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Abstract This article deals with the linear dynamics of a transitional boundary layer subject to two-dimensional
Tollmien–Schlichting instabilities. We consider a flat plate including the leading edge, characterized by a Rey-
nolds number based on the length of the plate equal to Re = 6×105, inducing a displacement thickness-based
Reynolds number of 1,332 at the end of the plate. The global linearized Navier–Stokes equations only display
stable eigenvalues, and the associated eigen-vectors are known to poorly represent the dynamics of such open
flows. Therefore, we resort to an input–output approach by considering the singular value decomposition of
the global resolvent. We then obtain a series of singular values, an associated orthonormal basis representing
the forcing (the so-called optimal forcings) as well as an orthonormal basis representing the response (the
so-called optimal responses). The objective of this paper is to analyze these spatial structures and to closely
relate their spatial downstream evolution to the Orr and Tollmien–Schlichting mechanisms. Analysis of the
spatio-frequential diagrams shows that the optimal forcings and responses are respectively localized, for all
frequencies, near the upstream neutral point (branch I) and the downstream neutral point (branch II). It is also
shown that the spatial growth of the dominant optimal response favorably compares with the eN method in
regions where the dominant optimal forcing is small. Moreover, thanks to an energetic input–output approach,
it is shown that this spatial growth is solely due to intrinsic amplifying mechanisms related to the Orr and
Tollmien–Schlichting mechanisms, while the spatial growth due to the externally supplied power by the domi-
nant optimal forcing is negligible even in regions where the dominant optimal forcing is strong. The energetic
input–output approach also yields a general method to assess the strength of the instability in amplifier flows. It
is based on a ratio comparing two quantities of same physical dimension, the mean-fluctuating kinetic energy
flux of the dominant optimal response across some boundary and the supplied mean external power by the
dominant optimal forcing. For the present boundary-layer flow, we have computed this amplification parameter
for each frequency and discussed the results with respect to the Orr and Tollmien–Schlichting mechanisms.

Keywords Stability · Noise amplifier · Boundary layer

1 Introduction

According to Huerre et al. [1], unsteadiness in open flows can be classified into two main categories. The flow
can behave as an oscillator and impose its own dynamics (intrinsic dynamics), or the flow can behave as a
noise amplifier and reflect in some extent the noise already present in the upstream flow (extrinsic dynamics).
For example, the cylinder flow characterized by a Reynolds number in the range 47 < Re < 180 is typical
of the family of oscillators, while a homogeneous jet or a Blasius boundary layer (viewed in a global setting)
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618 D. Sipp, O. Marquet

is characteristic of the family of noise amplifiers. In a linear global framework, where both the stream-wise
and cross-stream directions are solved for, these two classes of flows exhibit different characteristics of the
global linearized Navier–Stokes (GLNS) operator. The oscillator flow corresponds to a globally unstable flow
and displays at least one unstable global mode, that is, one unstable eigenvalue of the GLNS operator. In the
case of the cylinder flow, Zebib [2], Jackson [3], Provansal et al. [4], and Sipp et al. [5] showed that the first
bifurcation was linked to a Hopf bifurcation.

Amplifier flows, on the other hand, are globally stable in the sense that all eigenvalues of the GLNS operator
are stable. Chomaz [6] and Marquet et al. [7] showed that the linearized Navier–Stokes equations are strongly
non-normal in open flows due to the downstream advection of the perturbations and to the lift-up mechanism.
Trefethen et al. [8] showed that this property may generate strong energy amplifications. These amplifications
may be highlighted by an input–output analysis [9] carried out either in the temporal or in the frequency
domain. In the former, the impulsive linear response of the flow is investigated by looking for optimal initial
perturbations that maximize the energy of the perturbation at some given time T . In the latter, the long-time
linear response of the flow to harmonic sustained forcing is investigated by looking for optimal forcings that
maximize the energy of the flow response at some given frequency ω.

For open flows, most of the theoretical studies [10–13] have been performed in the temporal domain.
The frequency-based approach is nevertheless attractive since external perturbations in open flow experiments
are often described as upstream sustained disturbances characterized by a given spectrum. Frequency-based
methods therefore play a central role in the characterization of low-order models. For example, the dynamic
mode decomposition (DMD) [14] decomposes a temporal evolution into dynamic modes characterized by
particular frequencies. Hence, to study noise amplifiers, we will look for optimal forcings and try to identify
pseudo-resonances in the spectrum. Pseudo-resonances correspond to particular frequencies, where strong flow
responses are triggered for specific spatial distributions of the forcing. These energy amplifications could be at
the origin of the unsteadiness observed in noise amplifiers: low-level sustained upstream external perturbations
can be amplified and filtered by the GLNS operator, leading to strong downstream unsteadiness characterized
by broadband frequencies corresponding to the identified pseudo-resonances.

Optimal forcings are identified by achieving a singular value decomposition of the global resolvent oper-
ator. The outcome of this analysis is, for each frequency, optimal forcings, optimal responses, and optimal
energy gains. The resolvent operator for the linearized Navier–Stokes operator has already been introduced
in the local framework by Farrell et al. [15]. Here, we consider this operator in a global approach, in which
the stream-wise direction is also solved. The singular value decomposition of the global resolvent matrix is a
computationally challenging problem. The involved matrices stem from the spatial discretization of the GLNS
operator, which results in large-scale matrices. The singular value decomposition has first been performed by
considering reduced-order models based on global eigen-modes [16–18]. To obtain converged results, this
approach requires a large number of global modes, which is a computationally challenging task. And it still
suffers from convergence problems [19], especially for the optimal forcing structures. The direct computation
of the dominant singular values on the large-scale problem without invoking global modes was first performed
by Monokrousos et al. [20] using direct-adjoint simulations. This paper describes an alternative method based
on a “discretize-then-optimize” scheme, which combines iterative Arnoldi methods and a direct LU solver.
The proposed computational method is very efficient and enables to obtain not only the dominant singular
value but also sub-optimals.

In a local approach, the study of noise amplifiers is usually achieved thanks to the eN method, which
evaluates the potential for energy extraction by integrating for a given frequency the local spatial amplification
rate in the downstream direction. A precise comparison between the present approach and the eN method
can be achieved as they are both carried out in the frequency domain. This has not yet been done, since only
global modes, that is, eigenvectors of the GLNS operator, have been compared to results obtained by the eN

method [21] and [16]. One of the objectives of this article is to make a thorough assessment of how the global
singular modes relate to local results. In particular, there has been some debate during the past years concerning
the spatial localization of the global singular modes with respect to local stability properties. For example,
Akervik et al. [17] suggested in the case of Tollmien–Schlichting instabilities that the forcing structures might
be localized near branch I. It could also be argued that the maximum of the optimal responses may be located
near branch II. However, Akervik et al. [17] could not, however, assess these points since their computational
domain did not comprise branch I and branch II at the analyzed frequency.

The present article also offers a physical discussion on the definition of amplification in globally stable
open flows when studied using a frequency approach. In the case of oscillator flows, the temporal amplification
rate of the unstable global modes gives the degree to which the flow is unstable. In the case of amplifier flows,
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Characterization of noise amplifiers 619

a quantification of the amplification mechanisms is provided by an input–output analysis. In the temporal
domain, this quantification is usually defined as the ratio between the energy of the perturbations at a time
t = T (output) and at the initial time t = 0 (input). The value 1 of this energy gain defines without ambiguity
the threshold between damping and amplification. The picture is less clear in the frequency domain where
the quantification of the amplification mechanisms is usually defined as the ratio of the L2 norm of the opti-
mal response (output) with the L2 norm of the optimal forcing (input). This definition is convenient from a
mathematical perspective but lacks physical meaning as it compares two quantities with different physical
dimensions, a kinetic energy integrated over space versus a squared acceleration integrated over space. As a
consequence, the value 1 of this ratio does not clearly define the threshold between damping and amplification.
We will address this issue by using an input–output approach based on the kinetic energy equations: the input
is then the power supplied to the flow while the output refers to a kinetic energy flux. Finally, we will try to
distinguish within the downstream spatial growth of the optimal response which part is due to the external
optimal forcing or to an intrinsic amplification.

As an application of these concepts, the linear two-dynamics of a flat-plate boundary layer is considered.
The three-dimensional dynamics is not studied in this paper. The physical results are therefore restricted to a
boundary layer in low-level noise environment, for which the two-dimensional mechanisms are known to be
predominant. This flow is well known to be a noise-amplifier flow, and two-dimensional perturbations may be
amplified by two instability mechanisms. The long-term Tollmien–Schlichting instability takes advantage of
the presence of a critical layer and a Stokes layer to impose a non-zero Reynolds stress. The short-term Orr insta-
bility [22] is observed for waves that lean against the mean shear. The amplification of such two-dimensional
perturbation has been much studied within a local framework. Local stability analysis shows that the Blasius
boundary layer is convectively unstable to Tollmien–Schlichting waves when the Reynolds number based on
the local displacement thickness δ(x) is larger than the critical value 520. Eigenvalues of the local linearized
Navier–Stokes operator then exhibit positive spatial growth rates. The flow configuration studied in this paper
is chosen to obtain a local Reynolds numbers varying from 0 to 1,332. Within this choice, the location of branch
I (respectively II), which spatially delimits the locally stable/unstable (respectively stable/unstable) regions,
lay within the computational domain in the frequency range 30 ≤ F ≤ 240 (respectively 80 ≤ F ≤ 240). The
results of the global approach and especially the structure of the singular modes optimal forcings/responses
will be discussed in the light of these two instability mechanisms.

This article has some links with the works by Lopez et al. [23] and Do et al. [24]. These authors consider a
Bödewadt boundary-layer flow on the stationary bottom end wall of a finite rotating cylinder. They look at the
response of the flow to harmonic modulations of the rotation rate. They also call theses structures “Optimal
harmonic responses” although the optimization parameter in their case is solely the frequency of modulation,
since the forcing structure is fixed and given by the way they force the flow (modulations of the rotation rate of
the cylinder). In the present study, the term “optimal” refers to an optimization over all frequencies and over
the spatial distribution of the forcing structure.

The article proceeds as follows. First (Sect. 2), we introduce the singular value decomposition and present
the new method, based on iterative Arnoldi methods and a direct LU solver, to compute the dominant singular
vectors. Results concerning a flat-plate boundary layer where the leading edge is solved for are presented in
Sect. 3. Dominant and sub-optimal structures will be analyzed and discussed in the light of the Orr and Tollm-
ien–Schlichting instability mechanisms. A discussion (Sect. 4) follows, which addresses two issues raised
above: a comparison of the global results with those given by a local theory (the eN method) and a quanti-
fication of the amplifying behavior in terms of an energetic approach. Results will finally be summarized in
Sect. 5.

2 Formalism

To investigate the dynamics of incompressible flows acting as noise amplifiers, we consider an input–output
approach, consisting of the forced Navier–Stokes equations

∂tu + u · ∇u = −∇ p + ν∇2u + εf ′, ∇ · u = 0 (1)

where the source term f ′ in the momentum equations models an external forcing and the parameter ε is intro-
duced to tune its amplitude. The velocity and pressure fields (u, p) are decomposed into a steady component
(U , P), the base-flow, and an unsteady component ε(u′, p′), the perturbation. By introducing this decompo-
sition into (1) and assuming a small amplitude forcing ε � 1, we obtain at leading order that the base-flow is
governed by the steady Navier–Stokes equations:

Author's personal copy



620 D. Sipp, O. Marquet

U · ∇U = −∇P + ν∇2U , ∇ · U = 0 (2)

At next order, we obtain the equation governing the dynamics of linear perturbations developing onto the
base-flow and triggered by the external forcing:

∂tu
′ + U · ∇u′ + u′ · ∇U = −∇ p′ + ν∇2u′ + f ′, ∇ · u′ = 0 (3)

In the case of noise amplifiers, the base-flow is globally stable. Thus, at large times and without forcing (ε = 0),
any initial perturbation superimposed onto the base-flow will vanish even if it can be largely amplified in short
times. Here, we are interested rather by the long-time dynamics when the flow is continuously subject to
external forcing. The role of the external forcing is thus to sustain the perturbation, and we wish to determine
the characteristics of the external forcing (for instance, its frequency and spatial location), which lead to the
largest amplitude perturbations.

It is therefore natural to consider a Fourier decomposition of the forcing and response. These quantities
may thus be considered as harmonic waves of real frequency ω:

f ′(x, y, t) = f̂(x, y)eiωt + c.c. (4)

(u′, p′)(x, y, t) = (û, p̂)(x, y)eiωt + c.c. (5)

where f̂ and (û, p̂) indicate the (complex) structures of the forcing and response waves respectively. Introducing
this decomposition into (3), we obtain the equations

iωû + U · ∇û + û · ∇U = −∇ p̂ + ν∇2û + f̂ , ∇ · û = 0 (6)

that govern the spatial structure of the perturbation û driven by a wave of spatial structure f̂ and frequency ω.
For convenience, we rewrite these equations in a compact form

û = C(ω)f̂ (7)

where C = PT (iωB − A)−1 P is known as the resolvent operator. Here, B = PPT and P is the prolongation
operator that transforms a velocity vector (u, v)T into a velocity–pressure quantity (u, v, 0)T , and its transpose
is the restriction operator. A denotes the linearized Navier–Stokes operator around the base-flow

A =
(−U · ∇ − () · ∇U + ν∇2 −∇

∇ · () 0

)
. (8)

We now look for forcings f̂ , which yield the strongest responses û. This corresponds to an optimization
problem for the forcing f̂ . Usually, there are two approaches [25] to solve an optimization problem. The con-
tinuous approach consists to first define a continuous optimization problem and then discretize it whereas the
discrete approach consists to discretize the governing equations before defining an optimization problem. In
the following, we will choose the second option. The main reason is that the discretize-then-optimize strategy
is superior to the optimize-then-discretize strategy in terms of accuracy and well-posedness of the numerical
problems. But one has to keep in mind that, even though we present the forthcoming developments in a discrete
approach, the structures that we will introduce do have an intrinsic (continuous) existence that does not depend
on the nature of the chosen discretization.

Once a spatial discretization has been chosen, the governing Eq. (7) reads:

û = C(ω)f̂ (9)

where C(ω) = PT (iωB − A)−1 PM. Here, B, A, M, and P are large-scale matrices, which are sparse in the
case of finite difference or finite element discretizations. The definition of the discrete resolvent is similar to the
continuous resolvent (see Eq. 7), except for the introduction of the matrix M that depends on the chosen spatial
discretization. For instance, it is defined as the identity matrix M = I in the case of finite differences while in
a finite element approach, M designates the mass-matrix. P is the prolongation matrix, which takes a velocity
vector and adds zero pressure components to yield a velocity–pressure vector, while PT is the restriction
operator, which extracts the velocity components from a velocity–pressure vector. Note that the superscript T

designates the transpose, while ∗ is the trans-conjugate. Finally, the matrix B is defined by B = PMPT so that
iωB − A is the global linearized Navier–Stokes matrix in the frequency domain.
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Characterization of noise amplifiers 621

To measure the degree of amplification of the perturbations, we consider global measures of the response
and forcing. We look for optimal forcings f̂ , which maximize the gain:

G(f̂) = û∗Qu û

f̂∗Q f f̂
(10)

where û = C(ω)f̂ . Here, Qu and Q f are two hermitian matrices defining the global measures of the response
and forcing. Q f is meant to be positive definite whereas Qu is positive but may have a non-zero null-space
[26]. For example, û∗Qu û may stand for the energy in some sub-domain Ωu while f̂∗Q f f̂ is the energy in the
whole computational domain Ω . Note that G corresponds to the ratio of two quantities of different physical
dimensions: the numerator refers to the kinetic energy of the perturbation while the denominator is the energy
of the forcing. The quantitative value of G has therefore no physical meaning: G has been chosen because
the related optimization problem is mathematically well-posed. A more physical quantity referring to the true
amplification will be introduced in Sect. 4.2 based on an energetic input–output approach.

This optimization problem is readily solved by studying the generalized (with respect to the matrices Q f
and Qu) singular value decomposition of the global resolvent:

C(ω) = Û�F̂∗Q f (11)

Û∗QuÛ = F̂∗Q f F̂ = I (12)

where the matrix � is a diagonal matrix with positive entries λi , called the singular values. The singular values
are ranked by decreasing value λ1 ≥ λ2 ≥ ·· ·. The columns of the two matrices Û and F̂ are respectively called
the left and right (generalized) singular vectors and will be denoted ûi and f̂i . The orthonormality relations
(12) express that these singular vectors are orthonormal with respect to the inner products associated with Qu

and Q f , that is, û∗
i Qu û j = δi j and f̂∗

i Q f f̂ j = δi j where δi j stands for the Kronecker symbol. One may verify
from Eqs. (11) and (12) that the left and right singular vectors are linked through:

C(ω) f̂i = λi ûi (13)

This equation yields a physical interpretation of the singular values and vectors. A right singular vector f̂i

corresponds to an external forcing structure of unit energy f̂∗
i Q f f̂i = 1. The response of the flow to this forcing

is given by λi ûi , where the left singular vector ûi represents the spatial structure (of unit energy û∗
i Qu ûi = 1)

of the flow response and the singular value λi designates its global amplitude. In the following, the left and
right singular vectors will be called the optimal responses and optimal forcings, respectively.

Now, let us show how this decomposition straightforwardly characterizes the global frequency response for
any given forcing f̂ . The expansion of this forcing onto the set of optimal forcings is given as f̂ = ∑N

i=1 αi f̂i

where the complex coefficients αi are readily obtained as the scalar products of the forcing f̂ with the corre-
sponding optimal forcings, that is, αi = f̂∗

i Q f f̂ . The energy of the forcing is then given by f̂∗Q f f̂ = ∑N
i=1 |αi |2

which shows that the magnitude of the coefficient |αi | is related to the fraction of forcing energy accounted
for by the i th optimal forcing. If we introduce this forcing expansion into the frequency response problem (9),
we obtain the flow response as an expansion in terms of optimal responses

û =
∑
i≥1

λiαi ûi (14)

This relation is central to the whole approach, since for a given forcing f̂ , it straightforwardly yields the response
of the flow û. The expansion coefficients λiαi are related to the fraction of energy accounted for by the i th
optimal response. Since the optimal response basis ûi is orthonormal, the energy of the response û is simply
given by:

û∗Qu û =
∑
i≥1

λ2
i |αi |2 (15)

For example, if λ1 � λ2, in order to have a maximum response of the flow, one should excite at the frequency
ω where the curve λ1(ω) is maximum and with a structure that is closest to f̂ = f̂1(ω). The resulting flow
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622 D. Sipp, O. Marquet

would then have the same structure as û1 with an energy equal to û∗Qu û = λ2
1. The dominant optimal forcing

f̂1 therefore identifies a receptive region of the flow, that is, a region where a small amplitude forcing triggers
a large flow response.

The numerical computation of the singular values of the global resolvent is based on the reformulation of
the singular value problem as an eigenvalue problem. The singular values λi and right singular vectors f̂i can
be found by solving the generalized eigenvalue problem

D f̂i = λ2
i Q f f̂i (16)

where the matrix D = C(ω)∗ Qu C(ω) is hermitian. We may hence normalize the eigenvectors as f̂∗
i Q f f̂i = 1,

and the left singular vectors ûi can be found by solving (13). The generalized eigenvalue problem (16) is
finally recast in a standard eigenvalue problem by considering the matrix Q−1

f D. Its largest eigenvalues are
computed using the ARPACK’s library [27] in regular mode and complex arithmetic (driver znaupd, http://
www.caam.rice.edu/software/ARPACK/). Hence, it is required at each step to compute Q−1

f Dw for a given

complex vector w. For this, we note that Q−1
f D = Q−1

f MT PT (L∗)−1PQuPT L−1PM with L = iωB − A.

Hence, for a given w, we apply in sequence all the operators appearing in this expression. The inverse Q−1
f

may be handled by a conjugate gradient, so that the bottleneck of this algorithm is the computation of L−1w
and (L∗)−1w. In the present work, we explicitly form the sparse matrix L and invert it using a sparse direct
LU solver (MUMPS package[28], http://graal.ens-lyon.fr/MUMPS/). In terms of storage, only the matrix L
has to be once LU decomposed since this matrix is involved in both inverses. Hence, the overall cost of the
algorithm is the cost of one LU decomposition.

3 Results

The formalism developed in the previous section has been applied to a flat-plate two-dimensional boundary-
layer flow. The flow configuration and the base-flow are described in the first subsection. Results of the singular
value analysis are presented in the second subsection.

3.1 Flow configuration and base-flow

We consider a two-dimensional boundary layer developing over a flat plate of length 1.25. A uniform free-
stream velocity (u = u∞ = 1, v = 0) imposed at the inlet boundary (x = −0.5, 0 ≤ y ≤ 1) develops
and encounters a flat plate located on the segment (0 ≤ x ≤ 1.25, y = 0) where no-slip boundary condi-
tions are enforced. Symmetric boundary conditions are applied on the boundaries (−0.5 ≤ x < 0, y = 0)
and (−0.5 ≤ x ≤ 1.25, y = 1). Standard outflow boundary conditions are used at the outlet boundary
(x = 1.25, 0 ≤ y ≤ 1): − p̂n + ν∇û · n = 0. The Reynolds number based on the length l = 1 and on
the free-stream velocity u∞ = 1 is fixed to Re = 6 × 105. In the following, the stability of the bound-
ary layer is investigated in the restricted domain Rex = u∞x/ν ≤ Re, which implies that the optimization
domain is defined as x ≤ l, where l = 1. This means that we look for forcings f̂ = ( f, g), which opti-
mize the ratio between the perturbation energy û∗Qu û = ∫ ∫

x≤l(|u|2 + |v|2)dxdy and the forcing energy

f̂∗Q f f̂ = ∫ ∫
(| f |2 + |g|2)dxdy. Note that changing the length of the optimization domain l is equivalent to

changing the Reynolds number Re = u∞l/ν. The computational domain extends up to x = 1.25 to insure that
the downstream boundary condition does not affect the results within the optimization domain. This has been
checked in detail in “Appendix”.

The base-flow is governed by the steady Navier–Stokes equation: with the above-mentioned boundary con-
ditions holding for the velocity field U = (U, V ). A Newton method is used to solve this non-linear equation,
and the spatial derivatives are discretized with Taylor-Hood finite elements (P2 elements for the velocity field
and P1 elements for the pressure). The mesh consists of 3.03 × 106 triangles, and their size in the boundary-
layer region (−0.5 ≤ x ≤ 1.25, 0 ≤ y ≤ 0.02) is �x = 1/6,000. This results in a number of degrees of
freedom equal to 13.7 × 106. The displacement thickness of the numerical solution is in agreement with the
analytic expression 1.72Re−1/2√x obtained for the asymptotic Blasius similarity solution (see Fig. 1). The
Reynolds number based on the local displacement thickness Reδ(x) increases from 0 at the sharp leading edge
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Characterization of noise amplifiers 623

Fig. 1 Re = 6×105. Displacement thickness δ(x) and associated local Reynolds number Reδ(x) of the two-dimensional base-flow
(symbols) and of the analytic self-similar Blasius solution (line). The vertical solid line shows the downstream limit of the domain
of interest Rex ≤ Re.

to 1,332 at x = 1 and reaches 1,490 at the outlet (x = 1.25). In the following, δ = 1.72/
√

Re will designate
the displacement thickness at the coordinate x = 1. Also, as done in previous studies on boundary layers, we
will use the frequency F = 106 · ω/Re instead of ω to present the results.

3.2 Optimal forcings/responses

For F = 100, the largest energy gains are equal to λ2
1 = 198.7, λ2

2 = 2.1, and λ2
3 = 0.87. The optimal forcing

f̂1 and response λ1û1 associated with the first singular value are depicted in Fig. 2a, b by the iso-contours of
the real part of their stream-wise component. In Fig. 2e, we have represented in black dashed line and black
solid line, the energy density functions d f (x) = ∫ 1

0 (| f |2 + |g|2)dy and du(x) = ∫ 1
0 (|u|2 + |v|2)dy. The

dominant optimal response λ1û1 is localized downstream around x = 0.90, very close to branch II located at
x = 0.86. The mode exhibits a 180 degrees phase reversal in the wall-normal direction, characteristic of the
Tollmien–Schlichting instability. The imaginary part of the optimal response (not depicted here) is similar to
the real part but out of phase, thus enabling a continuous downstream convection of the perturbations. The
optimal forcing f̂1 is localized upstream near x = 0.30, where branch I is located. It consists of elongated waves
inclined against the flow stream. This spatial structure indicates that the Orr mechanism is at play to extract
energy from the base-flow. These forcing/response structures are similar to those shown by Monokrousos et al.
[20], except that theirs were pinned at the upstream and downstream boundaries of the computational domain.
Indeed, their flow configuration does not include branch I and branch II within their computational domain.
The forcing and response associated with the second singular value, shown in Fig. 2c, d, are similar to those
related to the dominant singular value, except that they present two maxima in the stream-wise direction. These
results are reminiscent of the fact that the forcing and response bases are orthogonal. Unlike the dominant
singular modes, there is no clear stream-wise separation (upstream and downstream) between the forcing f̂2
and the response λ2û2. The structure of the forcing indicates that a residual Orr mechanism contributes to the
energy gain λ2

2.
Figure 3a shows the largest energy gains λ2

1, λ2
2 and λ2

3 as a function of the frequency F . For λ2
1, the

maximum response is obtained for the frequency F = 88 indicating that a preferred frequency exists for the
extraction of energy within the domain x ≤ 1. It is nearly three orders of magnitude higher than the second and
third singular values. This large gain corresponds to a pseudo-resonance since it cannot be simply explained
by the presence of a particular eigenvalue in the spectrum of the linearized Navier–Stokes operator around the
real frequency F = 88 [16,17]. To investigate the stream-wise distribution of the dominant optimal forcing f̂1
and response λ1û1 as a function of frequency, the energy density functions du(x) and d f (x) are shown in the
(Reδ(x), F) plane in Fig. 3b, c. The spatial support of the optimal forcing and response are located upstream
and downstream, respectively. This spatial separation of the forcing and response is analogous to the separation
of the adjoint and direct global eigen-modes, which has been viewed as a footprint of the convective non-nor-
mality in open flows [6,7]. The loci of the maxima of the energy density functions within the domain x ≤ 1 are
shown by the cyan symbols. For comparison, the neutral curve obtained from a local linear stability analysis of
the profiles extracted at each stream-wise position is shown with the magenta line. The optimal forcings exhibit
a peak at the convectively stable/unstable boundary (branch I) whereas the optimal responses are maximum
at the convectively unstable/stable boundary (branch II). The agreement is particularly good for the position
of the optimal forcing and only deteriorates for high frequency (F ≥ 210) and low frequency (F ≤ 50).
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Fig. 2 Results for Re = 6 × 105 and F = 100. a Real part of stream-wise momentum forcing f̂1 for dominant singular value.
b Real part of stream-wise velocity response λ1û1. c, d Same for second singular value. e Energy density functions d f (x) (dashed
lines) and du(x) (solid lines) for first (black lines) and second (red lines) singular modes. The vertical dashed lines in a refer to
the location of the stream-wise localized forcing introduced in Sect. 4.1 while the vertical solid lines show branch I and branch
II in a–e. The thick solid line in a–d indicate the local displacement thickness δ(x) (color figure online)

The maximum of the optimal response is slightly shifted downstream from branch II for increasing frequency.
These slight disagreements may be explained either by non-parallel effects [29] or by the Orr mechanism, both
not accounted for in the local modal stability analysis. In a global setting, the Orr and Tollmien–Schlichting
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Fig. 3 Re = 6 × 105. a Optimal gains as a function of the frequency F . b Iso-values of energy density for the dominant optimal
forcing f̂1 in the (Reδ(x), F) plane. c Same for optimal response λ1û1. The curve defined by cyan symbols yields for a given
frequency F the maximum of the energy density function within x ≤ 1. The magenta curve designates the neutral curve as
obtained from a local stability analysis. The vertical black solid lines show the optimization region x ≤ 1 (Reδ(x) ≤1,332) (color
figure online)

mechanisms are in competition and both contribute to the energy gain. At high frequency F ≥ 210, the
locally unstable region decreases in size due to a weakening of the Tollmien–Schlichting mechanism. Thus,
the Orr mechanism becomes dominant. At low frequency F ≤ 50, the locally unstable region is outside the
optimization domain x ≤ 1 and the Orr mechanism is again dominant.

Inspection of Fig. 3b, c yields some interesting information about the dependance of the dominant singular
value λ2

1 with respect to the Reynolds number Re or equivalently to the distance l defining the optimization
region. For high frequencies (F > 130), both the optimal forcing and the optimal response are located far
inside the optimization domain, with small values of the density functions near x = l = 1. The optimal gains
in this frequency range therefore do not depend on the Reynolds number Re, provided Re ≥ 6 × 105. For
intermediate frequencies (50 < F < 130), only the optimal forcing is located far inside the optimization
region while the optimal response displays strong energy density values at the end of the optimization domain
near x = l = 1. The optimal gain λ2

1 being the ratio between the energy of the optimal response and the energy
of the optimal forcing is therefore an explicit function of the Reynolds number Re. For example, if this Reynolds
number is slightly increased above 6 × 105, the energy of the optimal response will increase while keeping the
energy of the optimal forcing constant: as a result, the singular value λ2

1 increases, that is, dλ2
1/dRe > 0. For

this intermediate range of frequencies, we therefore obtain lower bounds for the optimal gains (with respect to
their asymptotic values reached at higher Reynolds numbers). For low frequencies F < 50, both the optimal
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forcing and the optimal response display strong energy densities close to x = l = 1 and the optimal gain
strongly depends on the optimization domain. In this last case, there is no guarantee that dλ2

1/dRe ≥ 0 near
Re = 6 × 105. Note that for a given Reynolds number Re defining the optimization domain, there always
exists a frequency threshold below (respectively above), which the optimal gain is dependant (respectively
independent) of the Reynolds number. This is due to the fact that branch I and branch II move downstream
(toward increasingly high Reynolds numbers Reδ(x)) as the frequency F tends to zero in the case of the TS
instability.

4 Discussion

This section is dedicated to two specific points. The first paragraph investigates how the optimal forcing and
response structures may be used to approximate the flow response to a localized forcing. The results are com-
pared with the eN method, which has widely been used to characterize amplifier flows in weakly-non-parallel
flows. The second paragraph introduces a quantification of the amplification based on an input–output energetic
approach.

4.1 The signaling problem: approximation with singular modes and with local approach

Let us first consider a flow forced by the optimal forcing f̂ = f̂1 at frequency F = 100. The associated exact
response is given by the optimal response û = λ1û1. The energy densities d f and du have already been dis-
cussed in Fig. 2e. The energy growth of the response d−1

u (d/dx)(du) is shown as a function of x with dashed
lines in Fig. 4b. The spatial amplification rate obtained from a local stability theory is given in thin solid line.
We observe that the latter poorly reproduces the exact energy growth in the region where the forcing is strong
(0.25 ≤ x ≤ 0.4). This is not surprising since the local results are known to be valid only downstream of any
forcing.

To address a suitable comparison with the local approach, we consider a forcing f̂(x, y) at frequency
F = 100 that is localized upstream of branch I (x = 0.30). Its spatial structure is chosen as the optimal forcing
f̂1 in the range x ∈ [0.25 − 5δ, 0.25 + 5δ] and zero elsewhere. For clarity, this region is delimited by the

Fig. 4 Re = 6 × 105. Forcing localized at x = 0.25 with frequency F = 100. a Energy density of response. b Spatial energy
growth of response. Thick solid line exact global solution, thin solid line local solution, black and red dashed lines approximation
with 1 and 2 singular modes. The vertical dashed lines refer to the location of the stream-wise localized forcing while the vertical
solid lines show branch I and branch II. Note that the dashed- and thin solid lines in b may also be considered to analyze the case
of the response to the forcing f̂ = f̂1 (see first paragraph of Sect. 4.1) (color figure online)
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Table 1 Approximated response to stream-wise localized forcing using the singular modes

i or N |αi |2 E N
f̂

λ2
i λ2

i |αi |2 E N
û

1 0.0679 0.0679 198.66 13.485 13.485
2 0.0105 0.0784 2.096 0.022 13.507
3 0.0023 0.0807 0.873 0.002 13.509
4 0.0164 0.0971 0.869 0.014 13.523
5 0.0048 0.1019 0.827 0.00002 13.523
∞ − 1 − − 13.553

The first column gives the truncation parameter N or the numbering of singular mode i . The second and third columns give the
forcing energy captured by the i th optimal forcing and by the first N forcing modes, respectively. The fourth column is the optimal
gain associated with the i th singular mode. The fifth and sixth columns give respectively the energy contained in the i th optimal
response and in the first N response modes. The last line stands for the exact solution referred by N = ∞ for convenience

vertical dashed lines in Fig. 2. After rescaling the forcing to unit energy, that is, f̂∗Q f f̂ = 1, the exact response
is straightforwardly obtained with the direct solver by computing û = Cf̂ .

Approximations of the imposed forcing and corresponding flow response can be obtained from the singular
modes as

f̂ ∼
N∑

i=1

αi f̂i , û ∼
N∑

i=1

αiλi ûi , αi = f̂∗
i Q f f̂ (17)

where N is a truncation parameter. The coefficient αi is defined as the projection of the imposed forcing
onto the optimal forcing and determines the contribution of f̂i to f̂ . The contribution of each optimal response
structure to the exact solution is given by the product αiλi of this coefficient with the singular value. The
energy of the approximated forcing and response is then obtained as

E N
f̂

=
N∑

i=1

|αi |2 , E N
û =

N∑
i=1

λ2
i |αi |2 (18)

since the optimal forcings and optimal responses form two orthonormal bases. Results obtained using up to five
singular modes are presented in Table 1. As shown in the last column, the energy captured by the first optimal
response (13.485) corresponds to more than 99 % of the energy of the exact response (13.553). The other
optimal responses contribute very weakly to the energy response. It is interesting to note that their contribution
is not necessarily ordered. For instance, the energetic contribution of the fourth optimal response is larger than
the third one. This is not due to the ranking of the singular values λ2

i , which is decreasing by construction. It
rather stems from the contributions |αi |2 to the forcing, which are not ordered as seen in the second column.
Surprisingly their values are very weak. The first optimal forcing mode captures 6.79 % of the exact forcing
energy, and the five optimal forcing modes only capture 10 %. It shows that only a small fraction of the forcing
energy is used to trigger almost all of the energy of the response.

To further address the comparison, we examine how the energy of the flow response is locally approx-
imated by singular modes. The local energy density du(x) of the response is plotted as a function of the
stream-wise location in Fig. 4a. The thick solid line is the exact solution while the black and red dashed
lines are the approximated solutions with N = 1 and N = 2, respectively. The exact solution displays a
strong amplification within the forcing region, exemplified in the figures by the vertical dashed lines, as well
as immediately downstream. The growth outside of the forcing region is attributed to the Orr mechanism
since the stream-wise localized forcing exhibits a spatial pattern of upstream-tilted vortices. Further down-
stream, the energy amplification is due to the Tollmien–Schlichting instability. Using only the first singular
mode, the local energy of the approximated solution is close to the exact one for x > 0.5. A slight overes-
timation is observed around the maximum of the flow response, but this mismatch nearly disappears when
using two singular modes. Just downstream of the forcing region, the truncated solution underestimates the
local energy of the exact response even when using two singular modes. This difference could probably be
minimized using more singular modes. However, it would barely modify the total energy of the response, as
noticed previously (see Table 1), because the local energy in this region is two orders of magnitude smaller than
at its maximal value. Turning now to the local approach, the energy density of the flow response is estimated
via the so-called eN method. It consists in integrating in the stream-wise direction the amplification rate of
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one spatial mode at a given frequency. A reference amplitude needs to be defined. At a starting position, here
the location of branch I (x = 0.30 for this frequency), the energy of the local approximation is chosen equal
to the local energy of the exact solution. This local approximation is depicted by the thin solid line in Fig. 4a.
It underestimates the exact energy by a factor of two at the maximum x = 0.90.

A last comparison is performed by examining the local energy growth, that is, the stream-wise derivatives
of the curves shown in Fig. 4a. The results are displayed in Fig. 4b with the same convention as in Fig. 4a. The
energy growth of the exact response is irregular close to the forcing location (0.25 ≤ x ≤ 0.45) and displays
a monotonous variation further downstream x ≥ 0.45. This monotonous variation is well reproduced by the
local energy growth, but the exact energy growth is always underestimated. This constant error is cumulative
in the eN method and results in the factor 2 error mentioned above. Close to the forcing location, the com-
parison is quite poor. These observations may be understood by recalling that the local theory yields a good
approximation of the energy growth if the flow is parallel and if the comparison is done far downstream from
the excitation so that only the first local spatial mode dominates the solution. Close to the forcing location,
many local spatial modes are excited by the forcing, which explains the poor comparison. Further downstream
(for x ≥ 0.50), the mismatch between the thick and thin curves stems from the non-parallelism of the flow.
The approximation given by the first singular value yields good results only for x ≥ 0.75. This stems from
the fact that this solution was built to approximate the overall energy of the solution and not the spatial energy
growth. Yet, as low energy levels are involved in the region x ≤ 0.75, the mismatch in terms of spatial energy
growth does not affect the performance for the energy density shown in Fig. 4a. To conclude, local and global
approaches are inherently different: the local theory targets the spatial energy growth while the singular modes
approximate the overall energy with dynamical structures. It should be added that the local results might be
improved by considering a weakly-non-parallel approach such as the “Parabolized Stability Equations” method
and more than one spatial mode.

4.2 Quantification of amplifying behavior

One of the objectives of the present article is to characterize the degree of amplification in a globally stable
open flow. As mentioned in the introduction, a quantification of the instability is obtained by comparing input
and output quantities. We have seen that the optimal energy gain is not a suitable quantity for this since it
corresponds to a ratio involving two quantities of different physical dimensions. Another idea would be to
evaluate the energy amplification of the dominant optimal response λ1u1 between two stream-wise stations x0
(the input) and x1 (the output). This strategy is followed by the eN method in the local approach. It reduces
to evaluating the ratio du(x1)/du(x0), with du(x) as the energy density function of λ1û1. Yet this quantity is
meaningful only if the optimal forcing f̂1 is small between x0 and x1; otherwise, f̂1 can be considered as a
supplementary input that is not taken into account in the ratio du(x1)/du(x0). From the analysis of the black
dashed line in Fig. 2e, we can see that the amplitude of f̂1 is small only if x0 and x1 are chosen far downstream,
that is, at least x1 > x0 > 0.5. Now, between branch I (x = 0.3) and x = 0.5, both the energy growth of the
optimal response λ1û1 and the amplitude of the optimal forcing f̂1 are strong: the input related to f̂1 therefore
may not be neglected, and the ratio du(x1)/du(x0) with x0 = 0.3 and x1 = 0.5 does not yield a fair evaluation
of the amplification of the flow, since all inputs are not taken into account.

In the following, after introducing the equation governing the mean perturbation kinetic energy flux
(Sect. 4.2.1), we will present a global and a local parameter to assess the instability of an amplifier flow
(Sect. 4.2.2). Results are illustrated with the dominant optimal forcing and response at frequency F = 100. In
Sect. 4.2.3, we will analyze the whole frequency range by discussing the results with respect to the Orr and
TS instability mechanisms.

4.2.1 Energetic approach

In order to better characterize the amplification process, we consider the equations governing the mean kinetic
energy associated with a harmonic perturbation u′ triggered by a harmonic forcing f ′ of frequency ω. By first
taking the dot-product of Eq. (3) with u′, then averaging over one period T = 2π/ω and finally integrating in
space over an arbitrary domain Ω , we obtain the equation

∮
∂Ω

(
k′U · n + p′u′ · n − 2νD′ · u′ · n

)
ds =

∫
Ω

⎛
⎝f ′ · u′︸ ︷︷ ︸

W

−R′ : D︸ ︷︷ ︸
P

− 2νD′ : D′︸ ︷︷ ︸
D

⎞
⎠ dΩ (19)
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Fig. 5 Source terms of the kinetic energy flux Eq. (19) for the optimal forcing/response at F = 100. a External power W ,
b production P and c dissipation D. The dashed line indicates the local displacement thickness δ(x)/δ of the boundary layer

where the following notations are used: (·) = T −1
∫ T

0 (·)dt defines a time average quantity, k′ = (u′ · u′)/2 is
the point-wise perturbation kinetic energy, n is the outward normal vector to the domain Ω , D (respectively
D′) is the strain rate tensor of the base-flow (respectively perturbation), and R′ is the Reynolds-stress tensor.
Since the above equation is written in conservative form, it relates the boundary integral on the left-hand-side
to various source terms on the right-hand-side. The boundary integral has three components: the first one is
the mean perturbation kinetic energy flux, the second is the mean velocity–pressure correlation, and the last
one is the viscous diffusion term. In the present study, we have observed that the first term always dominates
the other ones. In the following, we will therefore refer to the boundary integral term as the mean perturbation
kinetic energy flux. In the source term appearing in the right-hand-side of Eq. (19), we distinguish again three
terms. W is called the external power and expresses the mean power directly supplied by the external force to
the perturbation. P is the production term and corresponds to the mean power extracted from the base-flow
and transferred to the perturbation. D is the dissipation term and characterizes the mean power lost due to
viscous stresses. Since W is the only term directly involving the forcing, it is an extrinsic source. On the other
hand, the balance P − D between the production and dissipation terms is an intrinsic source.

The external power W , production P , and dissipation D terms are displayed in Fig. 5a–c in the case of
the dominant optimal forcing/response at frequency F = 100. The external power W is the lowest term in
magnitude. It is either positive or negative, depending on the wall-normal location. The overall integral in
space is positive indicating that the forcing globally supplies power to the fluctuations. In the stream-wise
direction, the external power is nearly uniformly distributed between branch I and II. This spatial distribution
results from the definition of the external power as the product between the optimal forcing f̂1 and the optimal
response λ1û1. The external power displays the strongest value in the overlapping region between the optimal
response located near branch II and the optimal forcing located near branch I. This region can be viewed as the
one where the external power should be injected to obtain the largest response. It is different from the region

Author's personal copy



630 D. Sipp, O. Marquet

Fig. 6 Spatial domain Ω used to define the amplification parameter �. The inlet and outlet boundaries are located at xin and
xout. The inputs (red) consist of the energy flux at the inlet −K (xin) and the external power

∫∫
Ω

W dΩ . The output (blue) is the
energy flux at the outlet K (xout) (color figure online)

where the forcing displays the strongest amplitudes. This is a typical feature of open flows as discussed by
Chomaz [6] and Marquet et al. [7] in the case of globally unstable flows.

The production term P is much stronger in magnitude than the power term W and displays positive values
in the whole area comprised within branch I and II. In this region, the mean power is extracted from the base-
flow and transferred to the fluctuations. In the stream-wise direction, the production term is largest near branch
II since it solely depends on the optimal response λ1û1. In the wall-normal direction, the strongest values
are observed below the local displacement thickness of the boundary layer, between the critical layer and the
Stokes layer. This is in agreement with the classical interpretation of the Tollmien–Schlichting instabilities
[30], based on the positiveness of −u′v′∂yU , the dominant production term in a boundary layer. The viscous
effect induces the Reynolds stress term u′v′ to be strictly negative between the critical layer and the Stokes
layer, leading to a strictly positive production term. Finally, the dissipation term D is located very close to the
wall near branch II and counterbalances the production term since −D < 0.

4.2.2 Global and local amplification parameters

To define an energy-based amplification parameter, we consider the domain Ω shown in Fig. 6, where ∂Ωin
(respectively ∂Ωout) is the inlet (respectively outlet) boundary located at station xin (respectively xout). Equation
(19) can be rewritten as

K (xout) + K (xin) =
∫
Ω

W dΩ +
∫
Ω

(P − D) dΩ, K (x) =
∞∫

0

(
k′U · n + p′u′ · n − 2νD′ · u′ · n

)
dy

(20)

For the input–output analysis, the output is defined as the energy flux at the outlet (K (xout)), while the inputs
are the energy flux at the inlet (−K (xin)) and the external power integrated over the domain Ω (

∫
Ω

W dΩ).
The amplification parameter is the ratio between the output and the inputs

� = K (xout)

−K (xin) + ∫∫
Ω

W dΩ
(21)

It is worth noting that this ratio compares two quantities of the same physical dimension, unlike the gain G
defined in Eq. (10). Using Eq. (20), the amplification parameter can be rewritten as

� = 1 +
∫
Ω

(P − D) dΩ

−K (xin) + ∫
Ω

W dΩ
(22)

A threshold value for the amplification can now be defined without ambiguity. � > 1 indicates an intrinsic
amplification of the energy in the domain because the intrinsic source term

∫
Ω

(P − D) dΩ is positive, while
� < 1 corresponds to a damping. This definition is quite general and depends on the choice of the domain
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Fig. 7 Global amplification for the optimal singular mode at F = 100. a Kinetic energy flux K (xout) (dashed line) and external
power

∫∫
Ω

W dΩ (solid line) as a function of the outlet location xout. b Global amplification parameter � as a function of xout.
The vertical lines delimit the convectively unstable region. The gray area emphasizes the threshold amplification � = 1

Ω . Note that, if we choose a domain that does not contain any external forcing, the external power vanishes.
The amplification parameter would then be defined as K (xout)/(−K (xin)), which recovers the amplification
parameter du(x1)/du(x0) discussed at the beginning of Sect. 4.2.

In the following, we will try to give a detailed analysis of the amplification process by considering both
a global amplification parameter and a local one. The global amplification parameter is built by choosing the
inlet boundary ∂Ωin as the inlet boundary of the computational domain (xin = −0.5) and by varying the
outlet boundary location xout. In the specific case xout = 1,Ω corresponds to the optimization domain used
in Sect. 3. Since the perturbation energy flux vanishes at the inlet, the global amplification parameter reads

�(xout) = K (xout)∫∫
Ω

W dΩ
= 1 +

∫
Ω

(P − D) dΩ∫
Ω

W dΩ
(23)

This global amplification parameter is used for quantifying the amplification of the optimal forcing/response
at F = 100. The energy flux (dashed line) and external power (solid line) are depicted in Fig. 7a as a function
of xout. The global amplification parameter is shown in Fig. 7b, where the gray color highlights the region
� < 1. The global amplification parameter is above 1 for almost every position of the outlet boundary. Ampli-
fication is observed upstream of branch I: the amplification parameter � is greater than 1 for values of xout
above 0.05 and reaches a value of 10 at branch I. As the amplification within this region can only be due
to the Orr mechanism, this value yields a quantification of the perturbation kinetic energy flux extracted by
this mechanism. In the locally unstable region, the amplification increases from � ≈ 10 to � = 268 that is
reached at xmax

out = 0.87, slightly downstream of branch II. Further downstream, the amplification decreases to
reach � ≈ 70 when the domain corresponds to the optimization domain (xout = 1). This decrease is clearly
associated with a local damping of the energy flux.

A local amplification parameter can be defined to better characterize the region displaying local amplifi-
cation. We consider a small domain Ω in the stream-wise direction, defined by xin = x and xout = x + dx .
Taking the limit dx → 0 in Eq. (22), we obtain

γ = 1

γext

dK

dx
= 1 + γint(x)

γext(x)
, γext(x) =

∞∫
0

W (x, y)dy , γint(x) =
∞∫

0

(P(x, y) − D(x, y))dy (24)

where γext and γint are the extrinsic and intrinsic local sources. Figure 8a displays these quantities as a function
of the location x for the optimal forcing/response at F = 100. The extrinsic local source is maximum in the
middle of the locally unstable region, while the intrinsic local source is strongest slightly upstream of branch
II. For every location, the intrinsic source is much larger than the extrinsic source. The local amplification
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Fig. 8 Local amplification for the optimal singular mode at F = 100. a Local amplification of the kinetic energy flux as a function
of the stream-wise coordinate x . The solid and dashed lines stand for the extrinsic γext and intrinsic γint local sources respectively.
b Location amplification parameter γ as a function of x . Close-up view of the region upstream of the convectively unstable region
which is delimited in both figures by the vertical lines

Fig. 9 Global amplification as a function of the frequency F . The dashed line represents the global amplification �(xout = 1).
The solid line designates the maximum value of the global amplification parameter �max = maxxout≤1 �(xout). The symbols are
the local Reynolds numbers Reδ(xmax

out ) at the location xmax
out where the maximum is obtained. The arrows in the figure indicate

which axis to consider for each curve

parameter is shown in Fig. 8b. It is above 1 for every location x indicating that the local amplification is
intrinsic. This intrinsic local amplification is much stronger for the Tollmien–Schlichting mechanism than for
the Orr mechanism.

4.2.3 Global amplification parameter as a function of frequency

The analyzes led for F = 100 in the case of local and global amplification parameters can be repeated for
other frequencies. Figure 9 offers a synthetic view of the global amplification parameter � over all frequencies.
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We first focus on the dashed line that corresponds to �(xout = 1), for which the outlet boundary is fixed to
the outlet of the optimization domain. Maximal amplification is obtained for the frequency F = 83 where
�(xout = 1) ≈ 680. For higher frequencies F > 120, there is no global amplification since �(xout = 1) < 1.
Indeed, as the frequency increases, the convectively unstable region moves upstream and the perturbations are
damped out between branch II and the outlet xout = 1. This damping is mainly related to the negative values
of the production term that arise downstream of branch II (see Fig. 5b). For lower frequencies, the global
amplification parameter is decreasing with frequency due to the fact that the convectively unstable region
progressively moves downstream and therefore out of the optimization domain (see discussion at the end of
Sect. 3.2). Some complementary insight may be gained by considering a domain whose outlet is adapted to
get the maximum value of the amplification parameter:

�max(F) = max
xout≤1

�(xout, F) (25)

The specific value of the outlet location where the maximum is reached is denoted by xmax
out . The local dis-

placement thickness Reynolds number based on this outlet location is denoted Reδ(xmax
out ). Results for �max(F)

and Reδ(xmax
out ) are respectively shown by the solid line and the symbols in Fig. 9. Comparison with the purple

curve in Fig. 3c shows that the maximal amplification parameter �max is obtained when the half-plane Ω is
chosen to extend up to branch II. For the present region of interest Rex < Re (x ≤ 1), the maximum values
of �max are obtained when xout is located at the downstream border of the optimization domain x = 1 and
for frequencies F around 83. The maximum values of the curve �max(F) are therefore the same as those
obtained for �(xout = 1)(F). For F > 100, the maximal values �max are obtained for outlet locations inside
the optimization domain xout < 1. The strong discrepancy observed between the solid and dashed lines shows
that there is a damping of the energy flux in the region xmax

out ≤ x ≤ 1, which has already been mentioned above.
For very high values of the frequency, F ≈ 230, it is seen that the amplification parameter is still superior to 1
with a value around �max ≈ 20. As the flow is stable to Tollmien–Schlichting waves at such high frequencies,
only the Orr mechanism and non-parallel effects [29] may be responsible for this amplification.

5 Conclusion

In this paper, from a numerical point of view, we have introduced a new method to compute the largest sin-
gular values of the global resolvent. The method follows the “discretize-then-optimize” scheme and allows to
consider different measures for the forcing space and the response space. Also, the use of an iterative Arnoldi
approach enables to compute sub-optimals.

From a physical point of view, we have analyzed the singular vectors for a flow developing over a sharp-
leading-edge flat plate. It was shown that the optimal forcings are located near branch I while the optimal
responses are near branch II. The downstream evolution of the energy density of the optimal response com-
pares favorably with the local eN method, except in the region where the optimal forcing is strong. To gain
some new insight about the spatial growth of the energy density, we introduced an energetic input–output
approach, which showed that this growth was solely due to intrinsic amplifying mechanisms related to the Orr
and Tollmien–Schlichting mechanisms and not to the externally supplied power by the optimal forcing. It was
also shown how to quantify the amplifying behavior of the dominant optimal response û1, by considering an
amplification parameter � comparing a mean-fluctuating kinetic energy flux of the optimal response with the
externally supplied mean power by the optimal forcing. This yields for each frequency the “true” potential of
amplification of the flow. It has been shown in particular that the Orr mechanism remains active at very high
frequencies.

From a broader perspective, we have shown that amplifier flows should be characterized in the global
framework by analyzing the singular values and vectors of the flow (and not the eigenvalues of the Jacobian).
We think that this approach is conceptually simple because it is based on the singular value decomposition of
the global resolvent, which is a robust and very general concept. It also yields a direct link with receptivity
studies since the spatial location of the optimal forcings identifies sensitive regions of the flow. In the case
of weakly-non-parallel flows as boundary layers or jets, such an analysis compares well with the traditional
local eN method. This is important, since a general concept has to encompass particular cases. The global
approach is comparatively much more intensive from a computational point of view, which strongly favors the
cheap local approaches (even though these local approaches may be technically and conceptually much more
involved). On the other hand, for amplifier flows violating the weakly-non-parallel assumption, the singular
values/vectors approach is the only possibility.
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Fig. 10 Re = 6 × 105. Comparison of results obtained on a short- (red solid lines) and a long mesh (black dashed line) extending
respectively up to x = 1.25 and x = 1.5. The optimization domain has been kept constant (x ≤ 1). a Pressure coefficient and
displacement boundary-layer thickness of the base-flow as a function of x . b Stream-wise evolution of energy density functions
of dominant optimal forcing f̂1 and response λ1û1 (color figure online)

Appendix: Influence of downstream boundary condition

We check in this section that the outflow boundary condition imposed at x = 1.25 does only have a minor
influence on the results within the region of interest (which extends up to x = 1). For this, we achieve compu-
tations with a mesh extending up to x = 1.5, while keeping the optimization domain within x ≤ 1. In Fig. 10a,
we compare the stream-wise evolution on the flat plate of the pressure coefficient C p and of the displacement
boundary-layer thickness δ(x) for the short and long meshes (which respectively extend up to x = 1.25 and
x = 1.5). A slight mismatch is observed for the pressure coefficient, but the associated pressure gradient
discrepancy is extremely weak and has no influence on the boundary-layer displacement thickness evolution
and on the friction coefficient (not shown here). In Fig. 10b, we have plotted the stream-wise evolution of the
energy density functions associated with f̂1 and λ1û1 for F = 100. We observe that the curves for the long
mesh coincide with those of the short mesh nearly perfectly for x ≤ 1.
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