is observed in the uncontrolled simulation,
which reduces to 1.34 % as the compensator is switched on. The perturbation mean
kinetic energy is thus diminished by a modest factor of 1/0.69 ≈ 1.5 (compared to
a factor of 1/0.17 ≈ 6 for the small-amplitude simulation with W = 0.1, see column
4). As stronger nonlinearities set in, the linear-based compensator becomes ever less
effective.

7. Summary and conclusions
Two-dimensional incompressible flow over a rounded backward-facing step, a

canonical configuration showing noise-amplifying behaviour, has been controlled by
feedback control strategies. Specifically, the LQG framework has been employed in
conjunction with POD-based reduced-order models for the plant. Similar techniques
have previously been studied (see Ilak & Rowley 2008; Bagheri & Henningson 2011),
but with the main emphasis on model reduction aspects. Important issues related to the
practical implementation of feedback control laws for amplifier flows have been left
unaddressed, which motivated this present investigation.

The analysis of the feedback control set-up first concentrated on the estimation
process. A placement of sensors throughout the convectively unstable region of the
flow revealed a distinct advantage of measurement input from the most upstream
sensor. It further showed that the speed of estimation is more important than the
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accuracy of the estimation, while keeping in mind that upstream sensor measurements
are more easily corrupted by noise since the signal has not yet been amplified and
filtered by the flow. Low-quality sensors should be placed further downstream where
the amplitude of the detected signal prevails over the added inherent measurement
noise; the resulting delay in estimation, however, will ultimately cause a loss in
compensator performance. The noise-to-signal ratio of the sensor thus plays an
important role and has been linked to the estimation parameter for the computation
of the Kalman gain.

Continuing with the best (most upstream) sensor, the performance of the
compensated system has been studied under the idealistic assumptions that the ROM
accurately mimics the plant. The noise-to-signal ratio (or estimation parameter) G/W
and the cost-of-control parameter l have been varied to cover a range of control
scenarios from the small-gain limit (SGL), where the compensator is ineffective, to the
large-gain limit (LGL), where the compensator operates at its maximal performance.
An excess total energy can be observed when the measurement energy is taken as the
control objective; this phenomenon may be linked to the inability of the sensor Cp

to detect optimal responses with high frequency (ω > 2). However, this shortcoming
can be overcome by basing the cost functional for the controller design on the total
energy Je.

A compensator designed with Je has then been applied to the full, linearized
Navier–Stokes equations driven by continuous stochastic forcing. In the case of
medium gains, the compensated system reacted as predicted by the ROM-based model
study, and a substantial reduction in perturbation energy could be accomplished. A
detailed, term-by-term analysis of contributions to the energy budget showed that
the control action was extremely efficient: a very weak user-supplied actuation
power generated a substantial (order one) gain in the kinetic energy flux near the
reattachment location. For compensators designed with larger gains, instabilities in
the compensated linearized Navier–Stokes equations arose: even if the compensator
is stable for the model it was designed for, its stability can no longer be implied
or assured when applied to a slightly different plant. This loss of stability has been
analysed using two approaches, one based on classical Nyquist analysis, the other on
a worst-case analysis, which is more common to fluid dynamical applications. Both
analyses showed a reduction in internal stability margins as the large-gain limit is
approached. This established that the POD model was particularly sensitive to high
frequencies (around ω ≈ 3–6). Hence, for a compensator to work efficiently with large
gains (in order to achieve maximal performance), the ROM (based upon which the
compensator was designed) is required to be very precise also at low energies and high
frequencies.

Nonlinear effects have been reintroduced to the closed-loop control problem
by applying the compensator, designed under linear assumptions, to the nonlinear
Navier–Stokes equations and attempting to suppress continuous noise sources of
progressively higher amplitude W. Minor deviations have been detected for small-
amplitude noise; in the large-amplitude case, however, the compensator performance
deteriorated owing to the appearance of nonlinearly triggered structures.

It can be concluded from our study that designing closed-loop control strategies
for amplifier flows is significantly more involved than the equivalent design for
oscillator flows. While in this latter case instabilities are generally narrow-band in
frequency and thus more easily detectable/controllable, a noise amplifier produces
more broadband signals and magnifies physical and non-physical perturbations alike.
For this latter reason, a comprehensive study of the sensitivity of the compensator
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C1 C2 C3 C4 Cp E

B1 0.99 0.60 0.62 0.66 0.74 0.77
B2 0.61 0.34 0.33 0.32 0.30 0.28

TABLE 6. The relative H2-errors (in %) for the various input–output combinations.
The error on the energy has been evaluated using the following expression:
{∫ +∞−∞ [(X̂∗ωX̂ω)

1/2 − (X∗ωQXω)
1/2]2 dω /

∫ +∞
−∞ X∗ωQXω dω}1/2.

performance with respect to various noise sources is imperative for a successful closed-
loop control design. Transfer functions, i.e. frequency-based input–output relations, are
particularly helpful in pinpointing strong sensitivities, in placing sensors efficiently,
and in avoiding undesirable parameter regimes. It is hope that the present study has
introduced and demonstrated effective tools that – despite the inherent challenges – aid
in the design of effective closed-loop control strategies for amplifier flows.

Supplementary movies are available at journals.cambridge.org/flm.

Appendix A. Reduced-order model
In view of our control objectives, the ROM should be able to capture accurately

the dynamic response of the output variables (C1,2,3,4,p given by sensors and the
perturbation energy E(t)) to forcings by the two input variables (B1,2). We choose
a model reduction technique based on standard POD, which transforms flow-state
snapshots, arising from harmonic forcings introduced via the terms B1 and B2, into
a finite-dimensional orthogonal basis onto which the full flow equations are projected.
An analysis of the ROM confirmed a satisfactory balance between accuracy and size.
Details of this type of analysis are given in Dergham et al. (2011) for the same
backward-facing step configuration using a single input B2.

In our case, a ROM based on a Galerkin projection of the full system onto the first
150 POD modes has been selected owing to its good performance and comparatively
small size. The transfer functions of the full system have been computed by Fourier-
transforming signals from the impulse responses of the linearized DNS. The errors
between the transfer functions of the reduced-order models and the linearized DNS
have been measured using the H2-norm. Table 6 presents these errors for different
combinations of input triggering and output sensing. We note that the impulse
responses triggered by B2 are more accurately captured than those triggered by B1.

All errors are below 1 %.

Appendix B. Sensitivity analysis
The worst-case sensitivity analysis outlined in § 5.3.2 proceeds in the following

manner. We first note that a marginal eigenvalue s = iω of the matrix M is equivalent
to the largest singular value λω of the resolvent matrix tending to infinity. The
resolvent matrix corresponds to the matrix R−1 with R = iωI − M. Formulating an
optimization problem, we will try to maximize, for a given frequency ω, the functional
λ2
ω(A,B2,C) as a function of A, B2 and C. The optimum will be sought under the

constraint that the transfer function error err(A,B2,C) maintains a prescribed error ε.
The constrained optimization problem is transformed into an unconstrained problem
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via a penalization technique, and a Polak–Ribière conjugate-gradient method coupled
to a line-search algorithm is used to determine the optimum.

More specifically, we denote by λω the largest singular value of R−1 where
R = iωI − M and M is the matrix defined in (5.6). We furthermore introduce (F,G)T

and (X,Y)T as the principal right and left singular vectors associated with λω, which
satisfy

R−1∗R−1

(
F
G

)
= λ2

ω

(
F
G

)
,

(
X
Y

)
= R−1

(
F
G

)
. (B 1)

The sensitivity analysis is formulated as an optimization problem for determining the
minimal stability margin for a specified discrepancy between two transfer functions.
We begin with the following Lagrangian:

L= λ2
ω −

(
Ỹ
X̃

)∗ [
R

(
X
Y

)
−
(
F
G

)]
−
(
F̃
G̃

)∗ [
λ2
ωR∗

(
F
G

)
−
(
X
Y

)]
. (B 2)

Rendering this Lagrangian stationary with respect to the variables (F,G)T, (X,Y)T

and λ2
ω yields the following expressions for the Lagrange multipliers (denoted by an

over-tilde): (
F̃
G̃

)
= R−1

(
F
G

)
,

(
Ỹ
X̃

)
= λ2

ω

(
F
G

)
,

(
F
G

)∗(
F
G

)
= 1. (B 3)

Setting the first variation of the Lagrangian with respect to the control variable
R to zero results in an expression for the variation of the squared singular value
given by

δλ2
ω =−2λ2

ω Re

[(
F
G

)∗
δR

(
X
Y

)]
. (B 4)

Using (5.6), this expression for δλ2
ω may be expressed in terms of variations in the

matrices A, B2 and C. We obtain

δλ2
ω = 2λ2

ω Re(FX∗) : δA+ 2λ2
ω Re(FY ∗K̂

∗
) : δB − 2λ2

ω Re(XG∗L̂) : δC∗, (B 5)

where : denotes the contraction operator or Frobenius inner product, defined as
A : B =∑ijAijBij = trace(A∗B).

The constraint of a user-prescribed error γ (measured in the H2-norm) between
the full and reduced transfer function may be approximated in the following
manner:

µγ (A,B2,C)=−γ 2 +
∑

j

|C (iωjI − A)−1 B − Ĉ (iωjI − Â)
−1

B̂︸ ︷︷ ︸
φj

|21ωj. (B 6)

In the above expression 1ωj are quadrature coefficients. In our case, we chose
a simple first-order approximation of the integral with 1ωj = 0.02 and integration
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limits ωmin =−10, ωmax = 10. The first variation of this functional reads

δµγ =
(

2
∑

j

Re
[
φj (−iωjI − A∗)−1 C∗B∗ (−iωjI − A∗)−1]

1ωj

)
: δA

+
(

2
∑

j

Re
[
φj (−iωjI − A∗)−1 C∗

]
1ωj

)
: δB

+
(

2
∑

j

Re
[
φ∗j (iωjI − A)−1 B

]
1ωj

)
: δC∗. (B 7)

Lastly, we combine the above expressions and consider the unconstrained
minimization problem

Jω,γ (A,B2,C)=− arctan(ln(λ2
ω)/α)+ βµ2

γ + arctan(ln(ν2
ω)/α), (B 8)

with β as the penalty coefficient. In our computations, we used α = 10 and
103 6 β 6 1010. Note that the third term in (B 8) penalizes the largest singular
value νω of S−1 where S = iωI − A. This is simply to avoid convergence of the
optimization algorithm towards solutions where s= iω is an eigenvalue of A, which is
an undesirable solution. With H and Z as the principal right and left singular vectors
of S corresponding to νω and satisfying S∗SH = ν2

ωH and Z= SH with H∗H = 1, we
can express the first variation of ν2

ω in the form δν2
ω = 2ν2

ω Re(HZ∗) : δA.
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