
J. Fluid Mech. (2013), vol. 719, pp. 406–430. c© Cambridge University Press 2013 406
doi:10.1017/jfm.2012.610

Stochastic dynamics and model reduction of
amplifier flows: the backward facing step flow

G. Dergham1,2, D. Sipp2 and J.-Ch. Robinet1,†
1DynFluid Laboratory, Arts et Métiers ParisTech, 151 Boulevard de l’Hôpital, 75013 Paris, France
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Methods for investigating and approximating the linear dynamics of amplifier flows
are examined in this paper. The procedures are derived for incompressible flow over
a two-dimensional backward-facing step. First, the singular value decomposition of
the resolvent is performed over a frequency range in order to identify the optimal
and suboptimal harmonic forcing and responses of the flow. These forcing/responses
are shown to be organized into two categories: the first accounting for the Orr and
Kelvin–Helmholtz instabilities in the shear layer and the second for the advection and
diffusion of perturbations in the free stream. Next, we investigate the dynamics of the
flow when excited by a white in space and time noise. We compute the predominant
patterns of the random flow which optimally account for the sustained variance, the
empirical orthogonal functions (EOFs), as well as the predominant forcing structures
which optimally contribute to the sustained variance, the stochastic optimals (SOs).
The leading EOFs and SOs are expressed as a linear combination of the suboptimal
forcing and responses of the flow and are related to particular instability mechanisms
and/or frequency intervals. Finally, we use the leading EOFs, SOs and balanced modes
(obtained from balanced truncation) to build low-order models of the flow dynamics.
These models are shown to accurately recover the time propagator and resolvent of
the original dynamical system. In other words, such models capture the entire flow
response from any forcing and may be used in the design of efficient closed-loop
controllers for amplifier flows.
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1. Introduction
A typical feature of a wide variety of open flows is their unstable nature and

high sensitivity to background perturbations. This behaviour is classically observed in
boundary layers, mixing layers, jets or separated flows, even at low Reynolds numbers.
Such a behaviour is related to convective instabilities which amplify disturbances
while being advected downstream. These flows are called selective noise amplifiers
owing to their ability to preferentially amplify some particular frequency ranges.

The linear dynamics in noise amplifiers may be complex and involves different
physical mechanisms such as convective instabilities of various physical origins
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(Kelvin–Helmholtz, Tollmien–Schlichting, Orr, etc.), advection and diffusion. These
mechanisms are usually characterized either in the time or frequency domain. For
instance, considering a small perturbation x(t) around a given base flow, the linear
dynamics of the flow is governed by an equation of the form

ẋ = A x + f (t) (1.1a)

where the dynamical operator A is stable and where the dynamics is driven by the
external forcing f (t) which stands for noise or an actuation. On the one hand, the
amplifier behaviour may be assessed by looking for the disturbance which leads to the
maximum energy growth, the so-called optimal perturbation, and follow the evolution
of this perturbation, see Blackburn, Barkley & Sherwin (2008) and Marquet et al.
(2008). In this approach, the optimal initial perturbation for a time horizon t and
the optimal perturbation into which it evolves may be found as the leading singular
vectors of the time propagator eAt, see Trefethen et al. (1993) and Farrell & Ioannou
(1996). Alternatively, another option consists of finding the external harmonic forcing
of frequency ω which yields the most energetic flow response, see Åkervik et al.
(2008), Alizard, Cherubini & Robinet (2009), Monokrousos et al. (2010) and Sipp
et al. (2010). Similarly, the optimal forcing and its associated response may be found
as the leading singular vectors of the resolvent operator R(ω) = (iωI − A)−1. Both
the time- and frequency-based approaches highlight the most energetic instability
mechanisms at play. However, none of the previous studies in the literature has
examined the link between the other leading singular vectors of eAt or R(ω), also
referred to as suboptimal perturbations, and the dynamics of the flow. In this context,
the objective of this paper is twofold.

First, realistic flow configurations are always subject to complex noise excitations
which are not predictable, such as residual turbulence, acoustic disturbances or
geometric defects. One important question is to investigate if the optimal perturbations
or optimal forcing responses may be observed in a case where the flow is continuously
forced by a random forcing. In this context, one may consider a stochastic forcing
f (t) in the equations, characterized by its probability properties, see Farrell & Ioannou
(1993a). The random noise is regarded as an input and the resulting random flow field
x(t) as an output. As a result, the ability of the flow to amplify perturbations can
be assessed by examining the ratio of the output variance to that of the input. The
input is usually chosen as a white in space and time noise forcing so as to mimic
in an unbiased manner real noise. The idea is then to look for the flow structures
x(t) which optimally account for the system sustained variance. These modes are
known as proper orthogonal decomposition (POD) modes or also empirical orthogonal
functions (EOFs) and constitute energy-ranked coherent structures of the uncertain
flow, see North (1984) in the context of climate modelling and Berkooz, Holmes &
Lumley (1993) in turbulence modelling. In a similar manner, one may determine the
set of uncorrelated coherent forcing terms f (t) ranked by their contribution to the
evolved flow state sustained variance. These are referred to as stochastic optimals
(SOs), see Farrell & Ioannou (1993a,b, 2001). The stochastic forcing approach has
been successfully applied in systems with a small number of degrees of freedom by
Fontane, Brancher & Fabre (2008). Our goal is to show how these quantities may be
computed for high dimensional fluid systems and how these structures (EOFs and SOs)
may be related to the instabilities displayed by the system (optimal perturbations or
optimal forcing responses). Notably, the relation between the flow instabilities and the
most probable coherent structures arising from the stochastic forcing is an important
issue.
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Second, this work is also motivated by the model reduction of high-dimensional
fluid systems. Reduced-order models (ROMs) of the dynamics are important in three
respects. (i) A better understanding of the physical phenomena may be obtained by
determining ROMs of the flow, which put into light the fundamental mechanisms at
play with the fewest possible degrees of freedom. For example, amplitude equations
which govern the dynamics of global modes in systems undergoing bifurcations are
examples of such an approach. Obtaining the smallest possible ROM which recovers
accurately the dynamics from all inputs to all outputs from a Galerkin projection may
yield relevant information on the underlying flow physics: for example, the leading
structures of the primal and dual projection bases precisely indicate regions of interest
of the flow. (ii) Accurate ROMs are valuable tools for extensive parametric studies:
here we aim at building models that capture the whole input and output spaces with
the fewest degrees of freedom. These models are therefore fully equivalent to costly
high-dimensional direct numerical simulations (DNSs). (iii) Finally, real-time closed-
loop control of noise-amplifier flows requires knowledge of an accurate model of the
flow dynamics of small dimension. For example, the recent work by Bagheri, Brandt
& Henningson (2009) relies on a ROM which captures the linear dynamics between
some inputs (an actuator and a ‘known’ noise source) to some outputs (two sensors) in
view of performing a closed-loop control of a spatially developing boundary layer. The
authors successfully stabilized the flow by using an efficient low-order linear quadratic
Gaussian (LQG) compensator, which was designed to minimize the measurement
energy of a given sensor. Now, it would be of great technological interest to have
a model which could accurately recover the entire flow response (all of the outputs)
from all possible forcing (all of the inputs). Such an improvement would allow us to
capture both the effect of any unspecified noise, as it would be in real experiments,
and also to directly target the global perturbation kinetic energy rather than some
specific measurement. How to design low-order dynamical systems capturing the
dynamics between all inputs to all outputs and how to relate the projection bases
used in the process to optimal perturbations or optimal forcing responses precisely
constitutes the second motivation of this paper.

The EOFs and SOs are defined as the leading eigenvectors of the covariance
matrix P = ∫ +∞

0 eAteA†t dt and of the matrix Q = ∫ +∞
0 eA†teAt dt respectively, see

Farrell & Ioannou (1993a). Regarding model reduction, we will consider Galerkin
models obtained by projection of the linearized Navier–Stokes equations on three
different bases: the EOFs, which also correspond to the most controllable modes;
the SOs, which also correspond to the most observable modes; and the balanced
modes. Moore (1981) showed that the latter modes correspond to the eigenvectors
of PQ and that they quasi-optimally capture the input–output dynamics. For systems
of small size, having up to O(103) degrees of freedom, all of these modes can be
obtained by solving directly the related eigenproblem. However, their computation
becomes untractable for larger systems. The approach considered in this paper is to
approximate the leading eigenvectors of P, Q and PQ by building accurate low-rank
approximations of these matrices, based on optimal forcing/response. Once the low-
rank approximations of P and Q have been established, the treatment to obtain the
various modes follows the classical algorithms given by Laub et al. (1987) and Rowley
(2005). It should be mentioned that the present technique goes beyond the output
projection technique (Rowley 2005), which captures the whole output space but only
few inputs, and beyond the input projection technique (Dergham, Sipp & Robinet
2011), which captures the whole input space but only few outputs.
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FIGURE 1. Backward-facing step flow investigated in this paper. The steady-state solution at
Re= 600 is depicted by its streamlines and longitudinal velocity.

The present analysis is illustrated on a canonical amplifier flow, the case of an
incompressible two-dimensional backward-facing step flow. The flow displays an
elongated recirculation bubble for a Reynolds number Re = 600 based on the step
height. Perturbations are shown to be amplified in the shear layer owing to the
Kelvin–Helmholtz and Orr instabilities while they are purely advected and diffused
in the free stream. Blackburn et al. (2008) have investigated the response of such a
flow to upstream random forcing. In particular, they showed how the optimal initial
perturbations may shed some new light on the observed dynamics. Here, in the spirit
of the works by Alizard et al. (2009) and Sipp & Marquet (2012), we switch to the
frequency space and determine the optimal forcings/responses. We will analyse how
the various physical mechanisms mentioned above are represented by such structures.
We will, in particular, discuss the advection–diffusion phenomenon in the free stream,
which is usually linked to the continuous spectrum (Grosch & Salwen 1978). Also, we
will highlight the link between the leading EOFs/SOs and the instability mechanisms,
i.e. the optimal forcing/response.

The paper is organized along the following outline: the backward-facing step flow is
presented in § 2, where we also present the base flow and the equations governing the
linear dynamics. Section 3 is devoted to the decomposition in the frequency domain of
the input–output dynamics. In particular, the optimal harmonic forcing/response of the
flow are investigated. Next, the leading EOFs and SOs are computed and discussed
(§ 4). The question of model reduction is addressed in § 5. After introducing the
balanced modes, the ability of the ROMs obtained by Galerkin projection to capture
the original dynamics is assessed for all three bases. Finally, concluding remarks and
future prospects are given in § 6.

2. Flow configuration and modelling
2.1. Base flow

We consider the dynamics of the incompressible flow over a two-dimensional
backward-facing step (see figure 1). It is made up with two flat plates linked by a
circular arc extending from (x = 0, y = 1) to (x = 2, y = 0). The step height h and the
incoming flow velocity U∞ are chosen as the characteristic length and velocity scales
so that the Reynolds number is defined by Re = U∞h/ν where ν is the kinematic
viscosity.

The flow dynamics is linearized about a base flow chosen as the steady solution
of the Navier–Stokes equations at Re = 600. To compute the base flow, the domain
is chosen large enough so as to obtain a uniform free stream. The flow enters the
domain with the constant velocity (u = 1, v = 0) from the left at x = −20. We
imposed a free-slip condition (∂yu = 0, v = 0) on the upstream part of the lower
boundary (−20 6 x 6 −2, y = 1). The beginning of a laminar boundary layer is then
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enforced at x = −2 by imposing a no-slip condition (u = 0, v = 0) on the remaining
lower boundary between (−2 6 x 6 100). A symmetry condition (∂yu = 0, v = 0) is
implemented on the top boundary at y = 20 and a standard outflow condition is
prescribed at the outlet x = 100. The base flow is computed by using a Newton
method similar to that used by Sipp et al. (2010).

The base flow solution at Re = 600 is depicted in figure 1 by its streamlines and
longitudinal velocity. The flow displays an elongated recirculation bubble between
separation at x ≈ 0.6 and reattachment at x ≈ 11. The boundary layer at x = 0 has
a displacement thickness δ∗ = 0.082 leading to a Reynolds number based on the
displacement thickness of Reδ∗ = 49.2.

2.2. Linear dynamics

The dynamics of small perturbations (u, p) about the base flow, denoted by U , are
governed by the linearized Navier–Stokes equations

∂tu+ U ·∇u+ u ·∇U =−∇p+ Re−1∇2u+ f (t), ∇ ·u= 0 (2.1)

where we have introduced a forcing term f (t) on the momentum equation. We focus
on the dynamics of perturbations in a smaller domain extending from (−1.5 6 x 6 30)
and (y 6 3.5). This domain, depicted in figure 1, is sufficiently large to accurately
capture the perturbation dynamics along the shear layer. Homogeneous Dirichlet
boundary conditions (u= 0, v = 0) are used at the inflow x =−1.5 and on the wall, a
symmetry condition (∂yu = 0, v = 0) is adopted at the upper boundary y = 3.5 and a
free outflow condition pn − Re−1(∇u) · n = 0 is used at the outlet x = 30, where n is
the outward unit normal vector. Note that the base flow corresponds to that computed
in the large domain which has been interpolated on a smaller mesh. This system
is spatially discretized using a finite elements approach with Taylor–Hood elements
(P2–P2–P1) and implemented using the FreeFem++ software, see Hecht et al. (2005).
Once discretized, (2.1) can be written in the form

ẋ = A x + f (t) (2.2)

where x is the vector of the discretized velocities u, A the discretized Navier–Stokes
operator and f (t) the discretized forcing term. The number of degrees of freedom of
the resulting problem is n = 170 260, which also accounts for the dimension of the
vector x and of the matrix A in (2.2).

For the chosen Reynolds number Re = 600, the flow is observed to be globally
stable since the matrix A does not display any unstable eigenvalues. It has also been
checked that the flow remains globally stable for Reynolds numbers up to 2000,
showing that the present configuration is far from any global instability mechanism.
However, perturbations may be transiently amplified owing to the non-normality of A,
see Chomaz (2005). In this case, the dynamics of the flow is assessed by its ability to
amplify external disturbances, such as the forcing f (t). The amplitude of perturbations
is quantified in the following by its kinetic energy integrated in the entire domain. To
this end, we introduce the inner product 〈 〉 defined for any states x1 and x2 by

〈x1, x2〉 = x†
1 x2 =

∫
Ω

u1.u2 dΩ (2.3)

where Ω is the fluid volume, u1 and u2 denote the associated velocity fields and the
superscript † denotes the adjoint of a state.
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3. Dynamics decomposition in the frequency domain
Studying the responses of a flow subjected to harmonic forcing is known as a

receptivity analysis. Such an approach is commonly used to predict in which frequency
bands flow instabilities are more likely to be observed when exposed to permanent
external forcing, see Alizard et al. (2009), Monokrousos et al. (2010) and Sipp et al.
(2010). In this section, we compute the leading optimal forcing and response over
a frequency range in order to identify the predominant physical mechanisms at play.
Mostly, we wish to decompose the input–output dynamics in the frequency domain in
view of computing the leading EOFs/SOs and balanced modes.

3.1. Singular value decomposition of the resolvent

Assuming that system (2.2) is forced by the harmonic term f (t) = f̂eiωt, a solution is
sought in the form x(t)= x̂eiωt: x̂(ω)= R(ω)f̂ , where the operator R(ω)= (iωI − A)−1

is defined as the resolvent and links the harmonic forcing to its associated response.
The strongest energy gains are obtained by solving the eigenvalues of

R†(ω)R(ω)f̂i = λ2
i f̂i (3.1)

where R†(ω) is the adjoint operator derived from the inner product 〈 〉. Here λ2
i denote

the energy gains induced by the forcing f̂i. The highest eigenvalue λ2
1 denotes the

maximum energy gain over all possible forcing, which is reached by the optimal
forcing f̂1. Their corresponding optimal responses x̂i can be obtained by solving

x̂i = R(ω)f̂i (3.2)

which also form an orthogonal basis spanning the response space. In fact, f̂i(ω) and
x̂i(ω) are the right and left singular vectors of R(ω) associated with its singular values
λi.

An iterative Lanczos algorithm is used in order to compute the leading
eigenvalues/eigenvectors. It is based on the successive inversion of the sparse matrix
(iωI − A) which is handled through a direct multifrontal sparse LU solver. Hence, the
cost of this algorithm stems from the cost of the LU decomposition of a large sparse
complex matrix. Technical details are given by Sipp & Marquet (2012). In our case, an
accurate computation of the leading 40 eigenvalues/eigenvectors has been performed
for frequencies ranging from ω = 0 to ω = 6. For a given frequency, one eigenvalue
problem lasts about 20 min when eight processors are used. The optimal energy gains
λ2

i are represented in figure 2 as a function of the frequency. In other words, there are
40 points represented on the graph for each frequency which account for λ2

1, . . . , λ
2
40.

The figure clearly displays branches, one of them displaying a broad and high peak.
The description of these branches and their physical interpretation is presented next.

3.2. First branch: the shear layer dynamics
The higher curved branch denoted on the graph as branch A1 is considered first. This
branch comprises the first singular value λ1 which largely prevails for low frequencies
until ω ≈ 2.6. The energy gain λ2

1 displays strong values over a large frequency
band, which is typical of amplifier flows. A maximum of 2.2 × 106 is reached at
ω ≈ 0.75. For higher frequencies, branch A1 crosses other branches and is then no
longer represented by the first singular value.

A physical interpretation of branch A1 comes from the forcing and responses
associated with its singular values. Branch A1 is associated with amplification of
perturbations resulting from shear instabilities. In figure 3 the real part of these
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FIGURE 3. Real part of the streamwise velocity of four optimal forcing/responses computed
on branch A1 for ω = 0.25 (a,b), ω = 0.75 (c,d), ω = 2 (e,f ) and ω = 3 (g,h).

singular vectors are represented. On the left part, figure 3(a,c,e,g) represents the
optimal harmonic forcing at the frequencies ω = 0.25, 0.75, 2 and 3 respectively.
Analogously, figure 3(b,d,f,h) shows the associated optimal harmonic responses at the
same frequencies. Note that these flow structures are displayed by their longitudinal
velocity. We observe that the optimal forcing fields are localized upstream, near
separation, and display inclined patterns along the shear so as to exploit the Orr
mechanism. Regarding the associated responses, they display typical wave packet
flow structures whose spatial support extends farther downstream. Excitation at higher
frequencies leads to smaller flow structures and the resulting responses remain
spatially localized at the upstream part of the separated shear layer. In contrast, for
lower frequencies, the resulting flow structures are much larger and the responses
extend much farther until the downstream part of the boundary layer. High-frequency
responses, such as those depicted in figure 3(f,h), highlight a Kelvin–Helmholtz
amplification mechanism since perturbations grow in the shear layer as a wave of
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(a) (b)

(c) (d)

FIGURE 4. Real part of the longitudinal velocity of two optimal forcing/responses computed
on branch B1 for ω = 2 (a,b) and ω = 4 (c,d).

corotative rolls. These flow structures are furthermore characterized by a phase speed
of about vφ ≈ 0.55. Alternatively, the low-frequency responses such as those depicted
in figure 3(b,d) are reminiscent of the global modes associated with a convective
Tollmien–Schlichting instability. Such modes have been carefully investigated in the
previous works by Ehrenstein & Gallaire (2005), Alizard & Robinet (2007) and
Åkervik et al. (2008) and their phase speed is rather close to vφ ≈ 0.4.

All of the optimal forcing and responses on branch A1 have a common point, they
physically account for the amplification and advection of a wave packet along the
recirculation bubble and the downstream shear. Thus, this branch may be called a
‘shear layer’ branch.

3.3. Second branch: the free stream dynamics
The second most energetic branch which is called B1 in figure 2 is now described.
Branch B1 corresponds to advection and diffusion in the free stream, and no
amplification mechanism is involved there. In fact, one should not associate the
large values of the gain obtained for the B branches to any instability mechanism.
Although their gains are important, the B branches are not very energetic. This issue
has been thoroughly discussed by Sipp & Marquet (2012). Beyond ω ≈ 2.6, branch
A1 is observed to be no more predominant and the associated energy gains are much
lower. The first singular values λ2

1 then belong to branch B1. To further interpret
the contribution of this branch to the flow dynamics, two forcing and response fields
obtained on that branch are represented in figure 4. Figure 4(a,c) represent the optimal
forcing at the frequencies ω = 2 and 4, respectively, while figure 4(b,d) account for
the associated optimal responses. Similarly to the previous branch, the forcing fields
are located upstream whereas the responses extend downstream. However, both the
forcing and the response reduce here to streamwise oscillating waves spreading over
the free stream part of the flow. These waves are modulated in the y direction and have
two maxima. The only difference between these modes when changing the frequency
is the streamwise wavelength of the flow structures. Increasing the frequency leads to
a smaller streamwise wavelength for both the forcing and responses. Interestingly, their
phase velocity is observed to be constant with the frequency and close to vφ ≈ 1 and
correspond to the free stream advection of perturbations. This branch is thus called a
‘convective’ branch.

3.4. Other branches: suboptimal modes
The other branches can also be classified as related to the convection or associated
with the shear layer. As an illustrative example, in figure 5(a,b) the two harmonic
responses taken from the branches labelled B2 and B3, respectively, at the frequency
ω = 2 are depicted. These responses are very similar to those observed on branch
B1 except that they display smaller cross-stream wavelengths. More precisely, the
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(a) (b)

FIGURE 5. Real part of the longitudinal velocity of two optimal responses. (a) Response
computed at ω = 2 on branch B2. (b) Response computed at the same frequency on branch

B3.

(a) (b)

FIGURE 6. Real part of the longitudinal velocity of two optimal responses computed on
branch A2 for (a) ω = 0.75 and (b) ω = 1.5.

response chosen on B2 displays three maxima in the y direction while that on B3
has four. These results are reminiscent of the fact that the optimal responses
are orthogonal. Generally speaking, the convective branches are meant to convect
all possible upstream forcing. The decomposition in such branches then highlights
the contribution of all possible streamwise and cross-stream modulated forcing
individually.

In an analogous way, we have represented in figure 6 the optimal responses taken
on the shear layer branch A2 and computed for ω = 0.75 and 1.5, respectively. Both
display two streamwise separated wave packets localized in the shear layer. In addition,
their streamwise wavelengths are the same as those of the responses observed on
branch A1 at the same frequencies. This latter observation is also reminiscent of the
orthogonality of the set of optimal responses. This second shear layer branch is much
less energetic than the primary one and is even less than the first convective branch.

The frequency decomposition discussed in this section has emphasized a clear
separation between (i) upstream forcing and downstream responses, but mostly (ii)
a free stream convective dynamics and an amplifier dynamics along the shear layer.
The most energetic dynamics originate from shear instabilities which are predominant
for frequencies lower than ω ≈ 2.6. What is of utmost importance is to note that
the singular value decomposition of the resolvent leads to a decomposition in the
frequency domain which optimally orders the set of forcing (inputs) and associated
responses (outputs). Notably, this decomposition highlights the most energetic part
of the map linking all possible inputs to all possible outputs in the frequency
interval of interest. From a physical point of view, the present analysis highlights
the linear physical mechanisms at play in a backward-facing step flow: the Orr
and Kelvin–Helmholtz instabilities amplify upstream perturbations for ω < 2.6, while
perturbations in the free stream are simply advected downstream.

4. Dynamics of the flow subjected to a stochastic forcing
In realistic configurations, external disturbances are not likely to be harmonic but

rather characterized by a broadband frequency spectrum. Assuming that the flow is
excited by a random noise, only characterized by its statistical properties, an important
point is to identify which mechanisms naturally emerge. We partially answer this
question by computing the flow structures which optimally account for the variance
of the resulting random flow field (the EOFs) and by computing the forcing structures
that optimally trigger this flow field (the SOs). These flow structures are expressed
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as a function of the optimal forcing and responses introduced in the previous section:
hence, we manage to link stochastic features (the EOFs and SOs) to the various
instability mechanisms at play in the flow (the optimal forcing/responses).

4.1. Empirical orthogonal functions
Truncating a flow dynamics to its most energetic patterns is common in studies of
turbulence (see Berkooz et al. 1993). The most energetic patterns are usually referred
to as POD modes or also EOFs.

The idea consists of artificially forcing system (2.2) by a stochastic process and
extracting dynamical information from the flow response. This response can then be
decomposed and ranked by the leading energetic coherent processes. We consider the
dynamics of the stochastically forced system given by

ẋ = A x + Fξ(t) (4.1)

where F is a matrix of size n × n governing the structure of the forcing. Furthermore,
the vector ξ(t) of size n × 1 is chosen as a space–time Gaussian white noise process
with zero mean, such that [ξi(t)] = 0 and [ξi(t)ξj(t′)] = δijδ(t − t′) where [ ] denotes the
ensemble average and δij the Kronecker symbol. The ith component ξi(t) of the noise
is defined so as to force the ith column of the matrix F . We assume that F is a unitary
matrix (F †F = I) so that its columns are orthogonal; the forcing is defined as the
sum of an orthonormal set of uncorrelated processes. As mentioned by Fontane et al.
(2008), a spatial covariance matrix representing a true experimental noise environment
may also be used in order to represent more specific perturbation fields. In our case,
we assume that no information on the noise is available and keep the above-mentioned
formulation so as to mimic the most generic unknown disturbances in an unbiased
manner.

In the presence of the permanent random excitation, the dynamics of the random
flow state x(t) is governed by (4.1). Since the flow is globally stable (A is stable),
the solution of this problem tends to a statistically steady state for sufficiently large
times. Furthermore, as shown by Farrell & Ioannou (1993a, 1996), this statistically
steady flow state can be characterized by its covariance matrix P = [x(t)x (t)†] which
is independent of F and reduces to

P =
∫ +∞

0
eAteA†t dt. (4.2)

This matrix is Hermitian so that its eigenvectors form an orthogonal basis. These
eigenvectors are the so-called EOFs. By construction, the leading EOFs correspond
to the flow structures which optimally account for the variance of the statistically
steady state, see Farrell & Ioannou (1993a). Indeed, assuming that the ith EOF ϕi is
associated with the eigenvalue βi and that the random state x(t) is decomposed in the
sum

x(t)=
n∑

i=1

αi(t)ϕi (4.3)

then it can be shown that the expansion coefficients αi(t) are scalar uncorrelated
random variables: [αi(t)αj(t′)] = δijδ(t − t′)βi. Notably, the variance of the coefficients
αi are equal to the eigenvalues of ϕi. Therefore, the trace of the covariance matrix
reduces to the total variance maintained in the statistically steady state. Since
the space–time dynamics of the EOFs are uncorrelated from each other, they are
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commonly interpreted as coherent processes of the flow field. In other words, the
random flow field x(t) with known covariance is decomposed in (4.3) as a family of
coherent processes evolving in parallel. Energy is furthermore mostly carried by the
leading eigenvectors which make them a preferred basis of functions for the truncation
of dynamical systems.

4.1.1. Computation
For a problem of small size, the covariance matrix P can be directly computed from

a Lyapunov equation, see Farrell & Ioannou (1993a, 2001). However, in our case,
solving such an equation is not tractable. An alternative approach has to be employed
to compute the leading EOFs without requiring to compute or even store the matrix P.
The technique introduced here enables to overcome this difficulty and is based on the
frequency domain decomposition of the dynamics presented in § 3.

Using Parseval’s theorem, we may rewrite P in the frequency space and discretize
the integral:

P = 1
2π

∫ ∞

−∞
R(ω)R†(ω) dω = 1

2π

∑
i∈Z

R(ωi)R
†(ωi)δi (4.4)

where {ωi, i ∈ Z} is a given set of discrete frequencies and δi denotes appropriate
quadrature coefficients. P reduces to the sum of the matrices R(ωi)R†(ωi), which
cannot be computed or stored. To alleviate this limitation, an approximation is
performed. These matrices are replaced by their truncated eigenvalue decomposition:

R(ωi)R
†(ωi)≈ X(ωi)Λ (ωi)

2 X †(ωi) (4.5)

where X(ωi) and Λ(ωi)
2 are the matrices of leading eigenvectors and eigenvalues,

respectively. For an approximation of rank k, X(ωi) is a n × k complex matrix
satisfying X †(ωi)X(ωi) = Ik whereas Λ(ωi) is a k × k real diagonal matrix. The rank
k is thus a fundamental parameter to assess the efficiency of this approximation. Note
that the columns of X(ω) reduce to the left singular vectors of R(ω) and also to the
optimal responses previously denoted by x̂i(ω) (see (3.2)). Furthermore, the diagonal
elements λi(ω) of matrix Λ(ω) are the leading singular values of R(ω) introduced in
(3.1). The approximation given in (4.5) is more accurate when the optimal gains λ2

i
fall off quickly. This property may be assessed by looking at figure 2. Then by using
decomposition (4.5), we obtain a low-rank approximation of the covariance matrix P
such that

P = XX† (4.6)

where the real matrix X is obtained by stacking the real and imaginary parts of
the flow states XΛ on a finite interval of positive frequencies ωi with appropriate
quadrature coefficients. As a result, for a set of nω positive frequencies, X is of size
n × 2knω. It is then possible to recover the leading eigenvalues/vectors of P by using
the classical snapshot technique introduced by Berkooz et al. (1993). First, we perform
the eigenvalue decomposition X†X = HBH∗, where the diagonal matrix B contains the
leading eigenvalues βi associated with the EOFs, namely the leading eigenvalues of P.
The leading EOFs ϕi are computed by

ϕi = β−1/2
i XHi (4.7)

where Hi denotes the ith column of the matrix H. Note that the EOFs are orthogonal
by construction, namely ϕ†

i ϕj = δij. Importantly, (4.7) expresses the EOFs as a linear
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FIGURE 7. (a) First 1500 eigenvalues βi. (b–f ) Longitudinal velocity of the 1st, 3rd, 9th,
18th and 40th empirical orthogonal functions.

combination of the optimal harmonic responses over a given frequency range. The
procedure introduced here is meant to optimally approximate the leading EOFs from
the subset of the k leading optimal harmonic responses.

4.1.2. Results
The computation of the EOFs is based on the optimal responses described in § 3.

To discretize the frequency-domain integral defined in (4.4), an equidistant spacing
between 129 frequencies in ω ∈ [0; 4] has been adopted and quadrature coefficients
corresponding to the fourth-order Simpson method have been used. Note that the rank
k of truncation has to be carefully taken into consideration to assess the accuracy of
the approximation.

We have represented in figure 7(a) the first 1500 eigenvalues βi for various values
of the approximation rank k = 10, 20, 30 and 40. The leading eigenvalues are observed
to be converged when increasing the value of k and this also holds for the associated
eigenvectors (not shown here). In addition, figure 7(a) provides a zoom on the first 40
eigenvalues, which are converged in terms of the rank k. The first eigenvalues come
in pair which indicates that the most significant EOFs account for travelling structures.
Furthermore, the leading eigenvalues fall off quite rapidly, indicating that the flow
response to stochastic forcing is only driven by a low number of coherent processes.
We have represented in figure 7(b–f ) the longitudinal velocity of the 1st, 3rd, 9th,
18th and 40th EOFs, respectively. They appear as wave packets that spatially extend
downstream, where the response energy to forcing is largest. In contrast to the optimal
responses discussed in § 3, the EOFs are not associated with particular frequencies.
Rather, they represent the most energetic patterns emerging from a white noise forcing
which excites all of the frequencies and spatial wavelengths in an equal balance.
Interestingly, the first EOF is characterized by the same streamwise wavelength as that
of the optimal flow response at ω = 0.75. This observation confirms that the forcing of
all space–time scales results in a preferred frequency of ω = 0.75 in the flow response,
see figure 2. As for higher EOFs, their spatial support is observed to extend farther
downstream. Furthermore, they display more complex structures characterized by more
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FIGURE 8. First 40 optimal energy gains λ2
i versus frequency ω colour-coded by the factor

Hij. (a–c) Case of the 1st, 9th and 40th EOF. Note that the values of Hij are all displayed with
the same logarithmic scale.

than one particular wavelength. In particular, smaller structures are observed near
separation while larger structures are mainly localized downstream, see figure 7(e,f ).

As mentioned previously, the EOFs represent uncorrelated energy-ranked flow states
so that the jth EOF contributes to βj/

∑n
i=1βi × 100 % of the total sustained variance.

As an indicative illustration, the first 4 EOFs contain 71 % of the total variance while
the first 10 EOFs contain 94 % of it (independently of the rank k).

Identifying the leading EOFs is only the first step when investigating the dynamics
of the random flow. Indeed, the EOFs may be further linked to physical mechanisms
and/or frequency intervals. We already mentioned that the EOFs are obtained from
linear combinations of optimal responses, see (4.7). In fact, for a given EOF, it
is possible to identify the weight, or contribution, of each response thanks to the
coefficients of matrix H. Let us consider the jth EOF. It is expressed as a linear
combination of the real and imaginary parts of k optimal responses for nω frequencies
in ω ∈ [0; 4]:

ϕj = 1√
βj

2knω∑
i=1

X iHij (4.8)

where X i denotes the ith column of matrix X . As a result, the weight of the optimal
responses may be evaluated by the factors Hij. Assuming the real and imaginary parts
of the ith optimal response are stacked in the (2i − 1)th and (2i)th columns of X ,

then the quantity Hij =
√

H2
(2i−1)j + H2

(2i)j accurately assesses the contribution of the ith
optimal response to the jth EOF.

This criterion has been computed for various EOFs for k = 40. Results are shown in
figure 8, which depicts the leading 40 energy gains λ2

i versus frequency ω, coloured
by the factor Hij of its associated optimal response. In figure 8(a–c) the case of the
1st, 9th and 40th EOF are considered respectively. As for the first EOF, a large and
predominant contribution of the responses in branch A1, within the frequency range
ω ∈ [0.5; 1.3] is observed. In particular, the highest contribution is obtained on this
branch for ω ≈ 0.75. This result explains why the first EOF is so similar to the overall
optimal response depicted in figure 3(d). Furthermore, we clearly notice a minor, yet
noticeable, contribution from the suboptimal responses associated with shear branches.
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On the other hand, optimal responses associated with convective branches have no
contribution. This result means that the first EOF, which predominantly accounts for
the random flow dynamics, is mainly driven by Kelvin–Helmholtz shear instability
mechanisms in the frequency range ω ∈ [0.5; 1.3].

Now, let us consider the ninth EOF, see figure 8(b). This mode still displays
a large contribution from shear mechanisms, but also a noticeable contribution
from convective branches associated with free stream dynamics. Furthermore, these
contributions are distributed among wider frequency ranges. The predominant
contribution still comes from branch A1, in the frequency range ω ∈ [0.2; 1.6].
Finally, the case of the 40th EOF is depicted in figure 8(c). We observe that the
contributions Hij are even more distributed among the spectrum of optimal responses.
In particular, shear branches display similar contributions to those of convective
branches. Furthermore, the highest contribution is obtained on the convective branch
B1 for ω ≈ 1.66. In a more general manner, we observe more distributed contributions
for higher EOFs: more branches are involved in the dynamics and on wider frequency
ranges.

The above-described analysis illustrates one of the major interest of our formulation
i.e. the possibility to link the most energetic process of a randomly forced flow to: (i)
specific frequency intervals; and (ii) specific instability mechanisms. In other words,
the procedure allows to quantify, rank and organize the leading instability mechanisms
at play in randomly forced stable flows. As a result, such an analysis may provide an
additional tool for the post-processing of experimental data; by linking the coherent
structures of a random flow to the canonical physical mechanisms at play.

4.2. Stochastic optimals

Owing to the non-normality of the linear operator for this base flow, it is known
that the optimal responses of the flow are structurally distinct from the corresponding
optimal excitations, see Farrell & Ioannou (2001). In particular, the set of forcing
distributions yielding a maximum contribution to the variance of the statistically steady
state differs from the EOFs and are called SOs. Investigating the SOs is important as it
provides information on which structures optimally excite the instabilities of the flow.

Considering system (4.1) with orthogonal forcing structures F , the maintained
variance can be expressed, see Farrell & Ioannou (1993a), by [x†x] = trace(F †QF ) =
trace(Q) where the matrix Q is defined by

Q =
∫ +∞

0
eA†teAt dt. (4.9)

This matrix is also Hermitian so that its eigenvectors are orthogonal. They rank
the forcing structures, i.e. the columns of F , by their contribution to exciting the
maintained variance. Let φi be the ith eigenvector of Q with its eigenvalue γi and κi be
a set of scalars, then a forcing given by

∑n
i=1κiφiξi(t) with [ξi(t)ξj(t′)] = δijδ(t − t′) will

lead for large times to a statistically steady flow state of variance equal to
∑n

i=1κ
2
i γi

In other words, the variance sustained by the ith eigenvector at statistical equilibrium
is proportional to the eigenvalue γi and the total variance is related to the trace of Q.
Consequently, any random forcing can be decomposed as a family of uncorrelated and
orthogonal coherent processes ranked by their contribution to the evolved flow state
sustained variance. In other words, energy is mostly triggered by the excitation of the
dominant stochastic optimals.
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FIGURE 9. (a) First 1500 eigenvalues γi. (b–f ) Depict the longitudinal velocity of the 1st,
3rd, 9th, 16th and 30th SOs.

4.2.1. Computation
The computation of the leading eigenvectors of Q involves the same numerical

technique as that of P. Q is written in the frequency domain, the integral is discretized
thanks to quadrature coefficients, and the operators R†(ωi)R(ωi) are approximated by
Y (ωi)Λ (ωi)

2 Y †(ωi) where Y (ωi) comprises the optimal harmonic forcing previously
denoted by f̂i(ω) (see (3.1)) and Λ(ωi)

2 the optimal energy gains at the frequency ω.
This then leads to a low-rank approximation of the matrix Q:

Q = YY † (4.10)

where the real matrix Y is built by stacking with the above-mentioned quadrature
coefficients the real and imaginary parts of the states Y (ωi)Λ(ωi) on a finite interval of
positive frequencies ωi. The leading eigenvalues of Q are denoted γi and the associated
stochastic optimals φi.

4.2.2. Results
We have depicted in figure 9(a) the first 1500 eigenvalues γi for different values

of the approximation rank k. The cases k = 10, 20, 30 and 40 have been investigated.
Analogously, the leading eigenvalues are observed to be converged when increasing
the parameter k. Furthermore, the leading eigenvalues also come in pairs and fall off
rapidly. Consequently: (i) the first SOs are travelling patterns that are 90◦ out of phase;
and (ii) only a low number of forcing structures have a significant contribution to the
evolved sustained variance. Figure 9(b–f ) represents the 1st, 3rd, 9th, 16th and 30th
SOs, respectively. As one could expect, the leading SOs reduce to upstream located
structures. This result is consistent and further illustrates the spatial separation between
optimal forcing and optimal responses in open flows, see Brandt et al. (2011). Notably,
they display flow structures that are inclined against the shear so as to take advantage
of the Orr mechanism to optimally extract energy from the base flow.

Since SOs yield a basis of uncorrelated forcing ranked by their energy contribution,
it is interesting to assess the part of the total energy resulting from the leading ones.
For all of the values of k investigated, the first 4 modes lead to 97 % of the total
evolved variance while the first 10 modes yield ∼99 % of it.
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FIGURE 10. First 40 optimal energy gains λ2
i versus frequency ω colour-coded by the factor

Lij. (a–c) Case of the 1st, 9th and 30th SOs. Note that the values of Lij are all displayed with
the same logarithmic scale.

Similarly to the analysis of EOFs, SOs may be further linked with instability
mechanisms by assessing the contribution of each optimal forcing by computing the
quantity Lij, similar to Hij.

This quantity has been computed for the leading SOs with k = 40 and the results
are shown in figure 10. Analogously to figure 8, the leading 40 energy gains versus
frequency, colour-coded by the factor Lij are represented. The case of the 1st, 9th
and 30th SOs are represented in figure 10(a–c). The first SO displays a large and
predominant contribution from the forcing fields in branch A1, in the frequency range
ω ∈ [0.3; 1.4]. In addition, the highest contribution stems from the forcing at ω ≈ 0.75
on this branch. All other branches only add a small contribution to the first SO, within
the lowest frequencies. Thus, the first SO, i.e. the structure the most sensitive to
stochastic forcing is found to predominantly exploit the Kelvin–Helmholtz instability
mechanism in the frequency interval ω ∈ [0.3; 1.4]. In other words, the maximum
variability of the flow may be obtained from the optimal excitation of this instability in
this frequency range.

Regarding higher SOs, their contributions are much more distributed among the
other branches and frequencies. For instance, let us examine the case of the ninth SO
depicted in figure 10(b). Its predominant contributions still stem from branch A1 but in
a much wider frequency range ω ∈ [0.1; 2.3]. In addition, all other branches including
the convective branches are observed to add a low but noticeable contribution on
all frequencies. As for the 30th SO, we have represented the results in figure 10(c).
Similarly, its contributions are observed to be widely distributed among all frequencies.
However, its highest contributions are found to be associated with shear branches, and
more particularly to branch A2.

Finally, we have shown how the procedure allows us to link the leading SOs to
specific instabilities and/or frequency intervals. In other words, we have shown how to
rank and organize the forcing fields that are most sensitive to stochastic forcing as a
function of the canonical instability mechanisms at play. Hence, such an analysis may
provide an additional tool to investigate the receptivity of stable open flows; it would
be complementary to optimal perturbation and optimal forcing/response analyses.
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4.3. Assessment and discussion
We have shown how to relate the leading EOFs/SOs to the optimal harmonic forcing
and responses of the flow. In fact, the EOFs/SOs may be seen as barycentres of
the set of optimal forcing and responses and the weight of each optimal state yields
information on its contribution to the considered EOF/SO. According to the study
of § 3, the flow is mainly receptive to shear instability mechanisms in the frequency
range ω ∈ [0; 2.6]. Now, considering a random forcing which favours neither any
particular region of the flow nor any frequency, it is not surprising to obtain leading
EOFs/SOs which describe the same dynamics. We naturally do not expect to observe
this correspondence when considering more specific noise distributions. The present
procedure may be even more informative and useful in the case of more complex
flow configurations having more than one predominant instability mechanism. Notably,
the application of our procedure may be particularly interesting for turbulent flows.
Indeed, the present methodology and computations may be easily extended to the
Navier–Stokes equations augmented by a turbulence model. Such models are based on
the assumption that the dynamics of the small and large scales are decoupled. The
small scales (high frequencies) are assumed to be accounted for by the turbulence
model whereas the dynamics of the large scales (low frequencies) are governed by
the time integration of the equations, see the previous works by Crouch, Garbaruk
& Magidov (2007) and Cossu, Pujals & Depardon (2009). As a result, the linear
dynamics of perturbations about the mean flow may govern the large-scale structures
within the turbulent flow. Thereby, the leading EOFs obtained from such turbulent
models would account for the large-scale coherent structures that would naturally
emerge from the turbulent flow. Similarly, the leading SOs would represent the large-
scale spatial patterns that are most sensitive to a low-frequency stochastic excitation of
the flow such as upstream noise or residual turbulence.

5. Model reduction
We now turn our attention to the model reduction of the flow dynamics. We seek

a reduced-order state-space model which captures the dynamics from all possible
inputs to all possible outputs. The model is obtained by a Galerkin projection of the
governing equation (2.2) onto the subspace spanned by a basis of modes. We will
consider in the following bases made out with EOFs, SOs and balanced modes. In
our case, all of the degrees of freedom of system (2.2) are inputs and outputs. In
such a case, it can be shown (Farrell & Ioannou 2001) that the controllability and
observability Gramians correspond to the operators P and Q, respectively. Therefore,
the EOFs and SOs coincide with the most controllable and observable modes. The
balanced modes are defined as the leading eigenvectors of the product PQ. To compute
these structures, we consider the low-rank approximations of the Gramians based
on the optimal forcing/response given in (4.6) and (4.10). Following the algorithm
introduced by Laub et al. (1987), we perform the singular value decomposition of
the cross-product Y †X . This matrix is dense and of size 2knω × 2knω, where nω is
the number of discretized frequencies and k the number of optimal forcing/response
kept in the approximation of the resolvent at each frequency. The direct and
adjoint balanced modes are then straightforwardly obtained from this computation.
It should be emphasized that the present algorithm is similar to the method of
snapshots introduced by Rowley (2005), except that the low-rank approximations of
the Gramians are not obtained by time snapshots but by singular value decompositions
of the resolvent operator.
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FIGURE 11. Optimal perturbation gain ‖eAt ‖2
2 at time t for ROMs based on: (a) EOFs; (b)

SOs; and (c) balanced modes.

In the following, we consider a primal and a dual basis T and S, made out of
the EOFs, SOs or balanced modes. S and T are rectangular matrices of dimension
(n, r), where r is the size of the reduced basis. The bases T and S satisfy the
bi-orthogonality condition S†T = I . The dynamics in the reduced basis is given by the
matrix Ar = S†AT of size (r, r).

5.1. Performance in the time domain
First, we examine the ability of the ROMs to recover the original time propagator.
To this end, we proceed as in the previous works by Ehrenstein & Gallaire (2005),
Åkervik et al. (2008) and Alizard et al. (2009) by evaluating the optimal energy gain
in time over all possible initial conditions and the associated optimal perturbations.
The maximum energy gain over all possible initial conditions at time t is obtained by
considering the maximum eigenvalue of eA†teAt, the associated eigenvector being the
optimal initial condition. This quantity corresponds to the square of the 2-norm of the
matrix eAt (‖eAt‖2

2), and may be computed for the full system by using the iterative
algorithm and numerical methods used by Marquet et al. (2008).

As for the ROMs, we proceed by computing the optimal energy gain of the high-
dimensional low-rank time propagator TeAr tS†. For this, we look for the optimal initial
condition x0 in the dual basis, x0 = Sx̃0. We are led to the following eigenproblem:

NeA†
r tMeAr tNx̃0 = µ2Nx̃0 (5.1)

which may easily be solved with standard methods since it only involves low-
dimensional quantities, Ar, M = T †T and N = S†S. The optimal energy gain
‖TeAr tS† ‖2

2 corresponds to the largest eigenvalue µ2 of (5.1). It is represented in
figure 11 for models based on: (a) EOFs; (b) SOs; and (c) balanced modes. These
results have been obtained with nω = 129 and k = 40. In all cases, we observe a
convergence to the original optimal curve displayed by a bold dashed line; the overall
optimal energy gain exceeds 104 and is reached for an optimal time t = 18. It should
be pointed out that the large gain values obtained near t = 0 with the balanced modes
are not physical: all ROMs are inaccurate at short times if the initial condition does
not belong to the subspace spanned by the primal basis. This is precisely the case
for the balanced models since the optimal initial condition is looked for in the dual
basis and the dual basis is different from the primal one. For larger time values,
balanced models are much more effective as they recover the main energy peak with
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much fewer modes (∼30 instead of ∼1000). This result is consistent since we expect
balanced modes to quasi-optimally capture the flow dynamics.

5.2. Performance in the frequency domain
We now assess the ability of the ROMs to recover the optimal and suboptimal energy
gains of the resolvent operator. The optimal energy gains of the ROMs are defined as
the square of the largest singular values of the low-rank resolvent Rlr = TRrS† where
Rr = (iωIr − Ar)

−1. Similarly to the case of optimal initial perturbations, the forcing is
looked for in the subspace spanned by the dual basis, f̂ = Sf̃ . We therefore solve for
the largest eigenvalues µ2

i of

NR†
r MRrNf̃i = µ2

i Nf̃i. (5.2)

In figure 12, we compare, for k = 40, the first 40 optimal gains of the reduced
models (µ2

1, . . . , µ
2
40) to those of the large-scale problem (λ2

1, . . . , λ
2
40) as a function

of frequency. Figure 12(a–c) is respectively concerned with ROMs based on 50, 200
and 1000 balanced modes. The optimal energy gains computed from the ROMs are
observed to converge to the exact ones when increasing the size of the models.
Furthermore, this result holds for the associated singular vectors, i.e. the optimal
forcing/responses (not shown here). Not only the ‘shear layer’ branches are captured
by the models but also the ‘convective’ ones. All of the leading singular values are
well reproduced until the cut-off frequency ω ≈ 4. This limitation is consistent since
the projection bases have been computed from a linear combination of harmonic
optimals within ω ∈ [0; 4]. To extend this range, one has to consider additional
optimal forcing/response when computing the projection bases. Results (not shown
here) pertaining to EOFs’ and SOs’ bases show trends which are similar to those
presented for the time propagator: they also manage to reproduce the optimal gains but
much more modes are required.

5.3. Error quantification
The efficiency of the ROMs to recover the original dynamics may be quantified
by computing a global error, the ∞-norm of the difference between the resolvent
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FIGURE 13. Relative ∞-norm error as a function of the size r of the ROMs. (a) Error for
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operators. Denoting the low-rank resolvent Rlr = TRrS†, the relative error is defined as

e∞(r)= |||Rlr − R |||∞
|||R |||∞

(5.3)

with |||R |||∞ =maxω ‖R(ω) ‖2.
The computation of the quantity |||Rlr − R |||∞ involves the evaluation of
‖Rlr(ω)− R(ω)‖2 at given frequencies ω. For this, we look for the eigenvalue of the
matrix (R†

lr(ω) − R†(ω))(Rlr(ω) − R(ω)). Again a Lanczos method is used associated
with a direct LU sparse solver for the inverses involved in R(ω) and R†(ω) and a
standard LAPACK routine for the inverses involved in Rlr(ω) and R†

lr(ω). We have
represented in figure 13(a) the relative error e∞ as a function of the size r of the
models, in the case k = 40. We observe a clear and rather monotonous decrease of
the error in the case of balanced modes, until a relative error of ∼0.15 % is reached
at r = 1500. We also clearly see in figure 13(a) that the relative error obtained with
balanced models lies between the standard (Rowley 2005) upper and lower theoretical
bounds (obtained with k = 400, see below). In the case of EOFs and SOs, the models
display worse results. The relative errors oscillate until r ≈ 400; then they start to
decrease to reach 15 and 3.5 %, respectively, at r = 1500.

As one could expect, the balanced modes provide the best results. This is not
surprising since balanced truncation is meant to minimize this error. We now check
that our results are converged in terms of the number k of singular values that were
kept at each frequency for the approximation of the Gramians. Note that for k greater
than 40, we use SCALAPACK to compute the singular values of Y †X . For k = 400 the
size of the matrices reaches 105× 105: we used 440 processors, the singular values and
vectors being obtained in less than 15 h, 2 GB of memory residing on average on each
processor. We have represented in figure 13(b) the relative error e∞ and the standard
error bounds as a function of r. Several curves are displayed for different values of k:
k = 40, 100, 200, 300, 400. In this study, the number of frequencies nω has been kept
constant and equal to 129. For k ranging from 40 to 400, we observe that the lower
and upper error bounds slightly increase for large values of r while the relative error
of the balanced models slightly decreases. Further, the relative error curve gets closer
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FIGURE 14. Example of the data assimilation problem. (a) Sketch of the forcing
environment (small triangles). The black half-circle depicts the estimated noise that is used
in the design of the Kalman filter. The estimation sensor me is shown with a rectangle
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upstream testing sensor mU . (b) Comparison for sensor mU between the true signal and the
reconstructed one by the estimator. (c) Same but for sensor mD, which extracts the cross-
stream velocity component at the downstream location (xD = 12, yD = 0.15).

to the lower bound, which shows that the relative error of the balanced models tends
to the lowest bound achievable by any ROM. We conclude that the present balanced
modes allow to quasi-optimally recover the flow dynamics.

5.4. Application: design of a full-state estimator
We now give an example in the context of data assimilation showing how a ROM
capturing the whole input and whole output spaces may be useful. For this, we
consider upstream randomly distributed forcings. Such a situation mimics a true
experiment where the upstream noise sources are unknown. In figure 14(a), we have
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shown with small triangles the location of the considered forcings. Each triangle
located at (xf , yf ) refers to a momentum forcing f = (f , g)T of the form

[f (x, y), g(x, y)] = [cos(θf ), sin(θf )] exp[−((x− xf )
2+ (y− yf )

2)/σ 2
f ] (5.4)

where σf is the radius of each forcing and was set to a fixed value: σf = 0.36. The
orientation θf of each forcing is a number comprised between −π and π while xf and
yf are chosen within −1.25 6 xf 6 1.25 and 0 6 yf 6 2. At any time, two of these
structures are present and the triplets (xf , yf , θf ) randomly change every 1t = 1. These
forcings are located near the beginning of the backward facing step, which is the
sensitive region of the instability. Note that when a forcing is located in the lower left
part of the forcing region, it is inactive since located outside the domain occupied by
the fluid. Hence, there exists time intervals where the flow is not forced.

We now would like to estimate the velocity field of the resulting flow at every point
and every time. The incoming flow is sensed thanks to a single shear-stress sensor
located just downstream of the backward-facing step: me =

∫ 2.4
2.2 ∂yu dx. A Kalman filter,

whose gains are obtained by solving a Riccati equation, is used to build a dynamic
observer. For this, a model comprising 1500 balanced modes obtained with k = 40
was considered and the noise was assumed to be Gaussian white in time and to force
the flow only on the cross-stream momentum component (θn = π/2), with a spatial
structure of Gaussian shape located at (xn =−0.5, yn = 1) and of radius σn = 0.36. We
observe in figure 14(a) that this estimate (filled black half circle) is not very accurate
when compared with the true noise environment. This has been done on purpose to
show that the estimation process may be efficient even in the case where the noise
environment is not accurately known. Finally, note that the sensor has been assumed
to be perfect in the Kalman design, which means that the Kalman gains are obtained
within the large-gain limit.

The simulation is launched at t = 0 and after a short transient, the flow sets in a
permanent regime. At time t = 100, the estimator is switched-on: the measurement me

is then fed into the Kalman filter, which in turn delivers at every time a vector xr(t).
From this, any information of the flow may be obtained at any point of the field.
For example, in figure 14(c), we have represented the cross-stream component of the
velocity mD at point (xD = 12, yD = 0.15). After a short transient, which corresponds
to the time delay for a particle to travel from the shear sensor location (near x = 2.2)
to the downstream station of interest here (xD = 12), the estimated signal locks onto
the real one given by the numerical simulation. In contrast, if we consider a sensor
located upstream of sensor me, for example the cross-stream velocity component mU at
point (xU = 2, yU = 0.89), then the performance is not as good. This can be observed
in figure 14(b) where small discrepancies exist between the estimated and true signals.
This stems from the fact that sensor me does not capture the upstream perturbation
sufficiently early for the estimator to deliver an accurate signal at mU. This issue
has been discussed in Barbagallo et al. (2012) and is linked to the convective
nature of the flow, where perturbations travel in the downstream direction. We have
enclosed a movie (see movie.avi available at http://dx.doi.org/10.1017/jfm.2012.610)
representing on the top (respectively bottom) figure the time-evolution of the stream-
wise component of the velocity field in the DNS (respectively the ROM). In the
middle figure, we have shown the measurement me extracted from the DNS and which
is the sole information that was given to the estimator to reconstruct the flow field.
We observe that the Kalman filter, which is switched on at t = 100, is quickly very
efficient.
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It would be straightforward to add a controller to the presented setting. Since the
ROM captures the whole output space, it is possible to target the overall perturbation
energy. For this we could solve a Riccati equation with M = T†T as the objective
functional.

6. Conclusion
The two-dimensional incompressible flow over a rounded backward-facing step has

been considered as a prototype of open flow subject to hydrodynamic instabilities. We
investigated the linear dynamics of the flow excited by harmonic and stochastic forcing
as well as the design of low-order models. The singular value decomposition of the
resolvent has been performed in order to identify the optimal and suboptimal harmonic
forcing/responses of the flow. These forcing/responses have been organized in branches
of modes which clearly highlight two distinct dynamics. A first type of modes assesses
the amplification and advection of perturbations as wave packets along the shear layer.
In particular, it describes the Orr and Kelvin–Helmholtz instabilities. The second type
of modes accounts for the convection of perturbations in the free stream, similarly
to the continuous spectrum of flow configurations characterized by pure advection
(Grosch & Salwen 1978). Once the dynamics is decomposed in the frequency domain,
we showed how to use the optimal and suboptimal forcing/responses as a milestone to:
(i) investigate the dynamics of the stochastically forced flow; and (ii) design accurate
low-order models of the flow dynamics.

The potential of open flows to amplify external perturbations is typically assessed
by scrutinizing their optimal perturbations and/or optimal forcing/respones. However,
recurrent criticisms of these analyses concern the particular structure of these
disturbances which can be unlikely to naturally emerge in real experiments as the
noise does not excite these specific perturbations. An alternative analysis has been
introduced in this paper by computing the leading EOFs and SOs. The techniques
introduced here allow to both compute these modes and relate them to optimal forcing
and responses. In particular, we have shown how to link the leading EOFs/SOs to
the key instability mechanisms of the flow as well as specific frequency ranges. This
work thus provides an additional tool to investigate the response of amplifier flows to
external stochastic forcing.

The ROMs obtained by projection onto the leading EOFs, SOs and balanced modes
recover the optimal perturbation of the system (the leading singular value of the
time propagator) and the leading 40 optimal harmonic forcing/responses (the leading
singular values of the resolvent). The original system of size n = 170 260 has thus
been reduced to models of size 1500 that accurately capture the map linking past
forcing to future responses. One should expect that the balance between the ‘shear’
and ‘convective’ dynamics depends on the size of the computational domain. Actually,
preliminary results performed on a bigger domain indicate that the free stream
convective dynamics are more energetic while the shear layer ones remain almost
the same. In such a case, a larger number of suboptimal forcing/responses would be
required to capture the predominant input–output dynamics. We also conclude that
designing accurate ROMs may be more challenging when considering much bigger
computational domains.

The methodology introduced here is conceptually meant to capture the dynamics
on a given frequency interval. In the case where the most energetic dynamics are
predominantly driven by some known instability at a given frequency, as in the
present study, it is possible to build ROMs that focus in this particular frequency
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range by restricting the approximations of the Gramians to this range. For example,
in view of closed-loop control, Barbagallo, Sipp & Schmid (2011) have shown that
the ROM has to be accurate only in a small frequency band covering the dominant
instability mechanisms to achieve efficient suppression of perturbations. Also, the
ROMs designed in the present paper are not based on any specific input or output.
They are meant to recover the original flow response from all the possible initial
conditions or external excitations. This work thus yields a new and promising
contribution to the design of ROMs for fluid flows. It may be a valuable asset in
the design of Kalman filters for the estimation of the whole flow field in situations
where the initial conditions or the upstream forcing are uncertain or varying. In the
context of flow control, such models would allow to control the kinetic energy of the
perturbations when the system is triggered by uncertain and varying in time forcing.

Supplementary movie
A supplementary movie is available at http://dx.doi.org/10.1017/jfm.2012.610.
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