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Interaction between feedback aeroacoustic and
acoustic resonance mechanisms in a cavity flow:

a global stability analysis
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We perform a global stability analysis of a flow over an open cavity, characterized by
a Reynolds number, based on the upstream velocity and the cavity length, of 7500. We
compute base flows and unstable global modes of the flow for different Mach numbers
ranging from 0 to 0.9. In the incompressible regime (M = 0), we show that the flow is
subject to global instabilities due to Kelvin–Helmholtz instabilities in the shear layer,
which become strengthened by a hydrodynamic pressure feedback. The influence of
the boundary-layer thickness and of the length-to-depth ratio of the cavity on these
shear-layer modes has been investigated. In the compressible regime (M > 0), we have
shown that all unstable global modes are continuously connected to the incompressible
shear-layer modes as M→ 0. These shear-layer modes correspond to the beginning
of branches of global modes, whose frequencies evolve (as a function of the Mach
number), in accordance with the feedback aeroacoustic mechanism (Rossiter, Tech.
Rep. Aero. Res. Counc. R. & M., 1964). We have also identified branches of global
modes behaving in agreement with acoustic resonance mechanisms (East, J. Sound
Vib., vol. 3, 1966, pp. 277–287; Tam, J. Sound Vib., vol. 49, 1976, pp. 353–364; Koch,
AIAA J., vol. 43, 2005, pp. 2342–2349). At the intersections between both types of
branches, the growth rate of the global modes is seen to display a local maximum.
Along the aeroacoustic feedback branches, the number of vortical structures in the
shear layer is kept constant, while the pressure pattern inside the cavity is conserved
along the acoustic resonance branches. We show that both the feedback aeroacoustic
and acoustic resonance mechanisms are at play over the entire subsonic regime, from
M = 0 to M = 0.9. At low Mach numbers, we suggest that it is still the feedback
aeroacoustic mechanism that selects the frequency, even though the fundamental
acoustic resonance mode is also important due to enhancing the response. At higher
Mach numbers, we observe that the pressure pattern of the acoustic resonance modes
(fundamental acoustic modes, first longitudinal acoustic modes, first longitudinal-depth
acoustic modes) inside the cavity determines the directivity of the radiated noise. Links
with experimental results are finally discussed.
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1. Introduction
Cavity flows are well known in aeronautics to be an important source of unsteady

loads and noise, which can be detrimental to the structure of an airplane for example.
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FIGURE 1. Configuration of an unconfined laminar cavity.

To control this phenomenon, it still remains necessary to better understand the leading
physical mechanisms. In the case of high-Reynolds-number and high-subsonic-Mach-
number flows, Krishnamurty (1956) has observed experimentally that the pressure
spectrum displays strong discrete tones associated with strong acoustic radiations. In
the case of low-Reynolds-number flows, the same phenomenology has been observed
by Rowley, Colonius & Basu (2002), thanks to a two-dimensional direct numerical
simulation. In particular, his results showed good agreement between the density
fluctuations and Schlieren photographs in an experiment.

In a cavity flow, it is generally acknowledged that two physical mechanisms are
at play. First, the feedback aeroacoustic mechanism, described by Rossiter (1964)
(figure 1), induces self-sustained oscillations. Small disturbances are amplified along
the shear layer by the Kelvin–Helmholtz instability and convected downstream. The
impact of these structures upon the cavity trailing edge leads to the formation of
acoustic waves travelling upstream up to the sensitive region located at the leading
edge. They then excite disturbances at the cavity leading edge to form new structures
amplifying along the shear layer. This feedback loop has been described as a shear-
layer mode by Rowley et al. (2002). Note that at high length-to-depth ratios and high
Mach numbers, this mode is no longer seen and a wake mode sets in. Second, acoustic
standing-wave resonances occur if the acoustic wavelength is of the same order as
the length (or depth) of the cavity. Plumblee, Gibson & Lassiter (1962) first predicted
the resonant frequencies of a rectangular cavity theoretically. Later, by neglecting
the mean flow effects, Tam (1976) and Koch (2005) obtained acoustic modes for
different cavity geometries. Finally, East (1966) was the first to notice that these two
mechanisms, feedback aeroacoustic and acoustic resonance mechanisms, may interact
and that the feedback aeroacoustic mechanism is enhanced when the characteristic
frequencies of both mechanisms match. Tam & Block (1978) stated that a theory
combining both mechanisms is still lacking.

The feedback aeroacoustic and acoustic resonance mechanisms are linear in essence.
A global linear model, combining both mechanisms, should be able to describe the
above mentioned interaction mechanisms (Mery & Casalis 2011). Alvarez, Kerschen
& Tumin (2004) built a simplified theory combining propagation models in the central
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region of the cavity with scattering models for the end regions. They were able to
qualitatively characterize the coupling between the Rossiter modes and the acoustic
resonance modes. In this article, we perform a linear stability analysis which is
aimed at identifying the eigenvalues and eigenvectors of the linearized compressible
Navier–Stokes equations around a given base flow. The configuration is complex
here and cannot be described by a weakly non-parallel approach (Monkewitz, Huerre
& Chomaz 1993): both the base flow and the eigenvectors explicitly depend on
the x and y spatial coordinates and the stability analysis is therefore termed global
(Jackson 1987; Theofilis 2003; Sipp et al. 2010). Different works have already
used global stability analysis of compressible flows, including Crouch, Garbaruk &
Magidov (2007) (shock-induced transonic buffet on a NACA0012 aerofoil), Robinet
(2007) (shock wave/laminar boundary-layer interaction), Mack, Schmid & Sesterhenn
(2008) (flow around a swept parabolic body) or Meliga, Sipp & Chomaz (2010)
(axisymmetric wake flows).

The base flow is an equilibrium point of the compressible Navier–Stokes equations
and the disturbances are governed by the associated linearized equations. Both the base
flow and the eigenvalues/eigenvectors of the stability analysis depend on the Mach
number. The involved physical mechanisms are indeed sensitive to compressibility
effects. First, the Kelvin–Helmholtz instabilities, which are responsible for the
feedback aeroacoustic mechanism, are dampened by compressibility effects (Miles
1958; Pavithran & Redekopp 1989; Meliga 2008). Meliga et al. (2010) showed for
example that for a base flow that is kept constant, increasing the Mach number induces
a stabilization of the Kelvin–Helmholtz instability in wake flows. Concerning the
acoustic resonance, the compressibility effects are visible in the frequency of the cavity
tones, which evolve as 1/M when the Mach number is increased (East 1966).

In the incompressible regime, Sipp & Lebedev (2007) have shown that an open-
cavity flow is prone to a super-critical Hopf bifurcation at Re = 4140. For super-
critical Reynolds numbers, Barbagallo, Sipp & Schmid (2009) showed that 4 unstable
global modes exist at Re= 7500: the structures of the unstable global modes display a
Kelvin–Helmholtz instability on the shear layer and suggest that they may be related
to the Rossiter (Rossiter 1964) feedback mechanism, although the results pertain
to the incompressible regime. Also, Sarohia (1975) observed two frequency peaks
in this regime that match the predictions by the Rossiter mechanism, while Basley
et al. (2011) experimentally confirmed the existence of the shear-layer mode in
the incompressible regime, from time-resolved particle image velocimetry (TR-PIV)
measurements. Concerning the cavity dynamics in the compressible regime, Brès &
Colonius (2008) also used a global stability analysis at low Reynolds numbers to
look for three-dimensional global instabilities in a two-dimensional flow. They found
that centrifugal instability inside the cavity is responsible for the existence of three-
dimensional instabilities.

The objective of the paper is to characterize the two phenomena leading to the
compressible two-dimensional cavity dynamics, the feedback aeroacoustic resonance
and the acoustic resonance, using a global stability analysis. In particular, we will
try to understand the interaction between both mechanisms, which has already been
observed in experimental studies by Block (1976), Rockwell & Naudascher (1978),
Ahuja & Mendoza (1995) and Yang et al. (2009). From a broader point of view,
this article deals with the interaction between hydrodynamic instabilities and acoustic
resonance modes. This interaction phenomenon may also be encountered in other
configurations such as the Taylor–Culick flow (see Chedevergne, Casalis & Féraille
2006), combustion instabilities (see Candel 1992) or an impinging jet (Rockwell &
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Schachenmann 1982): the flow is subject to a hydrodynamic instability (which exists
for the incompressible regime) that is enhanced by acoustic resonance mechanisms.
As a result, the flow field displays strong responses when the frequencies of the
hydrodynamic and acoustic mechanisms match.

In this article, we consider a subsonic, laminar and compressible cavity flow of
length-to-depth ratio L/D. We will analyse the influence of compressibility on the
cavity dynamics, by varying the Mach number from the incompressible case (M = 0)
to high subsonic Mach numbers (M 6 0.9). The chosen geometry is a two-dimensional
cavity (figure 1) similar to that used by Barbagallo et al. (2009), except that it
is unconfined here. We also choose the same Reynolds number Re = 7500, which
ensures that the flow is globally unstable in the incompressible limit for L/D = 1
(Sipp & Lebedev 2007). The paper is organized as follows. First, we analyse the
incompressible regime and retrieve the two-dimensional unstable global modes found
in the work by Sipp & Lebedev (2007) and driven by the Kelvin–Helmholtz instability.
The effect of important parameters, such as the boundary-layer thickness and the
length-to-depth ratio, will be investigated. In § 3, we will show how the eigenvalues
of these unstable global modes evolve as the Mach number increases from 0 to 0.9.
In § 4, we identify branches of global modes related to the feedback aeroacoustic and
acoustic resonance mechanisms. A discussion relating these results to those obtained in
experiments is offered in § 5. Section 6 concludes the article.

2. The incompressible regime (M = 0)
2.1. Flow configuration, governing equations and numerical method

We study the case of an open cavity flow presented in figure 1, characterized by a
length-to-depth ratio L/D. Henceforth, we will use the length L of the cavity and the
upstream quantity U∞ as the respective length and velocity scales. The leading and
trailing edges of the cavity will respectively be denoted ‘cavity LE’ and ‘cavity TE’
henceforth (see figure 1). The flow is characterized by a Reynolds number, based on
U∞ and L, equal to Re= 7500. A Cartesian coordinate system has been chosen whose
origin is located at the cavity LE. The configuration is characterized by a boundary
layer at the cavity LE, whose thickness may be adjusted by selecting the length B of
the upstream plate: for this, a slip condition is imposed on (x < −B, y = 0) and a no
no-slip condition on (−B6 x6 0, y= 0).

In this section, the flow field is governed by the incompressible Navier–Stokes
equations formulated as

B(q)∂tq=R(q), (2.1)

where q represents the aerodynamic field (q = (u, v, p)T). Here R and B are
differential operators defined as

R(q)=
−∇u ·u−∇p+ 1

Re
∆u

∇ ·u

 , (2.2)

B(q)=
(

1 0
0 0

)
. (2.3)

A finite-element method is used to solve the governing equations (2.1). The
unknown (u, v, p) is spatially discretized on an unstructured mesh composed of
triangular elements, using P2 elements for the velocity components and P1 elements
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1.75

FIGURE 2. Schematic of the computational domain: the white area is the physical domain
of interest, padded into a sponge zone, shown as the grey shaded area. A no-slip condition
is applied on Γw, represented by a thick solid line, while a slip condition is applied on the
remaining lower boundary Γa.

for the pressure characterized by six and three degrees of freedom, respectively, in one
triangular cell. This results in a discretization that is of second order for the velocity
unknowns. The resulting sparse matrices are generated with the FreeFem++ software
(http://www.freefem.org). All matrix inversions are performed using a multifrontal
sparse LU solver (MUMPS; see Amestoy et al. (2001)). Note that, in regions of the
flow where the mesh is coarse, an artificial viscosity ν∆ = ∆/200 based on the local
cell size ∆ is used to stabilize the discretization method: for this, the Reynolds number
has been replaced by min(Re, 1/ν∆). In regions of the flow where the mesh is fine (for
example, in the cavity region and in its vicinity), ν∆ is really small and the effective
Reynolds number min(Re, 1/ν∆) is, as expected, equal to Re.

The mesh is described in figure 2. In this section, we only use the inner part (white
area), the outer grey shaded region being used later as a sponge zone to damp acoustic
fluctuations when compressible equations are considered. Here Γi,in, Γi,out and Γi,ext

represent the inlet, outlet and upper boundaries, located at x−∞ = −B − 5, x∞ = 5
and y∞ = 5, respectively. In the case B = 0.4, the mesh comprises 479 772 triangles,
which leads to 2 166 792 degrees of freedom for the unknown (u, v, p). On Γi,in, we
impose a Dirichlet boundary condition (u, v) = (1, 0), on Γi,out a standard outflow
condition (p − Re−1∂xu = 0, ∂xv = 0), on Γw a no-slip condition (u, v) = (0, 0), on Γa

((x6−B, y= 0) and (x> 1.75, y= 0)) and on Γi,ext a slip condition (∂yu= 0, v = 0).

2.2. Global stability analysis

The aerodynamic field q is decomposed into a two-dimensional steady base-flow
q0 = (u0, v0, p0)

T and a disturbance q1 = (u1, v1, p1)
T of small amplitude ε: q= q0+εq1.

After introducing this approach into the governing equation (2.1) and linearization, we
obtain at the dominant order (see § 2.2.1) the base-flow equation that determines q0

and at the first order (see § 2.2.2) the linearized dynamics that governs the disturbance
q1. This incompressible approach has already been used by Sipp & Lebedev (2007)
where, in the case of the cylinder flow, the critical Reynolds number Rec = 47 and
Strouhal number Stc ≈ 0.12 (see the reference case by Barkley (2006)) have been
recovered precisely.
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FIGURE 3. Base flow at Re= 7500 and B= 0.4. Spatial distribution of the streamwise
velocity for two different length-to-depth ratios: (a) L/D= 1 and (b) L/D= 2.

B 0.4 1.6 6.4 12.5 20
L/θ0 231 110 52.7 38.9 34.2

TABLE 1. Values of L/θ0 as a function of the length B of the upstream plate.

2.2.1. Base flow
The base flow q0 is a solution of the steady form of the nonlinear equation (2.1):

R(q0)= 0. (2.4)

For the parameter regimes under investigation in this article, this solution cannot
be obtained by iterating the Navier–Stokes equations over time since the base flow
is unstable (we would in fact reach an unsteady periodic regime). We therefore
choose to use a standard Newton iteration method to determine the zero of this
nonlinear equation: at each iteration, we improve a guess solution q0 by looking
for the modification δq0 so that R(q0 + δq0) = 0. Linearizing this relation yields:
δq0 = −A −1(q0)R(q0), where A = ∂R/∂q is the linearized differential operator
around the current q0.

Figure 3(a,b) represent, for B = 0.4, the streamwise velocity of the base flows
obtained for two cavity geometries: L/D = 1 (figure 3a) and L/D = 2 (figure 3b). For
L/D= 1, the flow shape is similar to the case of Barbagallo et al. (2009), presenting a
shear layer above the cavity, and a recirculation inside. For L/D = 2, the recirculation
bubble moves to the right of the cavity leading to the creation of a counter-rotating
vortex in the left part of the cavity. Such a pattern has already been observed by
Brès & Colonius (2008). The displacement thickness of the boundary layer near the
cavity LE is approximately equal to δ0 ≈ 0.012. The Reynolds number based on
this length scale is equal to 90. We also computed the momentum thickness θ0 and
checked that the shape factor is equal to H = 2.6, which is characteristic of a Blasius
boundary layer. This leads to a value of L/θ0 equal to 231. In table 1, we show
how this parameter is modified when the length B of the upstream plate is increased.
For B = 20, we obtain L/θ0 = 34.2, which is similar to the values considered in the
stability analysis of Brès & Colonius (2008).



140 S. Yamouni, D. Sipp and L. Jacquin

2.2.2. Linear dynamics
The disturbance q1 is governed by the following linear equation:

B(q0)∂tq1 =A (q0)q1, (2.5)

where A is the linearized Navier–Stokes operator around q0. The perturbation is then
sought in the form of normal modes

q1(x, y, t)= q̂1(x, y)e(σ+iω)t, (2.6)

where the real numbers σ and ω represent the temporal growth rate and frequency
of the global mode q̂1, respectively. Substituting (2.6) in (2.5) leads to a generalized
eigenvalue problem for λ= σ + iω and q̂1:

A (q0)q̂1 = λB(q0)q̂1. (2.7)

This problem is solved thanks to the ‘Implicitly Restarted Arnoldi method’ of the
ARPACK library (http://www.caam.rice.edu/software/ARPACK/), using a shift and
invert strategy (Lehoucq 1995). Complex shift values have been used to obtain
the spectrum along the vertical axis of the (σ, ω) plane. In the following, we use
the Strouhal number St = ω/2π instead of the frequency ω. The phase of each
global mode has been defined by the condition Im(v̂1(x = 0.75; y = 0)) = 0, while
its amplitude has been normalized to the unit kinetic energy

∫
Ω0
|û1|2+ |v̂1|2 dx dy= 1,

where Ω0 is the domain (−16 x6 2; y6 0.5).
Barbagallo et al. (2009) found that four global modes, which exhibit

Kelvin–Helmholtz-type instabilities, were unstable in the case L/θ0 = 231, L/D = 1
but for slightly different boundary conditions. In figure 4, we study the effect of
the momentum thickness and length-to-depth ratio on this branch of global modes.
Figure 4(a) is concerned with the case L/D = 1, each symbol referring to a different
value of L/θ0. We observe that for L/θ0 = 231 (filled square symbols), there are four
unstable modes, as in the work by Barbagallo et al. (2009). Henceforth, we will
refer to these global modes as ‘the Kelvin–Helmholtz branch’ (including the stable
modes labelled k = 1, 6). As L/θ0 decreases, the Kelvin–Helmholtz branch becomes
progressively stabilized, with marginal stability occurring for L/θ0 within [52.7; 110].
In particular, if we follow a global mode displaying the same number of structures
k in the shear layer, we can see that an increase in the boundary-layer thickness
θ0 leads to a strong decrease in the global mode growth rate. This is related to
the classical stabilizing effect of the shear-layer thickness on the Kelvin–Helmholtz
instability (the amplification rate of a Kelvin–Helmholtz perturbation is zero when the
boundary-layer thickness reaches 20 % of the perturbation wavelength, see Schmid &
Henningson (2001)). The same observations have already been made in experimental
works (see Sarohia 1977; Rockwell & Knisely 1979; Gharib & Roshko 1987): for a
given boundary-layer thickness θ0, cavity oscillations appear only if the cavity length
is greater than a critical value. Also, we note that the increase in θ0 leads to a
slight decrease in the Strouhal number, which reflects the fact that the convection
speed of the vortices decreases slightly when the boundary-layer thickness increases.
Figure 4(b) is dedicated to the effect of the length-to-depth ratio. For this, we
have considered two length-to-depth ratios, L/D = 1 (filled symbols) and L/D = 2
(open symbols), with a thin (L/θ0 = 231) and a thick boundary layer (L/θ0 = 52.7).
The mode frequencies remain almost the same, whereas the amplification rate is
only weakly modified (see in particular low-Strouhal-number modes for L/θ0 = 231).
Generally speaking, these results show that the length-to-depth ratio has only a weak
effect on the Kelvin–Helmholtz branch. Case L/θ0 = 52.7 was chosen here because it
coincides with the value used in the work of Brès & Colonius (2008).
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FIGURE 4. Global modes lying on the Kelvin–Helmholtz branch. (a) Plot of L/D = 1 and
different values of L/θ0: (�), 231; (N), 110; (H), 52.7; (I), 38.9; and (J), 34.2. (b) Plot of
L/D = 1 and L/θ0 = 231 (�), L/D = 2 and L/θ0 = 231 (�), L/D = 1 and L/θ0 = 52.7 (H),
L/D = 2 and L/θ0 = 52.7 (O). In (a), the numbers k denote the number of structures in the
shear layer for the two highest values of L/θ0.

Henceforth, we will focus on case L/D = 1 with a thin boundary layer (B = 0.4,
L/θ0 = 231). Hence, the flow is subject to strong Kelvin–Helmholtz-type instabilities.
In appendix A, we have shown that the three-dimensional centrifugal-type instabilities
(see Brès & Colonius 2008) display weak amplification rates for these parameters.
This justifies that we can focus on the two-dimensional Kelvin–Helmholtz modes
throughout the rest of the article. For the sake of completeness, we have represented
the most unstable global mode in this configuration (σ = 1.19, St = 1.69) in figure 5.
We have shown the real part of the streamwise, cross-stream velocity and pressure in
figure 5(a–c), respectively. The structure of the mode is similar to that observed in
the work by Barbagallo et al. (2009): the perturbations are mainly concentrated in the
shear layer and their amplitude increases as one gets closer to the cavity TE.

3. Compressible dynamics
3.1. Flow configuration, governing equations and numerical method

In this section, we study the effect of compressibility on the dynamics of an open
square cavity flow (L/D = 1), characterized by a thin boundary layer (B = 0.4).
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FIGURE 5. Spatial distribution of streamwise velocity (a), cross-stream velocity (b) and
pressure (c) in the incompressible regime for the mode (σ = 1.19, St = 1.69).

With respect to § 2, the governing equations R and variables q have to be
modified but the general approach remains the same: determine the base flows, then
compute and analyse the unstable eigenvalues/eigenvectors of the Jacobian. We use
the length of the cavity L and the upstream quantities U∞, ρ∞ and T∞ as the
respective length, velocity, density and temperature scales. As before, the Reynolds
number is chosen equal to Re = 7500 and the Mach number M ranges between
M = 0.04 (a value close to the incompressible regime) and M = 0.9 (high subsonic
compressible regime), these parameters being based on the free stream quantities
(Re = U∞Lρ∞/µ and M = U∞

√
ρ∞/
√
γ p∞, with µ as the constant dynamic viscosity

and p∞, the free stream pressure). The flow field is governed by the unsteady
compressible Navier–Stokes equations. From now on, q represents the aerodynamic
field (q= (ρ, u, v,T)T), the pressure having been eliminated using the perfect gas state
equation (Meliga et al. 2010), while R and B denote

R(q)=


−u ·∇ρ − ρ∇ ·u
−ρ∇u ·u− 1

γM2
∇(ρT)+ 1

Re
∇ · τ(u)

−ρu ·∇T − (γ − 1)p∇ ·u+ γ (γ − 1)
M2

Re
τ(u) : d(u)+ γ

PrRe
∇2T

 , (3.1)

B(q)=
1 0 0

0 ρI 0
0 0 ρ

 . (3.2)

Here γ = 1.4 designates the heat capacity ratio of air and Pr = 0.72 is its
Prandtl number. The strain and stress tensors are d(u) = (∇u + ∇uT)/2 and
τ (u)=−(2/3)(∇ ·u)I + 2d(u), respectively.
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Similarly to § 2, we use finite elements to solve the governing equation (2.1). To
stabilize the discretization method, a diffusion term proportional to ν∆ = ∆/200 has
been added in the ρ equation, while the Reynolds number appearing in the diffusion
part of the velocity–temperature equations has been replaced by min(Re, 1/ν∆).

The mesh is presented in figure 2. This time, the grey shaded area is
taken into account: Γin, Γout and Γext now represent the inlet, outlet and upper
boundaries, respectively, where we impose the following Dirichlet boundary condition:
(ρ, u, v,T) = (1, 1, 0, 1). Here Γw, represented by a thick solid line, designates the
cavity wall, which is assumed adiabatic: (u, v) = (0, 0), ∂nT = 0 with ∂n referring to
the wall normal derivative. Since we are in the (ρ, u, v,T) formulation, we also need
a boundary condition for the ρ equation. Similarly to Crouch et al. (2007, 2009),
we impose ∂nρ = 0, which is deduced from ∂np = 0, ∂nT = 0 and the linearization
of the perfect gas equation p = ρT . Note that ∂nρ = 0 is only an approximate
boundary condition since no boundary condition is actually required for the ρ variable.
Yet, for high-Reynolds-number flows, this approximation is valid. This has been
checked numerically by comparing results obtained with and without the boundary
condition on ρ. A slip condition is applied on boundary Γa ((x 6 −0.4, y = 0) and
(x> 1.75, y= 0)): ∂nρ = 0, ∂nu= 0, v = 0, ∂nT = 0.

In the free stream, acoustic waves are damped to a negligible level thanks to
a sponge zone, which has been represented schematically by the grey shaded area
in figure 2. This avoids possible reflections of acoustic and vortical fluctuations on
the boundaries of the mesh (Colonius 2004). Following Rowley et al. (2002), we
added on the right-hand side of the governing nonlinear equations (2.1), the damping
term −β(x, y)(q − qfs), where qfs designates the free stream quantity (1, 1, 0, 1)T (see
appendix B). We choose the following damping function β(x, y):

β(x, y)= 0 if x−∞ 6 x6 x∞ and y6 y∞, (3.3a)

β(x, y)=
∣∣∣∣1− 1

M

∣∣∣∣ f (x−∞, x) if x< x−∞ and y6 y∞, (3.3b)

β(x, y)=
∣∣∣∣1+ 1

M

∣∣∣∣ f (x, x∞) if x> x∞ and y6 y∞, (3.3c)

β = β(x, y∞)+
∣∣∣∣ 1
M

∣∣∣∣ f (y, y∞) if y> y∞ (3.3d)

where f is the function defined by

f (a, b)= 2α
(a− b)

l2
s

. (3.4)

Here x∞ = 100, x−∞ = −50, y∞ = 33 designate the coordinates of the beginning of
the sponge zone, while ls = 150 is its length. The value of α was chosen equal
to four. Note that a progressive grid stretching from the cavity to the limits of
the computational domain acts as an additional dissipation mechanism to damp the
fluctuations.

The unknown (ρ, u, v,T) is spatially discretized on an unstructured mesh composed
of triangular elements. We use (P1, P2, P2, P1) elements for the (ρ, u, v,T) unknown.
We use a mesh made up of 1 119 022 triangles, leading to 5 610 144 degrees of
freedom for the unknown (ρ, u, v,T). We have checked that our results converge by
varying these parameters and by using different spatial discretizations ((P2, P2, P2,
P2), (P1, P2, P2, P1) and (P1, P1b, P1b, P1)) (see appendix C).
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FIGURE 6. Base flow at Re = 7500 and M = 0.7. Spatial distribution of streamwise velocity
(a), temperature (b) and pressure (p0 = ρ0T0) (c). The solid line in (c) is an isocontour of the
pressure (p0 = 0.99).

3.2. Base flow
The base flow q0 is a solution of the nonlinear equation (2.4), with R and B
given in (3.1) and (3.2), including the damping term given in (3.3). Using the
same Newton iteration method as in § 2, we compute base flows for Mach numbers
varying from M = 0.04 to M = 0.9. Figure 6 represents the base flow visualized
through its streamwise velocity (a), its temperature (b) and its pressure (c) at Mach
number M = 0.7. The flow shape is similar to the incompressible case (see figure 3),
presenting a shear layer at the cavity mouth, and a recirculation inside. In figure 6(c),
observing the isocontour line of pressure p0 = 0.99, it can be seen that the pressure
is nearly constant inside the cavity and across the shear layer. Considering the perfect
gas state equation, the increase of temperature seen inside the cavity (figure 6b) is
therefore balanced by a decrease in the density. The recirculation bubble is also
highlighted in figure 6(c) by a low-pressure region inside the cavity. The high- and
low-pressure regions located upstream and downstream from the cavity coincide with
the beginning and end of the no-slip boundary Γw (see figure 2). Finally, as usual,
a high-pressure region is seen at the cavity TE. The displacement boundary-layer
thickness only weakly depends on the Mach number (see appendix D). We obtain, as
in the incompressible case, values of L/θ0 equal to 231.

3.3. Linear dynamics
The unstable global modes are governed by (2.7), with A and B obtained by
the linearization of (3.1) and (3.2), including the damping term of (3.3). We have
represented the unstable eigenvalues in the (σ, St) plane for various Mach numbers in
figure 7(a): the filled square, open diamond, open gradient and open circle symbols
refer to the results pertaining to M = 0, M = 0.1, M = 0.5 and M = 0.9, respectively.
The results for M = 0 stem from the incompressible study (§ 2). The spectrum for
M = 0.1 displays four unstable global modes, as in the incompressible regime, but
the amplification rates are higher and the frequencies slightly lower. Note that the
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FIGURE 7. (a) Global spectrum for flow over a cavity at Re = 7500, for: (�), M = 0; (�),
M = 0.1; (O), M = 0.5; (©), M = 0.9. (b) Global spectrum with three selected trajectories
obtained by continuity. Each trajectory is depicted with different symbols.

differences in amplification rates between the incompressible regime M = 0 and the
case M = 0.1 are quite significant: for the sake of comparison, we recall that, in
the case of a compressible axisymmetric bluff-body, Meliga et al. (2010) showed
that the unstable eigenvalues at M = 0.1 were nearly identical to those at M = 0.
We recall that the Kelvin–Helmholtz instabilities, which amplify perturbations along
the shear layer of the open cavity, are at the origin of the instability. Miles (1958),
Pavithran & Redekopp (1989) and Meliga et al. (2010) have shown that the increase
in the Mach number generally dampens shear instabilities. Hence, at first glance, the
increase in the amplification rate with the Mach number observed here appears as
a surprise. Returning to figure 7(a), it is seen that, for higher Mach numbers, the
number of unstable modes increases up to 9 for M = 0.5 and 11 for M = 0.9, which
means that the increase in Mach number renders some stable modes unstable. At the
same time, the amplification rates of the four above-mentioned unstable global modes
eventually decrease for higher Mach numbers, following the general trend described
by Miles (1958) and Pavithran & Redekopp (1989). As a conclusion, it seems that
the trajectories of the unstable eigenvalues (as a function of the Mach number) in the
(σ, St) plane are quite complex.
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(c) and temperature (d) at M = 0.7 for mode (σ = 1.47, St = 1.86).

Figure 7(b) shows three different eigenvalue trajectories parameterized by the Mach
number in the (σ, St) plane: two trajectories starting at the lowest and highest
incompressible unstable modes (black square symbols) and one at a very low Strouhal
number. A different symbol is used for each trajectory and the colours of the symbols
indicate the Mach number: blue for small Mach numbers (M = 0), red for high
Mach numbers (M = 0.9). For the sake of clarity, the other trajectories have not
been presented here, but will be described henceforth, their evolution being very
complicated. The trajectory starting at the incompressible eigenvalue of the highest
frequency (right triangle symbols) displays three local maxima for the amplification
rate, with a Strouhal number decreasing from St = 2.6 at M = 0 to St = 1.5 for
M = 0.9. Moreover, by observing the same trajectory, the increase in the amplification
rate with the Mach number can be very large: it is equal to σ = 0.18 for M = 0.175
and σ = 1.47 for M = 0.4.

A typical unstable global mode is shown in figure 8. Figure 8(a–d) represent the
real part of the streamwise velocity, cross-stream velocity, pressure and temperature,
respectively, of the global mode characterized by M = 0.7 and (σ = 1.21, St = 1.62).
This mode belongs to the right triangles trajectory. The pressure component has been
computed using p̂1 = ρ0T̂1 + ρ̂1T0. As in the incompressible case (see § 2), it is seen
that the perturbations are most strongly located on the shear layer, which indicates
that the eigenmode is obviously related to the Kelvin–Helmholtz instability. The
pressure and temperature fluctuations are of the same order of magnitude as the
velocity fluctuations, which shows that the compressibility effects are strong. Also,
the eigenmode radiates acoustic waves in the free stream, characterized by a longer
wavelength downstream from the cavity than upstream. This stems from the fact
that acoustic waves propagate at different speeds in the downstream (c= 1+ 1/M) and
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upstream (c= 1−1/M) directions. The pressure fluctuation level at point (x= 1; y= 2),
which is located in the free stream region, is three orders of magnitudes lower than
the maxima occurring in the shear layer. Inside the cavity, the pressure pattern displays
two nodes in the x direction and one node in the y direction, while three corotative
vortices are seen in the shear layer. These features will be explained below.

4. Physical interpretation of the effect of compressibility on unstable modes
In this section, we will try to understand the complex trajectories of the eigenvalues

as a function of the Mach number that have been described in § 3.1. First (§ 4.1), we
will recall two basic phenomena that occur in compressible cavity flows: the feedback
aeroacoustic mechanism presented by Rossiter (1964) and the acoustic resonance
mechanism presented by Plumblee et al. (1962). Henceforth, these mechanisms will
respectively be called mechanism I and mechanism II. Second (§ 4.2), we will show
that the complex trajectories may be well explained by these two mechanisms. In
particular, when their frequencies match, a maximum local growth rate is observed
in the trajectories of the eigenvalues. The link between the unstable global modes
obtained in the incompressible regime and those obtained for M > 0 will be discussed
in § 4.3. We will finally analyse the shape of the global modes and their acoustic
directivity as a function of the Mach number (§ 4.4).

4.1. The feedback aeroacoustic and acoustic resonance mechanisms
Rossiter (1964) showed that the oscillation frequency observed in open compressible
cavity flows is given by

St1 = j− γ
1
κ
+M

(4.1)

where j= 1, 2, 3, . . . is a mode number, M is the Mach number, κ is the ratio between
the convection speed of the vortices and the free stream velocity and γ is a factor
accounting for the lag time between the impact of a vortex on the cavity TE and
the emission of a sound pulse. Physically, this relation states that the travelling time
of the vortices in the shear layer and of the backward travelling acoustic waves is
synchronized. Bilanin & Covert (1973) improved this model by precisely modelling
the Kelvin–Helmholtz instability mechanism that occurs in the shear layer considered
as a thin vortex sheet. They used an acoustic line source at the downstream corner
to model the acoustic reflections on the cavity walls. Later, Block (1976) introduced
the length-to-depth ratio L/D in this model by considering the vertical displacement of
the shear layer and its impact on the acoustic pressure at the cavity LE and TE. This
formula is written as

St2 = j
1
κ
+M

(
1+ 0.514

L/D

) (4.2)

where L and D are the length and depth of the cavity, respectively. Henceforth,
mechanism I will be described by this equation.

The acoustic resonance mechanism (mechanism II) occurs when the wavelength of
the acoustic wave is close to the cavity dimensions (L or D) or smaller (Rockwell
& Naudascher 1978). Either longitudinal or transversal standing waves may be
observed that are characterized by specific discrete frequencies. Following Tam (1976)
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FIGURE 9. (Colour online) Unstable modes obtained by the global stability analysis in the
(M, St) plane. The same symbols as in figure 7(b) have been used. Only the modes lying
on the Kelvin–Helmholtz branch have been represented here. Note that additional unstable
modes exist, which display very small amplification rates: these modes may refer to acoustic
modes that became unstable through some coupling and have not been considered here due to
their weak amplification rates.

and Koch (2005), we can identify the acoustic resonance modes by describing their
pattern with the number of pressure nodes in the x and y directions, using the pair
(m, n) (with m, n = 0, 1, 2, . . .). Both authors studied the case of zero mean flow
with a radiation condition far away from the open end of the cavity. In the case of
deep cavities, East (1966) tried to take into account the effect of a free stream Mach
number. He observed from the theoretical results of Plumblee et al. (1962) that the
frequency of the fundamental resonant mode (m= 0, n= 0) is governed by

St3 = 0.25

M

{
1+ 0.65

(
L

D

)0.75
} . (4.3)

In this paper, we study the particular case L/D = 1. This is the limiting case between
deep and shallow cavities. We will compare our results with the work of Koch (2005),
who also discussed this configuration but in the case of zero mean flow.

4.2. Identification of both mechanisms by analysing the trajectories of the eigenvalues
In figure 9, the unstable trajectories, including those shown in figure 7(b), have been
plotted in the (M, St) plane. This means that the growth rate varies along each curve.
We observe that all trajectories are clearly identified and that the frequency on each
curve generally decreases with the Mach number.

In figure 10, these trajectories have been represented in the (M, σ ) plane, the
Strouhal number varying along each curve. Figure 10(a–f ) correspond to the curves
in figure 9, from the lowest to the highest Strouhal numbers, respectively. The
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FIGURE 10. (Colour online) Spectra representing the growth rate of the unstable modes as a
function of Mach number for each mode trajectory. Big open symbols show the local maxima
of the growth rate.

left triangle trajectory at a higher Strouhal number has not been represented. We
observe that the growth rates decrease at high Mach numbers, in agreement with
the general trend described by Miles (1958) and Pavithran & Redekopp (1989). Yet,
for intermediate Mach numbers, each trajectory is rather erratic and displays one or
multiple local maxima in the growth rate. These maxima have been identified by large
open symbols labelled 1a, 2a, 2b, . . . .

We will now analyse the structure of the eigenmodes associated with the modes
1a, 2a, 2b. . . . In figure 11, we have represented the isocontours of the real part of
the pressure fluctuation for all of these modes. Recall that the phase of each global
mode has been fixed by the condition Im(v̂1(x = 0.75, y = 0)) = 0 while its amplitude
has been normalized as mentioned in § 3.1. This induces, in particular, the imaginary
structures to exhibit a vortical structure centred at (x = 0.75, y = 0). We observe that
the global modes on a given line display the same number of vortical structures in the
shear layer (the number of pressure minima). For example, global mode 1a exhibits
one vortex in the shear layer, global modes 2a and 2b exhibit two vortices and global
modes 3a, 3b, 4c exhibit three vortices. This suggests that the global modes belonging
to a same line all belong to a same branch characterized by the number k of structures
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FIGURE 11. Spatial distribution of pressure for the modes of local maximum growth rate.
Here k refers to the number of structures in the shear layer and the pairs (m, n) refer to the
number of pressure nodes inside the cavity, as introduced by Tam (1976) and Koch (2005).
The number (ij) in each figure refers to figure 10. Only the real part of the modes is shown.
See the supplementary movies available at http://dx.doi.org/10.1017/jfm.2012.563 where
pressure isocontours evolve over time over three time periods (mode 4a.avi, mode 4b.avi
and mode 5c.avi).

in the shear layer. This has been even more exemplified in figure 12, where these
branches have been highlighted by grey shaded circles (k = 1, 2, 3, 4, 5). We observe
several branch switching phenomena as introduced by Craik (1988). Modes 3a, 3b and
4c all belong to branch k = 3. Comparing with figures 9 and 10, we can see that
modes 3a and 3b belong to the trajectory with triangles while mode 4c belongs to
the trajectory with diamonds. This is also called an interchange of trajectories in the
literature. The location of branch switching is approximately obtained near eigenmodes
2b, 3b, 4b, 5b where the growth rate is locally a maximum.

We now compare the location of the k branches with the aeroacoustic feedback
mechanism. For this, we have also represented in figure 12 the frequencies given
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FIGURE 12. Unstable mode trajectories with a constant number of structures (k) in the shear
layer (grey shaded circles). The large open symbols refer to the global modes displaying a
local maximal growth rate (see figure 10) and the black solid lines are mechanism I branches
(equation (4.2)).

by (4.2) with κ = 0.61 for mode numbers j varying from one (lower black solid
line) to six (upper black solid line). This value has already been used in earlier
studies (see Koch 2005) and also corresponds to the value making the curves of
mechanism I match those of branches k = 1 and 2 as best as possible. We observe
an excellent agreement for the two lowest modes, which shows that the dynamics
related to these global modes is governed by mechanism I. In particular, it explains the
decrease in the Strouhal number for increasing Mach numbers, which was observed in
figure 7(b). For higher Strouhal numbers, a progressive shift between the curves and
the grey shaded circles is seen. Finally, we note that the four unstable global modes
in the incompressible limit M = 0 coincide with the limiting values of the curves
associated with mechanism I: this shows that the Rossiter mechanism is also valid in
the incompressible regime M = 0, but with the pressure feedback being instantaneous
(hydrodynamic feedback). These modes have been observed experimentally by Sarohia
(1975) and Basley et al. (2011) in the incompressible regime. Also, it is seen that
branch k = 1 only starts being unstable for M > 0.1: for M = 0, this mode was already
shown to be stable (mode M1 in figure 10 in the work by Barbagallo et al. (2009)).

Returning to figure 11, we also observe that in a given column, a common pressure
pattern is conserved inside the cavity. In the first column, modes 1a, 2a, 3a, 4a and
5a display a uniform structure inside the cavity. In the second column (modes 2b, 3b,
4b and 5b), the pattern is composed of two horizontal structures of opposite sign. In
the third column (modes 4c, 5c and 6a), there are four structures located at the cavity
corners. These patterns have already been observed by Koch (2005). Each column is
related to different acoustic resonance modes: column 1 for the fundamental resonance
mode (0, 0), column 2 for the first longitudinal mode (1, 0) and column 3 for the
first longitudinal and depth mode (1, 1). Figure 13 is analogous to figure 12, but this



152 S. Yamouni, D. Sipp and L. Jacquin

0 0.2 0.4

Mach

St

0.6 0.8 1.0

1

2

5a
5b

4b
4a

3a

2a

1a

3b 4c

2b

6a

3

(1, 1)

(1, 0)

(0, 0)

FIGURE 13. Unstable mode trajectories conserving the pressure pattern inside the cavity (see
figure 11). The grey shaded circles represent the branches keeping the same pressure pattern
inside the cavity, the lines with symbols are the branches with a constant number of structures
(k) in the shear layer (see figure 12) and the blue branches, the transition branches. The
black solid line refers to the East curve describing the fundamental acoustic resonance mode
(equation (4.3)).

time, the grey shaded circles highlight the eigenmodes conserving the same pressure
pattern inside the cavity. Note that each resonant curve (grey shaded circles) contains
stable and unstable global modes, even though only the latter have been represented.
We observe a good agreement between the East curve (equation (4.3)) (black solid
line) and the branch related to the fundamental resonance mode (0, 0) (grey shaded
circles), retrieving the results obtained by Koch (2005). The black lines with symbols
in figure 13 indicate the aeroacoustic feedback branches (k-branches) identified in
figure 12. It is seen that the locations of the growth rate maxima (large open symbols
along branch (0, 0)) match well with the intersections between the k branches and the
East curve (equation (4.3)) describing the fundamental acoustic resonance mode (black
solid line). As the Mach number is increased, the interchange of trajectories occurs
just after having reached modes 2b, 3b, 4b and 5b of branch (1, 0). It seems then that
branch (1, 0) triggers the branch switching phenomenon (see blue lines with symbols
connecting different k branches).

4.3. Link between incompressible and compressible regimes
Figure 14 shows, for three different Mach numbers (M = 0 (a,d), M = 0.4 (b,e) and
M = 0.8 (c,f )), two (x, t) diagrams of the pressure of the global modes lying on
branch k = 3. In the first column (a–c), the pressure line is obtained on the cavity
mouth at y = 0, between x = −1 and x = 1.9, while in the second column (d–f ), the
pressure line is extracted inside the cavity at y=−0.25.

There are three important regions in these diagrams, outlined by dashed vertical
lines: the upstream region (x 6 0), the cavity region (0 6 x 6 1) and the downstream
region (x > 1). To understand these diagrams, we focus on the elongated blue line
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FIGURE 14. Spatiotemporal diagrams of the global modes belonging to branch k = 3,
showing the pressure extracted on a segment at y = 0 between x = −1 and x = 1.9 (first
column), and on a segment at y = −0.25 between x = 0 and x = 1 (second column). Three
Mach numbers are presented: M = 0 (a,d), M = 0.4 (b,e) and M = 0.8 (c,f ). The circled
numbers refer to the slopes presented in table 2.
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¬  ® ¯

M = 0 −∞ 0.57 −∞ 0.57
M = 0.4 −1.5 0.61 −2.37 0.57
M = 0.8 −0.25 0.64 −1.5 0.57

TABLE 2. Slopes of the different segment lines in figure 14. Negative (respectively,
positive) values designate upstream (respectively, downstream) propagation of the pressure
waves. The speed of the vortical structures is given in the third column: these values are
seen to be close to the value κ = 0.61 that was used in figure 12 for the representation of
mechanism I branches (black solid lines).

patterns, corresponding to the evolution over time of a pressure minimum. The slope
of each of these line patterns corresponds to the velocity of the pressure waves,
negative if they propagate upstream and positive in the other case. They can be of
a hydrodynamic type, when describing a vortex centre, or acoustic. First, vortical
structures are created at the cavity LE (x = 0). Looking at the diagrams at y = 0, we
observe that these structures propagate downstream (positive slope) in the cavity and
downstream regions. These propagation speeds (slopes of segments  and ¯) are only
weakly influenced by the Mach number, the vortical structures being convected by the
velocity field. At the cavity TE (x = 1), the vortices are distorted and hooked some
time on the corner. Second, the vortices impinging on the cavity TE (x = 1) constitute
an acoustic source emitting acoustic pressure waves in all directions (see § 4.4). Thus,
upstream from the cavity TE (x 6 1), the acoustic pressure waves propagate upstream
and display negative speeds. In the upstream region, only acoustical structures are
present and we retrieve the observations made in § 3.1 concerning the pressure wave
speed in this region, dx/dt = 1 − 1/M, described by segment line ¬. All slope values
are given in table 2. In the cavity region, since the line y = −0.25 is below the
shear layer, the pressure waves at this altitude no longer account for the downstream
propagating vortices, but rather only for the upstream propagating acoustic pressure
waves. This is why the slope of the elongated blue line patterns is negative inside
the cavity. At y = 0, the acoustic pressure waves display weak amplitudes compared
with the low-pressure regions associated with the vortices. They are therefore barely
visible at the cavity mouth and they only modulate the amplitude of the downstream
propagating low-pressure regions.

The type of representation in figure 14 allows us to describe an entire feedback
loop physically. In each case, the circles on the vertical dashed line at x = 0 mark
the beginning and the end of three periods, as the observed modes are lying on
branch k = 3. At the lowest circle (earliest time), a vortex is generated at the cavity
LE. It propagates along segment line  up to the cavity TE. This travelling speed
corresponds to the constant κ of (4.1) and is only weakly influenced by the Mach
number. Once the cavity TE is reached, the vortical structure generates a pressure
pulse after some delay. This time delay could correspond to the constant γ of (4.1),
but is hardly visible here. Conversely, the feedback acoustic pressure wave (segment
line ®) is really influenced by the Mach number: as the Mach number is increased,
the travelling time of the feedback pressure wave increases also (see table 2). These
feedback pressure waves may easily be observed at y = −0.25, an altitude at which
they are not disturbed by the travelling vortices located just above in the shear layer.
This illustrates why, following each k-branch of the aeroacoustic feedback mechanism
(figure 12), the frequency is decreasing as a function of the Mach number.
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FIGURE 15. Acoustic polar directivity shapes of the global modes belonging to branches
(0, 0) (a) and (1, 0) (b), calculated on a semicircle of radius 10L centred at the cavity TE.

Finally, this figure clearly shows that the same instability mechanism is at play for
M = 0 and M > 0. Differences are only observed in the return speed of the feedback
pressure wave (infinite for M = 0 and finite for M > 0), yet the overall picture is the
same.

4.4. Influence of the Mach number on the directivity
In this part, we focus on the influence of the Mach and Strouhal numbers on the
acoustic polar directivity of the unstable global modes. For this, we analyse the
modulus of the pressure |p̂1| along a circle of radius 10 centred at the cavity TE. A
polar coordinate system is used and the polar angle Θ = 0◦ refers to the horizontal
line oriented downstream (see figure 1). The radial coordinate corresponds to the
pressure modulus represented in a logarithmic scale. It is important to note that the
amplitude of the global modes being arbitrary, only the shape of the curve is of
interest and not its overall amplitude.

In figure 15, we analyse the polar directivity along branches (0, 0) (figure 15a)
and (1, 0) (figure 15b) (see figure 13). For each mode lying on curve (0, 0), a
characteristic monopolar source is observed while on curve (1, 0), the directivity
shapes are essentially dipolar. Referring back to figure 11, these polar directivities
are in accordance with the acoustic resonance mode observed in the cavity: we observe
a uniform pattern for branch (0, 0) yielding a monopolar directivity, and a pattern
composed by two horizontal structures for branch (1, 0) yielding a dipolar directivity.
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FIGURE 16. Acoustic polar directivity at M = 0.1, calculated on a semicircle of radius 10L
centred at the cavity TE.

In figure 16, we analyse the directivity of the four unstable global modes obtained
at M = 0.1 (see the diamonds in figure 7a). These global modes are identified by
their frequency St = 1.15, 1.59, 2.03 and 2.46. It is observed that the directivity shape
switches from a dipole at small Strouhal number (St = 1.15) to a monopole at higher
Strouhal numbers (St = 2.03 and 2.46). These results are in accordance with the
studies led by Howe (2004) at M = 0.1. The lowest mode characterized by St = 1.15
is clearly below the resonance frequency of branch (0, 0). Therefore, the noise is
only generated by the impinging shear layer (mechanism I) on the trailing edge and
the directivity shape is dipolar (Curle 1955; Blake 1986). The second mode displays
a frequency St = 1.59 closer to the resonant frequency St3(M = 0.1) = 1.52 and is
therefore closer to a monopole. For the two other modes (St = 2.03 and 2.46), the
directivity pattern is oriented downstream.

Increasing the Mach number on branch k = 2 in figure 12, we obtain the directivity
patterns sketched in figure 17(a,b). Figure 17(a) corresponds to low Mach numbers
(0.05 6 M 6 0.4) while figure 17(b) relates to high Mach numbers (0.4 6 M 6 0.9).
At very low Mach numbers (M < 0.1), the dipole source predominates. There is no
acoustic resonance and the directivity shape is driven by the feedback aeroacoustic
mechanism I. Around M = 0.1, it is seen in figure 13 that the frequency of the
eigenmode on branch k = 2 crosses the acoustic resonance curve (0, 0). Hence, the
monopole source gains the upper hand peaking more in the downstream direction. For
M = 0.5, a clear dipolar structure is observed again, as already shown in figure 15(b).
Between M = 0.1 and M = 0.5, the directivity therefore moves progressively from a
monopole to a dipole. Two acoustic sources therefore coexist: one at the cavity TE
related to mechanism I and one inside the cavity linked to mechanism II. At even
higher Mach numbers, the directivity pattern exhibits two main lobes, growing in
the wall-normal and downstream directions, which flatten in the flow direction as the
Mach number is increased.

Note that the shear layer itself is a quadrupole source, but its contribution to noise
generation is negligible in comparison with the other acoustic sources mentioned
above.
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FIGURE 17. Acoustic polar directivity of the global modes belonging to trajectory k = 2 in
figure 12, at low (a) and high Mach numbers (b), calculated on a semicircle of radius 10L
centred at the cavity TE.

5. Discussion
The interaction phenomenon between the feedback aeroacoustic and acoustic

resonance mechanisms highlighted in this paper has already been observed in
experiments and simulations, by monitoring acoustic pressure levels. Block (1976)
studied the case of a deep cavity of length-to-depth ratio equal to 0.66 at low
Mach numbers, until M = 0.5. Block analyses a pressure spectrum and observes
several peaks (characterized by a Strouhal number and an amplitude) evolving as a
function of the Mach number. The amplitude of these peaks is the greatest when
the aeroacoustic feedback curves (k = 1, 2) cross the first acoustic resonance curve
of East (equation (4.3)). Koch (2005) has identified (in the experiments by Rossiter
(1964)) the interaction involving the longitudinal acoustic mode (1, 0). This has been
also observed in large eddy simulations (LESs) by Larcheveque et al. (2003) and in
experiments by Forestier, Jacquin & Geffroy (2003).

We will now give a simple argument explaining why a growth rate peak may
also correspond to a peak of acoustic power when considering the full nonlinear
dynamics. In the case of a super-critical Hopf bifurcation, it is known that the
saturation amplitude |A| of an unstable global mode is proportional to the square
root of its amplification rate σ (see equation (2.31) in the work by Sipp & Lebedev
(2007)). The pressure flow field, at a dominant order, is written as p= p0+Aeiωtp̂1 with
|A| ≈ √σ and where ω is the frequency of the global mode. Therefore, the amplitude
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of the pressure oscillations is proportional to the quantity
√
σ . Following this ‘crude’

argument, a peak of acoustic power should be associated with a growth rate peak.
However, when multiple global modes are unstable, the nonlinear interactions may
yield a more complex picture. Yet, it is still reasonable to claim that the global mode
that exhibits (at a given Mach number) the strongest growth rate σmax (among all
unstable global modes) should be observed in a simulation or an experiment.

At very low Mach numbers, the growth rate of the unstable global modes converges
toward its incompressible value, which quantifies the intrinsic strength of the feedback
aeroacoustic mechanism. In the present case, from figure 10, it is seen that, for
M = 0, modes k = 3, 4, 2, 5 are respectively characterized (from strongest to lowest
amplification rates) by σ = 1.19, σ = 1.03, σ = 0.76 and σ = 0.35 while modes
k = 1, 6 are stable. Following the results of Meliga et al. (2010), the increase of
the Mach number should dampen Kelvin–Helmholtz instabilities and thus the unstable
global modes. We see that this becomes invalid in the presence of acoustic resonance
mechanisms. Here, it is seen that, when acoustic resonances occur, the growth rate
may be locally increased by values of about ∆σ ≈ 0.3–0.5 for modes k = 3, 4, 2 and
even more for modes k = 5, 6. Hence, for a given Mach number M > 0, the strongest
growth rate σmax results from a complex balance between the intrinsic strength of
the feedback aeroacoustic mechanism (given roughly by the amplification rate in the
incompressible regime) and the overshoot in amplification rate induced by the acoustic
resonance mechanism. For example, at M = 0.1, the dominant mode is still mode
k = 3: this is both due to the intrinsic strength of mode k = 3 and to a slight increase
of the amplification rate due to the vicinity of the fundamental acoustic resonance
mode. At higher Mach numbers, the dominant modes may not necessarily be those
strengthened by the acoustic resonance mechanism. This phenomenon is observed at
M = 0.5: even though mode k = 2 is located on the acoustic resonance branch (1, 0), it
displays a lower growth rate (see figure 10b,e) than mode k = 4.

Concerning the frequency, we saw in figure 4(a) that the Strouhal number of the
unstable modes is slightly reduced when L/θ0 is increased. These results pertaining
to the incompressible regime, the travelling velocity of the feedback pressure wave is
infinite (see § 4.3), so that only the convection speed of the vortices can account for
this frequency decrease (segment  in figure 14). In § 4.3, we also observe that the
Mach number influences the speed of the feedback acoustic pressure wave (segment
®). Thus, it appears that parameter L/θ0 and the Mach number M both influence the
frequency of the phenomenon: yet they modify distinct parts of the feedback loop.

In the incompressible regime, the hydrodynamic pressure pI of the global modes
is governed by the incompressible Navier–Stokes equations. For very low Mach
numbers, the pressure p involved in the compressible Navier–Stokes equations scales
as p = 1 + γM2pI (with pI normalized so that pI → 0 in the free stream). This
scaling is only valid for hydrodynamic-induced motions, such as the motion associated
with the global modes belonging to the Kelvin–Helmholtz branch, which exist at
M = 0, and shows how the hydrodynamic pressure pI relates to the true pressure
p at low Mach numbers, in the compressible equations. In the case of very low
Mach numbers, the pressure fluctuations are therefore very weak and the modes
driven by mechanism I are barely visible, except if the response of the mode is
enhanced by the acoustic resonance mechanism. In experiments, the pressure peaks
are therefore mostly seen near the acoustic resonance frequencies, which led to the
idea that tones were generated by mechanism II at low Mach numbers (Tam &
Block 1978). In this paper, we suggest that it is still mechanism I that produces the
instability, even though it is enhanced by mechanism II. This idea is also supported
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by the experimental observations of Sarohia (1975) and Basley et al. (2011) in the
incompressible regime, who confirmed the existence of a shear-layer mode in the
absence of acoustic resonances.

6. Conclusions
First, a global stability analysis has been performed on an unconfined

incompressible cavity at a low Reynolds number of 7500. Two-dimensional
computations were carried out to vary important parameters such as the boundary-layer
thickness L/θ0 and the length-to-depth ratio L/D. It has been shown that parameter
L/θ0 has a strong influence on the global modes: as L/θ0 increases, the instability
is strengthened. Meanwhile, parameter L/D has a weak influence. This led us to
choose a high value of L/θ0 for the study of the influence of compressibility effects.
The spectra of the unstable global modes have been compared for Mach numbers
ranging from M = 0 to M = 0.9. By analysing the evolution of their frequencies (as a
function of the Mach number), we have identified branches that represent the feedback
aeroacoustic mechanism (Rossiter 1964) (mechanism I) and the acoustic resonance
mechanism (East 1966; Tam 1976; Koch 2005) (mechanism II). Looking at the mode
shapes, the number of vortical structures in the shear layer is conserved along the
curves of mechanism I, while the pressure pattern inside the cavity is conserved along
each curve of mechanism II. Concerning mechanism I, good agreement was found
with (4.2) especially at a low Strouhal number. We have shown that the unstable
global modes in the incompressible regime are continuously linked with those in the
compressible regime, looking at their characteristics (frequencies, growth rates, mode
shapes). This establishes that the Rossiter mechanism also describes instabilities in
incompressible open cavity flows. Second, the modes along mechanism II branches
coincide with modes displaying a local maxima in growth rate. The positions of
these maxima coincide with the locations where both mechanisms I and II are
interacting. Therefore, a global stability analysis captures the feedback aeroacoustic
mechanism, the resonance acoustic mechanism and their interactions. As a conclusion,
the following picture emerges. The potential of the instability is given at M = 0, the
Kelvin–Helmholtz instability on the shear layer being the engine of the instability with
the hydrodynamic pressure feedback strengthening this mechanism. When increasing
the Mach number, two antagonist mechanisms are at play for the amplification rate:
(1) the Kelvin–Helmholtz instabilities should be slightly stabilized according to the
physical mechanism described by Miles (1958), Pavithran & Redekopp (1989), Meliga
(2008) and Meliga et al. (2010); (2) when acoustic resonance occurs, i.e. when the
frequencies of the two mechanisms I and II match, an overshoot in the amplification
rate curve is seen. Concerning the frequency, the Mach number determines the speed
of the pressure feedback wave, which explains why the Strouhal number of the
unstable global modes decreases with the Mach number. Let us make a final comment
on the influence of the length-to-depth ratio L/D on the dynamics. The acoustic
resonance modes being strongly dependent on the cavity geometry, the length-to-depth
ratio L/D is therefore an important parameter when compressible governing equations
are considered. On the other hand, as mentioned above, when the incompressible
regime is considered, parameter L/D is less important.

Concerning the directivity analysis, we have retrieved the results from Howe (2004)
at M = 0.1: the acoustic polar directivity evolves from that of a dipole at a low
Strouhal number to a monopole at higher frequencies. By observing the evolution of
the directivities along branch k = 2, we have observed that the directivity is monopolar
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at the crossing of the first resonance curve (0, 0) (M ≈ 0.1), and clearly dipolar at the
crossing of the resonance curve (1, 1) (M ≈ 0.5). In this study, the directivity shape
seems to be linked to the pressure pattern inside the cavity when acoustic resonance
occurs. If not, the directivity is dipolar in accordance with the dipolar shape induced
by the impinging shear layer on the cavity TE.

Supplementary movies
Supplementary movies are available at http://dx.doi.org/10.1017/jfm.2012.563.

Appendix A. Three-dimensional linear dynamics in the incompressible regime
In this appendix, we study for M = 0 the three-dimensional perturbations, that were

discovered by Brès & Colonius (2008) for M > 0. The disturbance is sought in the
form

q1(x, y, z, t)= q̂1(x, y)e(σ+iω)t+iβz, (A 1)

where β designates the real transverse wavenumber; β is therefore a parameter of the
present stability analysis.

Figure 18 shows the growth rate (a) and Strouhal number (b) of the most unstable
three-dimensional mode as a function of the transverse wavelength λ = 2π/β for
different boundary-layer thicknesses L/θ0. The symbols are the same as in figure 4
(filled symbols refer to case L/D = 1 while open symbols relate to case L/D = 2).
All of the cases shown here are three-dimensionally unstable. Looking at the filled
symbols, the influence of L/θ0 is similar to that observed in § 2.2.2: the instability
strengthens with L/θ0 but less than with the two-dimensional mechanism. Increasing
the length-to-depth ratio strengthens the three-dimensional instabilities, and renders
high wavelength perturbations λ more unstable in the case L/θ0 = 231. Concerning
figure 18(b), all of the unstable modes display very low frequencies compared with
the two-dimensional instabilities, and increasing L/D causes a global decrease of the
frequencies except for λ ≈ 1, and for λ > 3 in the case L/θ0 = 52.7. For L/θ0 = 231
and L/D = 2, at low spanwise wavelengths λ, the unstable modes are even non-
oscillating (St = 0).

The same conclusions were observed in the work by Brès & Colonius (2008): for
two-dimensional and three-dimensional disturbances, parameter L/θ0 has an important
influence on the global mode stability, whereas varying the length-to-depth ratio
(L/D) has little effect on the maximum growth rate level, but affects strongly the
frequency of the modes. The authors have also observed that three-dimensional modes
are essentially independent of the Mach number until M = 0.6.

Appendix B. Damping function determination
This appendix aims at explaining how the damping function is obtained. Considering

the flow coming from the left of the domain and an acoustic source located at
the cavity TE, the wave speed is not the same in all directions. For x 6 x−∞, the
non-dimensional wave speed is c= 1− 1/M, for x> x∞, c= 1+ 1/M and for y> y∞,
c = 1/M. To illustrate the method, let us choose the horizontal damping between
x = x∞ and x = x∞ + ls (see figure 2). As mentioned in § 3, we added the damping
term β at the right-hand side of (2.1). It is zero at the beginning of the sponge zone so
that β(x, y)= α′(x− x∞). We consider a characteristic x(t) such that dx/dt = c.
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FIGURE 18. Eigenvalues of three-dimensional global modes in the incompressible regime as
a function of the spanwise wavelength λ. (a) Plots of L/D = 1 and different values of L/θ0,
231 (�), 110 (N) and 52.7 (H). (b) Plots of L/D = 1 and L/θ0 = 231 (�), L/D = 2 and
L/θ0 = 231 (�), L/D= 1 and L/θ0 = 52.7 (H), L/D= 2 and L/θ0 = 52.7 (O).

Each component of q is damped as dq/dt = −βq. By substituting β and dt, we
obtain dq/q = −α′(x − x∞)dx/c. Then, integrating this equation all over the sponge
region of length ls, yields q/q0 = exp(−α) with α = 0.5α′l2

s/c. Finally, we have

β(x, y)= 2cα

l2
s

(x− x∞), (B 1)

where α refers to the damping coefficient. In the present paper, α was set to four (a
sensitivity test has been achieved in appendix C to show that the results do not depend
on the precise value chosen for α).

Appendix C. Convergence studies
We used nine meshes to assess the convergence of the numerical simulations. Their

characteristics are detailed in table 3. All of the meshes M2–M9 present variations of
geometry or damping coefficient in comparison with mesh M1 used as the reference
mesh. Here x−∞, x∞, y∞ correspond to the location of the inlet, outlet and upper
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x−∞ x∞ y∞ ls α′ nt

M1 −50 100 33 150 4 1 119 022
M2 −50 100 30 150 4 1 159 906
M3 −60 100 30 150 4 1 133 627
M4 −50 80 30 150 4 1 088 996
M5 −50 100 30 160 4 1 135 948
M6 −50 100 20 150 4 1 045 152
M7 −50 100 25 150 4 1 069 192
M8 −50 100 25 150 4 1 156 416
M9 −50 100 30 150 3 1 119 022

TABLE 3. Different meshes used to validate the stability calculations. The grey cells
highlight the parameters modified with respect to the reference mesh M1.

σ Strouhal

M1 1.4381 1.7609
M2 1.4377 1.7607
M3 1.4383 1.7609
M4 1.4386 1.7610
M5 1.4377 1.7607
M6 1.4381 1.7607
M7 1.4376 1.7607
M8 1.4384 1.7609
M9 1.4382 1.7610

TABLE 4. Comparison of the eigenvalue calculations for the different meshes. We consider
the most unstable mode at M = 0.5.

boundaries, respectively, and ls to the sponge zone size. The damping coefficient α
is defined in appendix D and nt is the number of triangles. In table 4, we compare
for all meshes the most unstable eigenvalue obtained at M = 0.5. Results obtained in
terms of growth rate and frequency show a good convergence for all cases. Yet, this
convergence test only concerns variations of geometric parameters, the order of the
spatial discretization being still the same.

A second convergence test is offered in figure 19, where the unstable global modes
at M = 0.7 are presented using the same mesh M1 but for different discretization
strategies. We compare results obtained with (P1, P1b, P1b, P1) elements (square
symbols), (P2, P2, P2, P2) elements (circle symbols) and with the reference (P1, P2,
P2, P1) elements (delta symbols). The finite elements P1 and P2 refer respectively to
first- and second-degree polynomials: in a triangle, there are three degrees of freedom
with P1 elements and six degrees of freedom for P2 elements. Element P1b has
an additional degree of freedom with respect to the P1 element and displays four
degrees of freedom in a triangle. Hence, we obtain 4 486 112 degrees of freedom
for a (ρ, u, v,T) unknown with (P1, P1b, P1b, P1) elements, 5 610 144 degrees of
freedom with (P1, P2, P2, P1) elements and 8 972 220 degrees of freedom for (P2, P2,
P2, P2) elements. Overall speaking, the (P1, P1b, P1b, P1) elements yield first-order
discretizations while the (P2, P2, P2, P2) strategy is second order. The (P1, P2, P2,
P1) strategy is second order for the velocity fields and only first order for ρ and T .
The inversion of the matrices involved in the computation of the base flows and of
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FIGURE 19. Global spectrum at M = 0.7 for mesh M1, but for different discretization
strategies: (�), (P1, P1b, P1b, P1); (4), (P1, P2, P2, P1); and (©), (P2, P2, P2, P2).

Mach number δ0 Reδ0

0 0.01203 90.2
0.2 0.01224 91.8
0.4 0.01233 92.5
0.6 0.01248 93.6
0.8 0.01264 94.8

TABLE 5. Displacement thickness at x= 0 and Reynolds numbers based on it for different
Mach numbers.

the spectra becomes prohibitively expensive for the (P2, P2, P2, P2) strategy: therefore,
only a convergence test has been achieved here to show that all elements yield the
same results. It is seen in figure 19 that even the high-frequency modes are well
captured by the (P1, P1b, P1b, P1) elements and the (P1, P2, P2, P1) reference
elements.

Appendix D. Influence of the Mach number on the displacement thickness
This appendix gives the evolution of the displacement thickness (δ0) and the

associated Reynolds number (Reδ0) at the cavity LE (x = 0) as a function of the
Mach number (table 5). We observe that both values are only very weakly affected by
the Mach number.
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