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Control of amplifier flows poses a great challenge, since the influence of
environmental noise sources and measurement contamination is a crucial component
in the design of models and the subsequent performance of the controller. A model-
based approach that makes a priori assumptions on the noise characteristics often
yields unsatisfactory results when the true noise environment is different from the
assumed one. An alternative approach is proposed that consists of a data-based system-
identification technique for modelling the flow; it avoids the model-based shortcomings
by directly incorporating noise influences into an auto-regressive (ARMAX) design.
This technique is applied to flow over a backward-facing step, a typical example of a
noise-amplifier flow. Physical insight into the specifics of the flow is used to interpret
and tailor the various terms of the auto-regressive model. The designed compensator
shows an impressive performance as well as a remarkable robustness to increased
noise levels and to off-design operating conditions. Owing to its reliance on only time-
sequences of observable data, the proposed technique should be attractive in the design
of control strategies directly from experimental data and should result in effective
compensators that maintain performance in a realistic disturbance environment.
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1. Introduction
It is generally acknowledged that the targeted manipulation of fluid flow holds

great promise for a wide range of technological and industrial applications. The
enhancement of mixing, the suppression of instabilities, increasing the robustness to
uncertainty and noise, the reduction of drag and the improvement of energy conversion
efficiencies are but a few objectives that could be reached by employing flow control
techniques. For this reason, the discipline of flow control has seen a distinct and steady
rise within the fluid dynamics community and has generated interest in academia and
industry alike. The majority of successful flow control applications are numerical in
nature, where the environmental conditions are favourable to the control strategy or
can be managed easily. Less success must be reported for the application of control
laws to a disturbance environment typically encountered in physical experiments.
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The success or shortfall of control strategies depends on many factors, principally
among them the nature of the inherent flow dynamics. Noise amplifiers which are
highly sensitive to the external disturbance environment pose great challenges to the
design process. In this case, sources of noise and inaccuracies have to be captured
or modelled accurately, since they form the basis of the observed unsteadiness of the
flow (Bagheri, Brandt & Henningson 2009). Noise amplifiers are ubiquitous in many
engineering applications, such as separated flows, jets or boundary layers, to name a
few. A quintessential and much-studied noise-amplifier flow is that over a backward-
facing step of Barkley, Gomes & Henderson (2002) at Re = 500 where the unsteady
behaviour originates from a bounded region of convective instability (Blackburn,
Barkley & Sherwin 2008; Marquet et al. 2008).

Oscillator flows, on the other hand, are characterized by the presence of a global
instability and are by nature insensitive to the ambient disturbance environment as
well as to modelling inaccuracies. Suppression of global instabilities (e.g. von-Kármán
vortex streets or the shear layer forming over an open cavity) within the linear regime
thus puts markedly less stringent constraints on modelling the external disturbance
environment (Cattafesta et al. 2003; Samimy et al. 2003, 2007; Barbagallo, Sipp
& Schmid 2009; Ma, Ahuja & Rowley 2010; Sipp et al. 2010), but raises different
issues related to nonlinear saturation of global instabilities. Besides the intrinsic flow
behaviour, the control design approach further divides the techniques and strategies
necessary for a successful manipulation of fluid flows. Two approaches have to be
distinguished: a model-based approach and a system-identification approach. In the
former, a model that accurately describes the flow behaviour is derived a priori
from the known flow physics. While for simple to moderately complicated geometries
and/or artificial disturbance environments this approach has been quite successful,
modelling difficulties increasingly arise as the flow becomes more complex and the
disturbance environment becomes more realistic. Moreover, coherent fluid structures
such as proper orthogonal decomposition (POD) modes, global modes or balanced
modes play an important role in the Galerkin-based model-reduction step of the
flow design process (see Efe & Ozbay 2003; Rowley, Colonius & Murray 2004;
Akervik et al. 2007; Barbagallo et al. 2009; Sipp et al. 2010). The alternative system-
identification approach does not rely on a physical model, but rather establishes an
approximate relation between input and output signals directly from their observations
over time (Ljung 1999). In this sense, system identification is a data-based technique.
In most applications of system-identified control design (see Huang & Kim 2008
for an application to flow separation control), the identification process is used as a
black-box technique, i.e. with little regard to a proper motivation of its parameters or a
physical interpretation of its outcome.

Independently of the chosen control design technique, a reduction of the prescribed
or identified model is often necessary. For control applications, recent studies have
conclusively shown that balanced modes yield efficient reduced-order models on which
a controller can be based (Moore 1981; Rowley 2005; Barbagallo et al. 2009). A
model can be computed directly from the projection of the governing equations onto a
basis that uses snapshots of the flow (Rowley 2005; Barbagallo et al. 2009) or from a
realization of the observed dynamics (Juang & Pappa 1985; Akers & Bernstein 1997;
Gibson, Lee & Wu 2000; Ma et al. 2010). Both techniques will ultimately lead to the
same reduced-order model, expressed on the balanced basis.

The aim of this study is the introduction of a system-identification technique to
a flow control problem and its link with a classical model-based control design
process for the effective manipulation of noise-amplifier flows. In particular, during
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Sketch of flow geometry,
including the different inputs and outputs. Two skin-friction measurements, s and m, are
taken, respectively, at the top of the backward-facing step and at the end of the recirculation
bubble. The control input u is given by the amplitude of actuation, composed of a spatial,
Gaussian distribution of vertical velocity. The upstream forcing is introduced via a similar,
spatially localized forcing, but with a stochastic amplitude w. The streamlines illustrate the
mean flow v0.

the identification phase we are interested in a rigorous interpretation of parameter
choices and the physical understanding and role of various terms of the identified
model.

We rely on linear systems theory that states that a model can be designed
that recovers the perturbation dynamics from observable inputs. This model will
furthermore benefit from the specifics of our configuration and control setup. A
general equation with a physically motivated coefficient structure can thus be defined,
and system identification techniques will determine these coefficients by a fitting
algorithm to available data. Once the model is identified, a state–space optimal
controller will be designed.

The article follows the following outline. The flow configuration and model
equations are introduced in § 2, after which a brief review of classical Galerkin-
based methods for the design of LQG-controllers is given, along with a general
introduction of system identification (§ 3). This survey also addresses limitations
of the Galerkin approach and helps motivate our alternative procedure. The design
procedure of an ARMAX (auto-regressive moving-average exogenous) model based
solely on observable data is presented in § 4; a physical interpretation of the model
and its coefficients is given, before it is compared to the classical Galerkin-derived
Kalman estimator. The subsequent control design process is the topic of § 5, where
the compensator is designed, and applied to numerical simulations of the flow.
The performance and robustness to noise of the compensator obtained are critically
assessed. Conclusions and a summary of the most relevant results are offered in the
final section (§ 6).

2. Configuration and governing equations
2.1. Noise amplifier over a backward-facing step

The configuration studied in this article consists of a two-dimensional backward-facing
step that has previously been used, e.g. in Barkley et al. (2002). Variables are non-
dimensionalized using the step height and the upstream centreline velocity; based on
these values, the Reynolds number is chosen as Re = 500. The computational domain
is taken as (x, y) ∈ [−10, 50] × [−1, 1] and is partially sketched in figure 1. The
upstream boundary condition is modelled by an inflow of Poiseuille type; the upper
and lower boundaries are set to wall conditions vtot = 0. For the chosen Reynolds
number of Re= 500, the above flow configuration is globally stable. Nevertheless, the
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flow exhibits a convective instability along the shear layer extending from the top
of the step (at x = 0, location of branch I) to about x = 25 (branch II). As reported
in Blackburn et al. (2008), the resulting flow unsteadiness is due to this local region
of convective instability which is contained between upstream and downstream regions
of stability. Even though a global stability analysis does not produce unstable global
modes, transient growth of perturbations along the shear layer may arise due to the
non-normality of the linearized Navier–Stokes operator. Generic fluid behaviour of this
type is an example of a noise amplifier : a globally stable flow that still shows a
significant, spatially localized response to an external disturbance environment.

The control of our flow configuration is aimed at reducing flow unsteadiness, which
is quantified by the energy of the perturbations. As this energy is not easily observable
in a real system, a skin-friction measurement mtot is introduced at a downstream
position. The sensor is located near the end of the first recirculation bubble at x= 10.5
(see figure 1), and mtot(t) will cease to fluctuate as the bubble is stabilized by our
control effort. The fluctuating part of the measurement mtot can therefore be taken as
our control objective, which is to be be minimized; it is then expected that the same
control also reduces the global energy of the perturbations.

The external perturbations that will amplify along the shear layer and then impact
on the objective mtot originate within the upstream boundary layer. An upstream sensor
stot is placed at x=−0.3 and will be used as an input to the compensator. If the sensor
stot is sufficiently sensitive to the external perturbations, its measurements will provide
important information about the effects of noise on the system.

For clarity, we introduce the notation of an underline denoting a quantity that is
neither known nor measurable in a realistic environment. Generally speaking, a precise
knowledge of the underlined quantities is required in a Galerkin-based model reduction
approach while they will not be used during the control design process based on
system identification.

We consider the dynamics of the flow field vtot driven by an external forcing term
of the form Fww(t). This term stands for upstream unknown forcings which sustain
unsteadiness in the flow field: w(t) is a random forcing of standard deviation σw while
Fw is the spatial structure, which is of Gaussian shape

Fw(x, y)= A exp

(
−(x− x0

)2

2σx
2

)
exp

(
−(y− y0

)2

2σy
2

)
. (2.1)

The control action will be given by a term of the form Fuu(t). The spatial structure Fu

consists of a similar Gaussian momentum forcing (although of smaller spatial extent)
which is located at the top of the backward-facing step and driven by the scalar control
law u(t) which is yet to be determined. The control term will introduce a forcing at
the upstream edge of the convectively unstable region; a small control should thus
substantially affect the system and have a noticeable impact on the objective mtot .

The spatial characteristics of both momentum forcing terms are defined by the
coefficients in table 1; the momentum forcing terms are also sketched in figure 1. The
velocity field expressed in Cartesian coordinates vtot = [utot vtot]T is governed by the
following non-dimensional equations:

∇ ·vtot = 0, (2.2a)

∂tvtot + vtot ·∇vtot =−∇ptot + 1
Re
1vtot + Fww(t)+ Fuu(t), (2.2b)
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x0 y0 σx σy A

Noise −0.5 0.25 0.1 0.1 4.0
Control −0.05 0.01 0.01 0.1 4.0

TABLE 1. Parameters that define the spatial Gaussian distributions of the control and noise
source.

stot =
∫ x=−0.25

x=−0.35
∂yvtot dx, mtot =

∫ x=10.7

x=10.5
∂yvtot dx. (2.2c)

In the following, we will consider small noise amplitudes σw � 1. All quantities
will fluctuate around their means, which will be denoted by a subscript zero. Let us
explicitly introduce the fluctuations given by vtot = v0 + v, ptot = p0 + p,mtot = m0 + m
and stot = s0 + s. Since the flow is a noise amplifier, the amplitude of all fluctuations
v, p,m, s but also u scale with σw. The flow field v0 corresponds to a base flow, i.e.
a steady solution of the nonlinear Navier–Stokes equations. After introducing these
expressions into (2.2) the dominant order cancels out and we arrive at the following
equations that govern the fluctuating part of the flow field:

∇ ·v= 0, (2.3a)

∂tv+ v ·∇v0 + v0 ·∇v=−∇p+ 1
Re
1v+ Fww(t)+ Fuu(t). (2.3b)

This shows that the dynamics of the fluctuations around the mean flow is linear. In
particular, the dynamics from the inputs (w(t), u(t)) to the outputs (s(t),m(t)) is linear.
In an experiment, m and s are straightforwardly obtained by subtracting the mean
measurements m0 and s0 from the actual measurements mtot and stot .

Even though the controller will be designed and optimized for operation within a
linear regime, results in § 5.2.3 will show a remarkable robustness of the control law
with respect to nonlinear effects. For the design process, external excitations should
remain as low as possible so that the system stays in the linear regime; but one can
still expect to obtain good results with the computed controller as one ventures beyond
its design point. This feature will also play a role from an experimental point of view,
where a small-amplitude environment is used to design the control law which will
remain applicable, with reasonable results, in a less quiet setting.

2.2. Numerical method

We use a direct numerical simulation code which solves the nonlinear, incompressible
Navier–Stokes equations (2.2) in primitive variables (utot, vtot, ptot). To increase
accuracy for low-amplitude perturbations, the code is based on the perturbed
form (2.3) of the governing equations but still includes the nonlinear term (v · ∇v).
Finite elements with a mesh composed of triangular elements are used for the spatial
discretization; for our case, the mesh contains about 123 000 triangles. The velocity
fields are projected onto six-node triangular elements with quadratic interpolation
(P2-elements), while the pressure field is discretized using three-node triangular
elements with linear interpolation (P1-elements). The pressure field is obtained using
the Uzawa algorithm, preconditioned by the Cahouet–Chabart method (Glowinski
2003). The temporal discretization is semi-implicit and based on a second-order
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backward-differentiation scheme. We use the standard free-outflow condition

pn− Re−1
∇u ·n= 0 (2.4)

at the outlet of our computational domain.

3. System identification for control-oriented flow modelling
In this section the model reduction based on Galerkin projections will first be

briefly discussed, to motivate the use of identification methods in the design of
optimal control strategies. In particular, we will focus less on its practical application
but more on its underlying assumptions and requirements during the design process.
System identification will then be introduced, as an alternative approach to model flow
dynamics.

3.1. Model-based methods: Galerkin projection
A common method to obtain a reduced-order model is based on Galerkin projection.
It consists of projecting the linearized Navier–Stokes equations onto a prescribed
(bi-orthogonal) basis which results in a reduced state–space equation. The model must
accurately represent the input–output behaviour of the full system; this prerequisite is
a crucial component for the choice of bases that are appropriate for a given control
application. POD bases (Efe & Ozbay 2003; Rowley et al. 2004; Barbagallo et al.
2009, and many others) which describe the most energetic structures of the system, or
balanced bases (Moore 1981; Rowley 2005) which focus directly on the input–output
behaviour of the system, are most commonly used to project the equations.

The Galerkin projection provides a linear dynamical model that is commonly
expressed in standard finite-dimensional time-invariant state–space form. Projection
of equations (2.3) onto the chosen basis yields

X(t + 1)= AX(t)+ Bu(t)+ Bww(t), (3.1a)
s(t)= CsX(t)+ gm(t), (3.1b)
m(t)= CmX(t)+ gs(t). (3.1c)

The variable X is referred to as the state variable. It describes the amplitudes of the
various spatial structures that have been taken as a projection basis. The plant noise,
i.e. the random disturbance environment driving the state dynamics, is modelled by the
term Bww(t). It consists of the forcing source Bw, which is driven by the stochastic
scalar forcing term w(t). The term Bw captures the unknown external excitations that
enter the system and stems from the projection of the spatial distribution Fw of
the forcing term onto the chosen basis. Analogously, the term Bu(t) stands for the
actuation: B is obtained by projection of Fu onto the Galerkin basis. The quantity
(gm, gs) represents the noise sources for each of the two measurements. The temporal
standard deviations of these stochastic quantities are inherent to the sensors (they are
not determined by the projection) and are referred to as std(gm)= Gm and std(gs)= Gs.
The two matrices B and Bw describe system inputs in the form of forcing terms; the
matrices Cs,m represent the extraction of information from the flow via the sensors (C
takes information from the state X). The individual components of C therefore refer to
measurements of the spatial structures of the projection basis.

A Galerkin projection usually yields a continuous-time format for the state–space
system (3.1). For simplicity we have chosen to formulate it in a discrete-time format,
with t as the time step index. The remainder of the article pertaining to identification
methods, it is more naturally expressed in the discrete-time framework. Yet, one
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should keep in mind the equivalence of the continuous and discrete frameworks due to
a straightforward transformation (see Antoulas 2005, for details on the correspondence
between discrete and continuous-time matrices).

A proper model should accurately capture the transfer behaviour of the linear system
from the input variables (w, u) to the output variables (s,m). The effectiveness of the
model relies on the ability of the chosen Galerkin basis (e.g. POD modes, balanced
POD modes, etc.) to represent this input–output mapping – a difficult undertaking
in the light of the fact that the noise environment w is generally not known to
a sufficient degree of detail (Dergham, Sipp & Robinet 2011). For this reason,
simplifying assumptions about w (such as e.g. assuming it is spatially located) have
to be made during the design process (see e.g. Bagheri et al. 2009), and their adverse
impact on the overall performance of the compensated system has to be acknowledged
as a deficiency of Galerkin-based control design. We would like to stress at this point
that in the subsequent analysis a forcing w in the form of white noise is not required.
Yet, it covers the most general case as it generates time-coloured fluctuations in s and
m, which are the only quantities that are processed during the identification phase;
the noise term w, on the other hand, never enters the analysis and is merely used to
generate the perturbations.

3.1.1. Kalman filter
Computing the control law requires real-time knowledge of X(t) which is commonly

not available under realistic conditions. For this reason, an estimator that uses only
partial information of the system to estimate an approximate state X̂ is used in lieu
of X . The Riccati equation for the estimator depends on (A,Bw,Cs) and the signal-
to-noise ratio σw/Gs. The better the sensor, the lower Gs; the higher σw/Gs, the more
accurate the estimator.

The estimator consists of a dynamical system that recaptures the effect of noise
sources w from the measurement(s) (in our case, the signal s) via a Kalman filter L.
The dynamics of the system has to be known such that the unknown forcing terms
and their action on the entire flow field can be estimated. If the perturbations are
observable from the measurement s, the optimal estimator reads

X̂(t + 1)= (A− LCs)︸ ︷︷ ︸
Ae

X̂ + Bu+ Ls, (3.2a)

m̂= CmX̂ . (3.2b)

It statistically minimizes the error ‖X̂ − X‖2 (with X̂ as the estimated state) in order
to provide an accurate prediction m̂ of the measurement m. Equation (3.2) illustrates
that the effects of the stochastic field Bww(t) are captured by processing the difference
between the actual measurement s and the measurement CsX̂ predicted by the model.

3.1.2. Assessment and limitations of Galerkin-based methods
Galerkin models are a popular choice for model reduction, owing to their ease of

use in feedback applications, mathematical bounds on their convergence, and their
link to physically relevant flow structures. But despite their widespread use, Galerkin-
based methods for the computation of reduced-order models also suffer from notable
limitations and drawbacks.
An accurate large-scale model of the state dynamics is required. The Galerkin

projection requires that the flow dynamics is accurately represented by a physics-based
model. The implementation of boundary conditions, the computation of the base flow,
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the incorporation of turbulence effects via a model and the influence of neglected
nonlinear effects have to be justified with due caution, and their influence on the final
model has to be assessed carefully.
Observability of the basis is required. To accurately reproduce the input–output

dynamics of the system, the projection basis has to be sufficiently observable. This
requirement commonly necessitates the use of adjoint simulations to determine a
balanced basis which, in turn, is mandatory for large-scale state models. If no adjoint
simulations are at hand and only POD modes are used for the projection basis, then
the resulting transfer function may only poorly reproduce the original one.
An explicit description of the actuator is difficult to obtain. To define B, the spatial

distribution Fu of the actuator momentum forcing has to be known or estimated,
which is problematic in any experimental application. If Fu is not known, a technique
discussed in Samimy et al. (2003) and Cattafesta et al. (2003) can be used. A
Galerkin projection of the Navier–Stokes equations onto e.g. a POD basis then yields
an autonomous set of ordinary differential equations. The influence of the external
actuation hence appears implicitly which causes problems for the control design.
In order to obtain an explicit description of the actuation, separation methods may
be employed (see Efe & Ozbay 2003, for a complete description of the separation
method) in addition to the reduced-order model computation.
A reduced-order model that accurately captures the influence of the upstream noise

w(t) on the state is difficult to obtain. To allow an accurate reduction of the dynamics,
knowledge about the noise source is required when computing the reduction basis. In
the absence of this knowledge, modelling assumptions have to be made (Bagheri
et al. 2009; Dergham et al. 2011) or a full state-to-sensor mapping has to be
determined. Either approach is problematic and has significant consequences for the
overall performance and robustness of the compensator.
Statistical information about the external noise sources is necessary. The

computation of the estimator (that is, the Kalman gain L) requires at least
an approximate knowledge of the spatial distribution of the external disturbance
environment (Fw). Since statistical properties of the external forcing are often
unknown or difficult to obtain, the estimator will ultimately perform suboptimally,
leading to disappointing results when applied under realistic (experimental) condition.

3.2. An alternative approach: system identification
In this article we propose and apply an algorithmic process for the design of a
controller based on a low-dimensional model that only requires data which can
readily be extracted, for example, from a real lab experiment. This process relies on
techniques from system identification, which provides quantitative information about
the system’s dynamics directly from its observation. System identification provides
models that are particularly well-suited for control applications since, by design, the
only dynamics that are taken into account are part of the observable input–output
behaviour of the system.

3.2.1. Predicting the effect of the observable sources
In general, the physical inputs of the flow are the control u and an a priori unknown

number of external forcing sources wk. The sources, whose effect can be detected by s
before they reach m, are referred to as predictable, whereas the sources, which impact
on m without having been detected by s, are referred to as unpredictable. Assuming
linear flow behaviour, the output measurement m is given as a linear combination of
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influences stemming from those sources

m= fuu+
∑

predictable wk

fwk wk +
∑

unpredictable wk

fwk wk. (3.3)

For all predictable forcing sources, a model can then be derived that aims at estimating
the future measurement m by using the upstream measurement s according to

m= fuu+ fss+ E, (3.4a)

E =
∑

unpredictable wk

fwk wk. (3.4b)

In effect, this approach anticipates the effect of the predictable sources wk on m
by measuring their effect on the upstream sensor s before reaching m. What is not
measurable by s cannot be anticipated and is included in an error term E. If the effect
of the predictable forcing sources is well-estimated, a control law can be computed
to cancel their influence on the measurement m. This approach is consistent with the
Galerkin state–space framework introduced in § 3.1, since (fs, fu) defines a model that
is equivalent to the estimator (or Kalman filter) given in (3.2). In particular, we note
that these models share the same inputs/outputs. It is however important to bear in
mind that the identified transfer function fu is related to (3.2) rather than (3.1), and is
therefore based on the system matrix (A− LCs) rather than A.

The system-identification approach aims at modelling the (fs, fu) transfer functions
by a direct observation of the flow behaviour whereas the classical Galerkin approach
derives them from the Navier–Stokes equations. Even though the two approaches
differ, both aim to ultimately represent the dynamics that relate the available input(s)
to the output(s) of the system. As pointed out by Kim & Bewley (2007), those
dynamics are the only ones needed for a control-oriented low-order model.

It is important to realize that the model error referred to above arises from the part
of the flow dynamics that cannot be predicted by the upstream sensor s. Consequently,
term E will generally not be white Gaussian noise. As most of the linear identification
methods commonly determine a model by assuming the unobservable dynamics
as white-noise perturbations, this fact will raise important modelling issues. Most
identified linear models (such as e.g. the subspace or ARX models, used by Huang
& Kim 2008) assume E as white noise; they are referred to as purely linear by
Ljung (1999), as they solve a least-squares error problem to determine the dynamics
of the model. In contrast, a pseudo-linear ARMAX model will be introduced in § 4.1.
It consists of a linear equation, computed via a nonlinear algorithm, hence allowing
modelling of E as time-coloured noise (without any a priori knowledge of the colour
of this noise).

3.2.2. Pseudo-experimental setup
One aim of our study is the introduction and assessment of low-order control design

based on system identification that is adoptable for later applications to physical
experiments. In view of this goal we will treat our numerical experiments in a
quasi-experimental setting and process only data that would be easily available or
measurable in reality. We will therefore impose a few restrictions on the design
process. We will not require exact or approximate information about generally
unknown quantities and in particular about all underlined quantities – for example,
the characteristics of the upstream noise environment (Fw, σw) and the behaviour
of the actuator (Fu). This is in stark contrast to a (model-based) Galerkin approach
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which necessitates the approximation, estimation or modelling of the external noise
environment and the details of the actuation process. In addition, following a typical
setup in a laboratory experiment, we will assume that upstream noise sources are
omnipresent during the design procedure. It is thus not possible to process information
where e.g. the control is the only source of external forcing. Also, we will allow
sensors s and m to be corrupted by white measurement noise characterized by
the standard deviations Gs and Gm whose precise values will also be considered
as unknown in the design process. Finally, when controlling the flow, continuous
control laws will have to be used. Although an impulse response of a linear system
would provide a complete description of its transfer function, we assume that such an
excitation is experimentally not feasible to a sufficiently high degree of accuracy.

3.2.3. Limitations of system identification
Like any computational techniques, system identification suffers from limitations,

and, for a fair comparison, we present some of the weaknesses associated with system-
identification methods.
Nonlinearity. In contrast to model-based methods, system-identified linear models

can present great challenges when nonlinearities are present. In our configuration, the
identification is performed in a quiet environment that ensures linear dynamics. Once
identified, the model can show remarkable performance when exposed to stronger
perturbations (§ 5.2.3). However, the identification process has to be performed within
a linear flow regime if satisfying results are to be obtained.
Stability. Most linear identification algorithms cannot guarantee stability of the

resulting model, contrary to model-based linear systems. This issue becomes critical, if
the system is excited by an unknown source that continuously affects the objective
measurement. System identification may model such a sustained influence as an
instability of the system, unaware of the fact that it stems from an unknown external
excitation source. This matter will be investigated further in § 4.4 where such an
additional forcing source will be considered. In contrast to purely linear models, a
pseudo-linear model will be introduced in § 4.1 that ensures stability.
Objective functional. In contrast to a Galerkin-POD approach where the total energy

of the flow can be estimated and taken as an objective function, system identification
only allows the control of observable objectives. In this article we introduce
a downstream sensor and presume that a successful reduction of the measured
fluctuations will give rise to a proportional reduction of the global fluctuation energy.
Such an assumption is, of course, not assured in general and needs to be verified a
posteriori. Note also that, once the model is identified, the downstream measurement
is no longer needed. The goal of the model/compensator is to predict and to cancel
a detected perturbation before it reaches the downstream measurement. Owing to the
convective nature of the flow, any information from downstream of the actuator is
irrelevant since it is already out of reach of the controller. From an experimental
point of view, this implies that the downstream sensor is only needed during the
identification process. Unlike the upstream sensor, it does not have to be included in
the controller.
Tuning the model. System identification can often require setting some parameters

for the regression algorithm. Although these coefficients can be based on a physical
interpretation (§ 4.1), it requires some insight to properly set them; the same is not
necessary for the model-based approach.
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4. ARMAX as a linear model to identify the backward-facing-step dynamics
In this section the ARMAX model will be presented. Its physical interpretations

will be discussed in § 4.1, and it will be used to model the backward-facing step
(§ 4.2), before it is finally compared to the model that can be derived from a classical
Balanced-POD Galerkin framework (§ 4.3). To assess the effect of the unpredictable
forcing sources (equation (3.3)) on the identification process, an additional source of
excitations has been used in the flow computation. Its location is chosen so that it
corrupts the m signal without affecting s, in order to identify the dynamics in the
presence of dynamics that are non-observable by s, but time coloured (§ 4.4). The
performance of the ARMAX model in the presence of the additional forcing source
will be compared to the performance of purely linear models.

4.1. Introduction of the ARMAX model and its physical interpretation
An auto-regressive moving-average exogenous (ARMAX) model will be used to
identify the transfer function of the system. We have

m(t)+
na∑

k=1

akm(t − k)︸ ︷︷ ︸
auto-regressive

=
nbu+ndu∑

k=ndu

bu
ku(t − k)︸ ︷︷ ︸

exogenous 1

+
nbs+nds∑
k=nds

bs
ks(t − k)︸ ︷︷ ︸

exogenous 2

+E(t), (4.1a)

E(t)=
nc∑

k=1

cke(t − k)+ e(t)︸ ︷︷ ︸
moving average

. (4.1b)

The superscripts u, s in (4.1) allow to differentiate two different sequences of (bk)

coefficients and should not be confused with an exponentiation. The regression
consists of finding the (ak, bk, ck) coefficients, such that the residual e(t) only contains
white noise of minimal variance.

The following parameters play an important role in the ARMAX-model: na is the
number of previous outputs on which the current output depends (the Auto-Regressive
part); the parameters ndu, nds denote the number of input samples that pass before the
input starts to affect the output (i.e. measuring delay). Setting nd > 0 means that the
inputs do not have an instantaneous effect on the measurement, which is the case for
our configuration. The parameters nbu, nbs signify the number of previous inputs on
which the current output depends (the eXogenous part). For each input i, nbi + ndi

defines the truncation order of the transfer function i→ y, where y is defined in (4.5)
below (and the delay nd causes the first coefficients bi

k, k = 0, . . . , ndi − 1, to vanish).
Finally, nc is used to model time-coloured noise (the Moving-Average part). This term
will be further discussed in § 4.1.2.

4.1.1. Auto-regressive model
Equation (3.4a) involves two transfer functions that can be represented as

m(t)=
∞∑

k=0

hkũ(t − k), (4.2)

where

ũ(t)=
[

u(t)
s(t)

]
. (4.3)
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The hk coefficients are referred as the Markov parameters. They represent the
impulse response of the system. When using the state–space Kalman estimator, these
coefficients are defined as

hk =
[
CmAk

eB CmAk
eL
]

(4.4)

where Cm,Ae, L are defined as in (3.2)
Since the dynamics of the model is stable, we have limk→∞ hk = 0, and the transfer

function can be approximated by truncating the hk-sequence at some index N based
on a given error bound ε, i.e. |hk| < ε for k > N. The minimum rank N for which
the truncation gives accurate results can be rather high (especially for weakly damped
systems) and requires the identification of a large number of Markov parameters. In
an effort to reduce the number of parameters, an auto-regressive representation of the
transfer function can be used as follows.

Since the measurement m stems from a continuous physical system dynamics, it is
reasonable to assume a strong auto-correlation in time. Therefore, one can expect to
find a set of coefficients ak=1,na that defines

y(t)= m(t)+
na∑

k=1

akm(t − k) (4.5)

such that |y(t)| � |m(t)| for all time. The variable y can be viewed as the residual of
the auto-regression of m over na time steps; the stronger the auto-correlation of the
signal m, the lower the residual norm |y|.

By defining the Markov parameters bk of the transfer function ũ→ y as

y(t)=
∞∑

k=0

bkũ(t − k) (4.6)

the relation |y| � |m| together with (4.2) and (4.6) yields |bk| � |hk| for all k, which
means that the Markov parameters bk converge towards zero faster than the original
Markov parameters hk do. It is thus possible to truncate the transfer function ũ→ y at
a lower order N ′ < N without loss of accuracy. Equation (4.5) then yields

m(t)=−
na∑

k=1

akm(t − k)+
∞∑

k=0

bkũ(t − k). (4.7)

This expression is thus based on a significantly smaller set of coefficients (compared to
the direct representation (4.2)) to describe the transfer function ũ→ m.

We observe that the representations (4.2) and (4.7) are mathematically equivalent.
However, the truncation step for each of these sequences has different interpretations.
Based on (4.2), a truncation at order N is equivalent to the statement that the system
returns to its equilibrium state (the base flow) in N time steps after being excited by
an impulse in ũ; for a weakly damped noise amplifier, N can be large. When using the
recursive equation (4.7), a truncation at order N ′ means that N ′ time steps are needed
to describe how an impulse in ũ starts to disturb the flow. The remaining observed
dynamics is described by the auto-regressive part and consists of a self-sustaining
process. This latter description is more suited to our case, since we know that the
dynamics arises from weakly damped self-sustained oscillations that are triggered by
small upstream disturbances.
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FIGURE 2. (Colour online) Schematic representation of the different terms and parameters in
the ARMAX equation.

4.1.2. Exogenous and moving-average part
Figure 2 presents a sketch showing a physical interpretation of the ARMAX

equation. The exogenous terms attempt to capture the effect of the two inputs on
the output m, as shown by the arrows labelled Exogenous1 and Exogenous 2. As the
inputs do not instantaneously affect the output, they are delayed using the (ndu, nds)

coefficients which can be linked to the convective speed of the flow.
Although the upstream sensor s succeeds in acquiring useful information about

the external excitations, it is not sufficient to observe the full external forcing. For
this reason, dynamical characteristics that stem from non-observable (by s) excitations
will pass through the system to eventually reach the output m. As such dynamics
cannot be predicted by our model, its overall effect on the measurement m will be
observed as measurement error E(t). This error term contains the effects of advected
and selectively amplified excitations; thus, the measurement noise cannot be modelled
as white noise. Huang & Kim (2008) attempted to model a generic separated flow
using an ARX equation, which represents a special case of our ARMAX equation
with nc = 0, i.e. with white-noise residuals. Not surprisingly, the ARX model showed
poor results, attributed to lacking robustness to measurement noise. In contrast to the
ARX model, the moving average part of the ARMAX equation allows us to model
the measurement error as time-coloured Gaussian noise. This term is a key feature
of our approach, as it ensures robustness against time-coloured noise that arises from
unobservable (by s) forcing terms that propagated through the system.

Once the ARMAX equation has been determined to estimate m with sufficient
accuracy, the downstream sensor m can be eliminated, as the model – and
consequently the controller – will only use s and u as inputs.

4.2. Designing the model
4.2.1. DNS datasets for learning and testing

The coefficients in the ARMAX model are computed by first performing a direct
numerical simulation (DNS) employing an arbitrary forcing law u. The DNS uses
a time step of dtdns = 0.002, and the time interval between measurement samples
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FIGURE 3. Comparison between the spectrum of the designed forcing signal u (taken for
t ∈ [0; 60] in figure 4b) and the spectrum of the measured signal m from an unforced, but
noise-contaminated simulation.

is dtm = 0.1. A (changing) pseudo-random noise is always introduced in the numerical
simulations, which mimics upstream excitations of unknown source and distribution
(as they are present in physical experiments). Unless otherwise stated, we will use in
the following a low-amplitude forcing σw = 0.01, which ensures that the perturbations
behave linearly, and perfect sensors characterized by Gs = Gm = 0.

The spectrum of the measurement m(t) for the case of an unforced simulation (i.e.
with u = 0, but with upstream excitations present) is plotted in figure 3 (crosses). It
demonstrates that the bulk of the excited frequencies are located between 10−2 and
0.2. We thus can assume that most of the flow dynamics can be excited by using a
forcing law u that covers this frequency band. Figure 4 shows three signals, s, u, and
m, that have been used as a learning dataset to identify the model. Of the three signals,
s and m are not given a priori but are extracted from the DNS. The control law u is
continuous in time (as required by an actuator in a real experiment) and designed to
allow the simultaneous identification of the action of both u and s on the measurement
m: the peaks in u trigger a similar but delayed response in m, while between the
peaks (where the action of u is rather weak, e.g. from t = 40 to t = 60) the response
of m to s can be identified. For comparison, the spectrum of the chosen forcing u is
given in figure 3. The maximum amplitude of the forcing u has to be chosen such
that its triggered response can be easily identified over the noisy perturbations; at the
same time, it is limited by the fact that triggered nonlinear effects are undesirable for
the identification process. A few representative snapshots of the perturbation vorticity
are displayed in figure 5. It clearly illustrates transient spatial growth (from x = 0 to
x= 25) arising from the forcing followed by exponential decay (for x> 25).

Two additional test datasets have been used (as shown in figure 6 and figure 7) to
check if the identified model is able to reproduce the dynamics of m for different
datasets. These two datasets provide a broader range of conditions to which the flow
and the model are being exposed. Figure 6 shows the same control law u as the one
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FIGURE 4. Three data sequences, used to identify the model: (a) the measurement s
capturing the influence of external noise, (b) a deterministic, broadband control law u,
(c) the measurement m taken near the reattachment point.

used in the previous dataset, whereas the upstream measurement s is subjected to a
different noise source. This test is to ensure that the influence of u and s on m are
identified independently. Figure 7 shows a different control law which corresponds to a
step followed by an arbitrary combination of a small number of sinusoidal functions.

4.2.2. Choosing the ARMAX coefficients
The ARMAX regression introduced above requires the selection of the following

coefficients: na, nbu, nbs, ndu, nds, and nc. As explained in § 4.1.2, these coefficients
are related to various properties of the flow and can thus be easily set. They should
improve the regression efficiency but do not have to be defined precisely. In addition,
the more data that are available for the identification process, the less important the
exact values of these coefficients become.

In determining na, an auto-correlation of m(t) has been calculated using one of
the above datasets. Results are shown in figure 8(a): the solid curve corresponds
to the auto-correlation. Owing to the short dataset, the auto-correlation should
not be assumed as fully converged. Nevertheless, the correlation shows a quasi-
oscillatory behaviour. We set na = 36 (indicated by the grey zone in figure 8a) which
approximately corresponds to half this oscillation period.

The time delays ndu, nds can be obtained by considering the cross-correlations
between [u(t)s(t)] and m(t). Figure 8(b) displays the cross-correlation between u and
m; it shows that the influence of u is felt at the measurement location at t ≈ 11. It
was significantly more difficult to reach convergence of the cross-correlation between s
and m, since the spectrum of s is substantially closer to a flat white-noise spectrum.
An experimental setup would probably provide substantially longer datasets. This
would allow us to determine these correlations with enough accuracy. In our study,
however, we chose to evaluate the convective time scale of the flow in a different way.
We note that the evaluation of ndu, nds can also be derived from an estimation of the
convective speed of the flow. The convective speed of perturbations is approximately
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FIGURE 5. Contours of the perturbation vorticity for the simulation that produced the dataset
in figure 4. The control (visible at t = 130) creates a wave packet that is spatially amplified
between x = 0 and x = 25 before it exponentially decays. The effect of the control peak
at t ≈ 70 is still visible at t = 130 when the second control peak occurs. Between the
two triggered wave packets, additional perturbations are visible which can be ascribed to
excitations from the upstream noise.

given by the time until a particle released at the locations of s and u reaches the
sensor location of m. Integrating a numerical simulation with passive particles, or
simply the base-flow equations, will lead to the same results, as small perturbations
will not significantly affect the convective speed of the flow. Since it is acceptable to
underestimate the delays, but not to overestimate them, the fastest particle (initially
located at the centreline position) is taken as a reference. Figure 9 shows different
streamlines of the base flow, with passive particles being integrated from the actuator
location (a) for determining ndu and the sensor location (b) for determining nds. It
takes, respectively, about 11.4 and 12.2 time units for the fastest particles released at
the control and sensor location to reach m; for this reason, ndu and nds are set to the
corresponding values of ndu = 114 and nds = 122 (since dtm = 0.1). The ndu coefficient
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FIGURE 6. Three alternative data sequences, that define the first testing dataset (a) the
measurement s capturing the influence of external noise, (b) a deterministic, broadband
control law u, (c) the measurement m taken near the reattachment point.
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FIGURE 7. Three alternative data sequences, that define the second testing dataset (a) the
measurement s capturing the influence of external noise, (b) a deterministic, broadband
control law u, (c) the measurement m taken near the reattachment point.

is consistent with the value we found by evaluating the cross-correlation between u
and m.

The coefficient nbu is set to 49 such that the first visible peak in figure 8(b) is
captured. We therefore set nbs = nbu = 49. Numerical tests revealed that the model
showed little sensitivity to variations in the coefficients [nbu, nbs]. The grey zone
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FIGURE 9. Motion along the base flow streamlines. (a) from t = 0 to t = 11.4, starting at the
location of the controller. (b) t = 0 to t = 12.2, starting at the location of the upstream sensor.
The contours are coloured according to the base flow velocity.

in figure 8(b) is bounded by t/dtm = [ndu; nu]. We recall that it is not necessary
to increase nbu in order to obtain an efficient model; a signal that is sufficiently
auto-correlated can be represented with only a few coefficients bk by using an auto-
regressive equation (see the arguments in § 4.1.1). The chosen grey zone contains
the first arrival of information from u in the measurement m. An alternative, direct
identification of the Markov parameters (that is, by setting na = 0) is conceivable but,
in this case, the coefficient nu should be set to at least nu = 300. This value stems from
the approximate support of the signal in figure 8(b), yielding a state–space model more
than doubled in size. This exercise highlights the importance of the auto-regressive
part of the model which is able to capture the dynamics in a far more compact
manner.

Finally, the coefficient nc can simply be chosen by evaluating various models once
the remaining coefficients have been determined. By increasing nc from 0 to 20, an
optimal value at nc = 9 has been found that resulted in very satisfactory results.

In summary, the selected values for the ARMAX coefficients can be found in
table 2.
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FIGURE 10. Performance of the system-identified model ARMAX0 compared to DNS
measurements. The ARMAX model starts from the zero state, and results are compared to
the DNS dataset: (a) learning dataset; (b) validation dataset 1; (c) validation dataset 2 .

na nbu nbs ndu nds nc

36 49 49 114 122 9

TABLE 2. Choice of coefficient values for the ARMAX model.

4.2.3. Identification algorithm
The computation of an ARMAX model (with nc > 0) involves an iterative algorithm.

Owing to the non-white-in-time error term E, the algorithm can ensure stability by
modelling the unpredictable dynamics as the error. We used the MatLab routine armax
to compute the model; more details about the algorithm can be found in Ljung (1999).

4.2.4. Model performance
Figure 10 illustrates the performance of the system-identified ARMAX model, in

particular its accuracy in reproducing the output m for the three datasets displayed
in figures 4, 6 and 7. The model is based on the ARMAX equation (4.1), whose
coefficients are listed in table 2. In what follows, this model will be referred to
as ARMAX0; it estimates the output m from the inputs u and s. The identified
model is initialized with a zero state vector (which explains the vanishing values for
t ∈ [0 11.4] = [0 ndu]dtm) and is only driven by (s, u) to provide an estimate for m. The
output of the model is compared to the measurement m from DNS: the model is able
to predict the output with very high accuracy, which validates both the relevance of
the model equation (4.1) and the implementation of the s-sensor to provide important
information to the model.
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FIGURE 11. Galerkin-based ROM versus ARMAX impulse responses. (a) From u to m.
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4.3. Comparison between Galerkin-POD and ARMAX model

For the sake of completeness, a comparison between the identified model and a
Galerkin-based model is presented. As mentioned in § 3, both the Galerkin-based
Kalman filter (3.2) and the system-identified model (4.1) aim at presenting the output
m as a function of the two inputs u and s. In addition, both models are linear and can
thus be compared using their respective impulse response. To this end, we computed
a Galerkin reduced-order model, taking advantage of full knowledge of our numerical
system (note that the computation of the Galerkin ROM cannot be performed within
the pseudo-experimental setup introduced in § 3.2.2).

We proceeded as described in Rowley (2005). First, two snapshot sequences for the
impulse responses of the direct equations starting with an impulse in u, and w are
computed which are then used to determine a balanced-POD basis that was thereafter
truncated to contain 23 modes. The Navier–Stokes equations are then projected onto
this truncated basis. A Kalman estimator is then computed to estimate the state from
upstream measurements s. As we do not consider sensor noise in this section, the
Kalman filter is computed in the large-gain limit (which is equivalent to assuming
var(w)� var(gs) in (3.1)). Solving an algebraic Riccati equation finally provides the
Kalman filter (3.2), whose transfer functions correspond to (fu, fs).

The Kalman estimator is known to be the optimal linear system that predicts the
output measurement m given the inputs (u, s). One can therefore expect the transfer
functions of such a model to match the transfer functions obtained via ARMAX
identification. Comparing the impulse response of different systems is therefore an
appropriate test as it is independent of the chosen basis and the particular formulation
of the model (state–space form or polynomial representation of the transfer
function).
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FIGURE 12. (Colour online) Additional source of noise. A Gaussian momentum forcing
is located in the shear layer, near the end of the recirculation bubble so that it generates
structures that impact on m but not s.

x0 y0 σx σy A

Additional noise 9 −0.5 0.1 0.1 7.2

TABLE 3. Parameters that define the spatial Gaussian distributions of the new noise source.
It is located in the shear layer, near the end of the recirculation bubble so that it will create
structures that impact on m but not s.

Figure 11 shows a comparison of the impulse responses that have been obtained
using the Galerkin framework and using the ARMAX identification technique. It
shows a remarkable correspondence between the two models, which again corroborates
the ability of the chosen system-identification technique to capture the relevant flow
dynamics.

4.4. Robustness of the ARMAX model with respect to non-predictable forcing sources
In a realistic environment, the external disturbances may arise from multiple locations,
and some of them may not be observable by the upstream sensor. Nevertheless, they
can influence the output m and consequently disturb the identification process. In this
section we investigate the effects of such perturbations on the identification process.

To highlight the properties of the ARMAX model, the results will be compared with
those of purely linear models: an ARX model and a subspace model. The ARX model
represents a special case of an ARMAX model with nc = 0, whereas the subspace
model is obtained as described in Huang & Kim (2008), with a dimension of 120.
To model an unknown external excitation that impacts on the downstream sensor m
without being observable by s, a new random forcing source is added to the flow: it
is located in the shear layer, near the end of the recirculation bubble, so that it will
impact on m without being detected by s. Figure 12 shows the precise location of the
additional forcing source; numerically, it is modelled as a momentum forcing, similarly
to the main forcing source (the coefficients are given in table 3).

In such a configuration, the downstream sensor measures the combination of
predictable dynamics (by s) that arise from the main forcing source and unpredictable
dynamics that arise from the new forcing source. Ideally, the identified model should
treat the unpredictable dynamics as the model error E(t) (as introduced in § 3.2). In
other words, it should ignore it and, rather, focus on the predictable dynamics whose
effects can be cancelled by the controller. As far the controller is concerned, the
objective is to attenuate the predictable noise, since the unpredictable part is out of
reach.
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FIGURE 13. Additional source of noise: (a) signal generated by the additional forcing
source alone; (b) periodogram of the perturbation signal; (c) resulting corrupted output signal,
compared to the original (uncontaminated) signal.

As previously mentioned (see § 4.1.2), most linear system-identification techniques
treat the model error as white noise; the ARMAX equation differs in this respect
by allowing time-coloured noise. This additional feature is critically important in this
study: the model error is certainly time coloured since it corresponds to physical
structures that do not affect s but are nonetheless advected and filtered by the flow
until they eventually reach the sensor m.

Figure 13 displays the additional measurement (a), its power spectrum (b), as well
as the resulting corrupted learning dataset (c). In figure 13(b) one can clearly see that
the high frequencies are filtered by the flow before the excitations affect the output
measurement. The standard deviation of the perturbation signal (figure 13a) is equal to
44 % of the standard deviation of the original signal. New models are then obtained
based on the corrupted dataset of figure 13(c). This is followed by simulations
using the validation dataset of figure 6, which has not been corrupted by the
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Presence of additional external forcing source: No
(%)

Yes
(%)

Relative
loss (%)

ARMAX fit 96 82 15
ARX fit 72 33 41
Subspace fit 95 49 48
Relative improvement from ARX to ARMAX 32 148

TABLE 4. Influence of an additional external forcing on the ARX, subspace, and ARMAX
model performance. While the ARMAX identification remains accurate in the presence
of unpredictable forcing sources, the purely linear ARX and subspace models show a
significant loss in performance.

additional forcing source; it is thus possible to compare the results obtained to those
in § 4.2.4.

For a quantitative comparison, we use as a criterion the fraction of the output
variation that is captured by each model. We introduce

fit= 1− ‖msimulated − mref ‖
‖mref −mean(mref )‖ . (4.8)

For the regression of the ARX and ARMAX models, we use the same coefficients as
those given in table 2, except for nc. Owing to the dependence of the ARMAX model
on the properties of the unpredictable noise, the value of nc had to be adjusted. As
in § 4.2.2, nc has been varied from 0 to 20, and best results have been obtained for
nc = 17.

Figure 14 depicts the performance of the ARX, subspace, and ARMAX models
in recovering the (clean) validation dataset, with an additional source of noise
having been present during the identification process. Both purely linear models show
inferior performance, while the ARMAX model performs well in predicting both the
control peak response and the subsequent dynamics. Quantitative results are given
in table 4. For comparison, we also conducted tests using the initial (uncorrupted)
learning dataset of figure 4 during the identification process; results are also given
in table 4 (column headed No). In the presence of mostly predictable dynamics, the
ARX performance is significantly lower than the subspace model performance; the
latter is comparable to ARMAX. This is consistent with the results of Huang & Kim
(2008) where the subspace model showed better performance than the ARX model.
On the other hand, both purely linear models suffer a severe loss in performance
when the identification processes are afflicted by unpredictable time-coloured noise.
The ARMAX model, on the other hand, fared significantly better, which underlines the
importance of the moving-average component of the model to cope with unpredictable
dynamics in the flow.

5. Feed-forward control
In this section, we build a compensator based on the ARMAX0 model. It consists of a

dynamical linear system that is designed to compute an optimal control law u from the
measured signal s. The objective of the controller is to minimize the quadratic norm of
the measurement m. The control design is detailed in § 5.1, before the compensator is
used to control the direct numerical simulation in § 5.2.
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FIGURE 14. Comparison of the performance of (a) ARX, (b) subspace and (c) ARMAX
models to recover the validation dataset. The models were identified in the presence of
an unpredictable noise source. Both purely linear models are substantially affected by the
presence of time-coloured noise, and do not provide accurate estimations of the signal. The
ARMAX model, on the other hand, remains accurate despite a small loss in performance.
Note that the fit coefficient, defined in (4.8), has been computed using a longer simulation.

5.1. Control design

Considering (3.4a), together with the objective to minimize ‖m‖, the control law may
formally be written as

u=−f−1
u fss. (5.1)
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In practice, fu cannot be properly inverted, and a pseudo-inverse has to be used. This
consists of finding a control vector that minimizes the prediction of the output m, from
t to t + T where T defines the control horizon (whose value will be set below).

5.1.1. Designing the compensator dynamics
Using the impulse responses fu and fs displayed in figure 11, one can construct the

two Markov sequences defined in (4.2). Figure 11 shows that both impulse responses
eventually converge towards zero, which justifies our assumption of hk>500=N0 = 0
(the index N0 corresponds to a time t = 50). For an arbitrary discrete-time control
horizon T > N0, the output measurement vector MT that results from a combination
of a past control vector Up, a future control vector U f and a past measurement
vector Sp reads

mt

mt+1

...

mt+T


︸ ︷︷ ︸

MT

=


hu

0

hu
1 hu

0

· · · . . .

hu
T · · · hu

0


︸ ︷︷ ︸

Hu


ut

ut+1

...

ut+T


︸ ︷︷ ︸

U f

+


hu

1 · · · hu
T

hu
2 · · · hu

T 0

. .
.

hu
T · · · 0

0 · · · · · · 0


︸ ︷︷ ︸

Gu


ut−1

ut−2

...

ut−T


︸ ︷︷ ︸

Up

+


hs

0 · · · hs
T

hs
1 · · · hs

T 0

. .
.

hs
T · · · 0


︸ ︷︷ ︸

Gs


st

st−1

...

st−T


︸ ︷︷ ︸

Sp

. (5.2)

To define the compensator, we minimize the predicted output norm ‖MT ‖2
2 . The

solution then reads

U f = (−H+u Gu

)
Up + (−H+u Gs

)
Sp, (5.3a)

u(t)=
[
1 0 · · · 0

]
U f , (5.3b)

where H+u denotes the pseudo-inverse of Hu (Penrose 1955). Equation (5.3) defines
a linear dynamical system, whose inputs are the past measurements s and the past
control inputs u, and whose output is u(t). In practice, using a simple inverse would
provide a system where the high frequencies are highly amplified, since fu → 0 at
high frequencies. A pseudo-inverse is required with a non-zero tolerance level; it is
based on the reciprocals of all singular values of Hu that fall above a user-specified
threshold. Setting this tolerance level is equivalent to applying a filter and enables
an effective compensator design. Regardless of the tolerance level, the performance
of the compensator increases with T . We set T = 1000, which corresponds to a non-
dimensional time length of t = 100. For the tolerance level, best results were obtained
for a value of 0.0218, where 48 singular values are retained.

5.1.2. Balanced truncation and characterization of the compensator
Once the compensator has been designed, it can be recast into a simpler state–space

model through balanced truncation (the algorithm is described in Safonov & Chiang
1989). The transfer function of the compensator (5.3) can be described, without
significant loss in accuracy, by a 14-modes state–space model that reads, in general
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FIGURE 15. Impulse response of both the open-loop and closed-loop models. (a) Predicted
measurements. The response of ARMAX0 is the same as in figure 11. (b) Control law
(corresponds to the impulse response of the compensator). Closing the loop efficiently
reduces the effects of an impulse in s for the model.

form,

X(t + 1)= AX(t)+ Bs(t), (5.4a)
u(t)= CX(t)+ Ds(t). (5.4b)

Figure 15(a) shows a comparison between the impulse response of the open-loop
model (no control) and impulse response of the closed-loop model (where the
compensator is used to provide the control law). As expected, it shows a very effective
reduction of the predicted output. The associated control law is shown in figure 15(b).

5.2. Control results
5.2.1. Using perfect sensors

So far, the effectiveness of the compensator has been tested on the identified model
ARMAX0 itself. In this section, we present results from DNS as the control. The
compensator is driven by measurements from the DNS; the DNS, in turn, uses the
control law that the compensator provides. The time step for the compensator has
been changed from dtm to dtdns in order to compute a control law at each time
step of the DNS while keeping the same transfer function. Such a transformation is
straightforward and described in Antoulas (2005).

Figures 16 and 17 show the control performance using a compensator that consists
of a state–space system of 14 modes. As anticipated, the compensator not only reduces
the fluctuations of m (the r.m.s. value of the output fluctuations is reduced by 93 % in
figure 16) but also accomplishes a reduction of 99 % of the perturbation energy in the
entire computational domain (figure 17).

Figure 18 depicts the average turbulent kinetic energy of both the uncontrolled
and the controlled simulations. The maximum peak of turbulent energy is located at
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FIGURE 16. Output measurement m extracted from the DNS as a function of time. Both the
controlled and the uncontrolled simulations (using the same exact source of random noise) are
compared. The compensator is based on 14 modes, and the sensors are taken as noise-free.

x ≈ 25 in both cases, with the output sensor placed near the reattachment point of the
separation bubble (at x= 10.5). The maximum peak of turbulent energy coincides with
the location where the convective instability ends, which is in agreement with linear
theory. The choice of the downstream skin-friction measurement m as an appropriate
objective for the control design is validated, since the reduction of its fluctuations led
to a substantial reduction of the turbulent energy in the entire computational domain.
The turbulent kinetic energy is reduced by 96 % at x≈ 25, the same location as where
the uncontrolled turbulent kinetic energy is maximal.

5.2.2. Using noisy sensors
Noisy sensors are modelled by adding white Gaussian noise to all measured signals.

Noise on m only affects the design process, whereas a noisy measurement s affects
both the design process and the compensated simulation (the compensator is driven
with a noise-contaminated measurement).

Figures 19 and 20 display the difference between the exact and corrupted signals,
both for m and s, for different standard deviations of the noise. The noise root-mean-
square (r.m.s.) value is expressed as a percentage of the r.m.s.-value of the exact
signal. The same learning dataset has been used and corrupted with different levels of
measurement noise. All models are generated using the same coefficients na, nbu, nbs,
ndu, nds, nc and the same tolerance for the pseudo-inverse.

Figure 21 illustrates the effect of the measurement noise on the control performance.
The energy of the fluctuations is plotted versus time for the various simulations, and
the standard deviation of the noise measurements is expressed as a percentage of
the r.m.s. value of the noise-free signal. The compensator appears to be quite robust
to measurement noise and remains effective even with the two measurements [s,m]
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FIGURE 17. Perturbation energy from the DNS as a function of time. Both the controlled
and the uncontrolled simulations (using the same exact source of random noise) are compared.
The compensator is based on 14 modes, and the sensors are taken as noise-free.
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FIGURE 18. Contours of the mean turbulent kinetic energy from the numerical simulation
(the vertical coordinate is stretched for more clarity). (a) Uncontrolled simulation.
(b) Controlled simulation. Streamlines of the base flow are also shown. The control action
is barely visible at the top corner of the step in the controlled simulation. The maximum peak
of turbulent kinetic energy is reduced by 96 %.

corrupted by 100 % of their respective signal-r.m.s. As expected, noise-corrupted
measurements, in general, lead to a reduced control performance. More specifically,
a contamination of the signal s shows more effect on the performance than an
equal contamination of the signal m. This should not come as a surprise since the
measurement noise gm is eliminated during the ARMAX regression and thus never
appears again. A corruption of the measurement s, on the contrary, will affect both the
ARMAX regression and the input signal of the compensator.

5.2.3. Using stronger perturbations
As the noise levels are raised, nonlinear effects start to come into play during the

numerical simulations. To facilitate a comparison, the same random source sequence
is used but is simply multiplied by a different amplitude σw (see table 5). The
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FIGURE 19. Short sequence of the noisy signal s, corrupted by 10 % of the r.m.s. of s (a) and
by 100 % of the r.m.s. of s (b). The exact signal is extracted from the controlled numerical
simulation whose energy is shown in figure 17.
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FIGURE 20. Comparison between the noise-free and noisy signal m from the learning
dataset: (a) corrupted by 10 % of the r.m.s. of m, (b) corrupted by 100 % of the r.m.s. of m.

n1 n2 n3 n4 n5 n6 nl1 nl2 nl3

mrms reduction (in %)
Achieved 93 75 66 42 22 15 93 80 23
Expected 93 75 69 37 22 18 — — —

Energy reduction (in %)
Achieved 99 95 85 76 55 43 98 87 49

Standard deviation of the
noise σw

0.01 0.01 0.01 0.01 0.01 0.01 1
√

10 10

TABLE 5. Summary of achieved and expected controller performances, as well as model-
expected performances. ni refers to the simulations from § 5.2.2 probing the influence
of measurement noise; nli refers to the simulations from § 5.2.3 assessing the effects of
nonlinearities. The relative standard deviation of the noise in the DNS computation is given
by σw.

same controller based on ARMAX0 (which has been computed with Gs = Gm = 0
and σw = 0.01) is used for each simulation. To quantify the amount of nonlinear
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FIGURE 21. Effect of noisy sensors on the overall controller performance, measured by the
kinetic energy (in semilog scale) versus time. Noise levels are expressed in percentage of the
r.m.s. of the exact signals.

effects, a linearized simulation based on the same random source sequence has been
computed. Figure 22 shows the resulting energy plots where three levels of noise
are presented. Each level is displayed in a different colour; the dashed lines show
the energy of the uncontrolled simulation, while the solid lines correspond to the
controlled simulations. Symbols correspond to the extrapolated linear uncontrolled
simulation, so that the difference between symbols and dashed lines shows the effects
of nonlinearities. In each case, the controller starts at t = 100. For each simulation, the
controller accomplishes a reduction of the perturbation energy. However, the relative
energy reduction diminishes as the noise amplitudes (and thus the nonlinear effects)
increase.

Figure 23 shows the average turbulent kinetic energy of the uncontrolled and
controlled simulations for the case with strongest noise levels (the pink lines in
figure 22). Compared to the linear case, the maximum peak of the turbulent energy has
shifted to x ≈ 8, a manifestation of the linear theory no longer holding. Nevertheless,
the controller has been able to reduce the maximum peak of turbulent kinetic energy
by an impressive 88 % (the maximum energy peak values for uncontrolled/controlled
simulations are taken at x≈ 8 and x≈ 15, respectively) whereas the global reduction is
49 % (see nl3 in table 5).

5.2.4. A final comparison
Table 5 summarizes the results of different controlled simulations. The abbreviations

n1, . . . , n6 correspond to the six simulations performed in § 5.2.2 (see figure 21),
arranged in descending order of energy reduction. The abbreviations nl1, . . . , nl3

correspond to the simulations that have been shown in § 5.2.3, figure 22, sorted in
the same way. The expected reduction in the r.m.s.-values of m originates from the
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FIGURE 22. Control of nonlinear flows, displayed by perturbation energy as a function
of time. Dashed lines: uncontrolled nonlinear simulations; solid lines: controlled nonlinear
simulations. Symbols: extrapolated linear simulation. Curves of the same colour correspond
to same level of noise excitation in the uncontrolled DNS. The controller starts after an initial
transient period at t = 100.
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FIGURE 23. Contours of the average turbulent kinetic energy (v2
x + v2

y) from the nonlinear
numerical simulations (the vertical scale is stretched for more clarity). (a) The uncontrolled
simulation; (b) the controlled simulation. The maximum peak of uncontrolled mean turbulent
kinetic energy is located at x≈ 8 and is reduced through control efforts by 88 %.

control of the specific model that has been computed in § 4.2 by assuming noise-free
sensors and low levels of environmental noise.

6. Conclusions
The flow over a backward-facing step has been considered as a typical amplifier

flow where the influence of noise sources and model uncertainty plays a dominant
role in the design of accurate low-order models and effective controllers. This type of
flow is often encountered in industrial settings and research experiments; model-based
control strategies, however, have shown only limited success when applied to amplifier
flows under realistic disturbance environments. Rather than enforcing a particular
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(idealized) flow model a priori, a model is extracted directly from time sequences
of observable data. During the design process, special care has to be taken that only
data which are readily available, e.g. in an experiment (generally contaminated by
noise), enter the system-identification procedure.

In our case, a model has been designed based on an ARMAX-equation which
consists of an auto-regressive (AR) component for the measurements, a moving-
average (MA) component for the collective noise sources, and exogenous (X) terms for
the input variables. The latter input variables are composed of the control input as well
as an upstream sensor signal which acts as a proxy variable for the unknown upstream
noise. The coefficients of this regression model are chosen on physical grounds by
considering the general convective behaviour of the flow for the delay terms and by
analysing the mutual influence (or lack thereof) of actuators and sensors. In a second
step, the model forms the base of a feed-forward controller. Applying this combined
system-identification/control-design approach to our flow over a backward-facing step
yielded remarkable results. A reduction of more than 90 % of the measurement energy
and total energy could be observed. Increasing the noise levels to high values did not
compromise the stability of the compensator, even though its effectiveness diminished
accordingly. An application of the linearly designed compensator to a nonlinear
numerical simulation showed encouraging results. The total turbulent kinetic energy
could still be reduced by nearly 50 % and the maximal turbulent kinetic energy by
88 %, even though the compensator operated far off its design point.

In summary, a robust and compelling flow control procedure has been introduced
that is data-based in the model design and follows classical methods for model-
reduction and control layout. This technique is particularly attractive for amplifier
flows, where the accurate modelling of noise sources and their influence on system
dynamics and sensor output is imperative for a successful compensator performance.
It should also appeal to experimental efforts and practical applications of closed-loop
flow control.
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