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We have performed linearized direct numerical simulations (DNS) of flow induced by
radial wall injection forced by white-noise Gaussian forcings. We have shown that the
frequency spectrum of the flow exhibits low-frequency discrete peaks in the case of a
spatial structure of the forcing that is large scale. On the other hand, we observed that
the spectrum becomes smooth (with no discrete peaks) if the spatial structure of the
forcing is of a smaller extent. We have then tried to analyse these results in the light
of global stability analyses. We have first computed the eigenvalue spectrum of the
Jacobian and shown that the computed eigenvalues in the frequency range of interest
were strongly damped and extremely sensitive to numerical discretization choices if
large domains in the axial direction were considered. If shorter domains are used,
then the eigenvalues are more robust but still extremely sensitive to the location of
the upstream and downstream boundaries. Analysis of the ε-pseudo-spectrum showed
that eigenvalues located in a region displaying ‘background’ values of ε below 10−12

were extremely sensitive and confirmed that all values in this region of the spectrum
were actually quasi-eigenvalues. The eigenvalues are therefore ill-behaved and cannot
be invoked to explain the observed discrete frequency selection mechanism. We have
then performed a singular value decomposition of the global resolvent matrix to
compute the leading optimal gains, optimal forcings and optimal responses, which
are robust quantities, insensitive to numerical discretization details. We showed that
the frequency response of the flow with the large-scale forcing can accurately be
reproduced by an approximation based on the leading optimal gain/forcing/response.
Analysis of this approximation showed that it is the projection coefficient of the
forcing onto the leading optimal forcing that is responsible for the discrete frequency
selection mechanism in the case of the large-scale forcing. From a more physical
point of view, such a discrete behaviour stems from the streamwise oscillations of
the leading optimal forcings, whose wavelengths vary with frequency, in combination
with finite extent forcings (which start or end at locations where the leading optimal
forcings are strong). Experimental results in the literature are finally discussed in
light of these findings.
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1. Introduction
First discovered in the late 1930s, unsteady motions in solid propellant rocket

motors were the first examples of combustion instabilities in propulsion systems
(Culick 2006). Instabilities are generally observed during a firing as pressure
oscillations in the combustion chamber growing spontaneously out of the noise.
Pressure oscillations found in large solid rocket motors display low-level amplitudes
and occur at frequencies close to longitudinal acoustic modes of the chamber.

Extensive work has been carried out to understand these pressure oscillations and
has shown that sensitivity of burning surfaces to pressure and velocity fluctuations, and
shedding of large-scale vortices interacting with acoustic waves are the chief possible
causes of instabilities. In the case of large motors, as for instance in Ariane 5 boosters,
the latter has been identified as the main origin for oscillation. According to Vuillot
(1995), three forms of vortex shedding may exist in such motors. The first two arise
from unstable shear layers (created by annular restrictor rings or the geometry of the
grain) and the last is a consequence of the instability of the mean velocity profile. The
present paper addresses this last point by analysing the hydrodynamic stability of the
flow induced by wall injection.

Mean flows induced by wall injection are generally approximated by the self-similar
analytical solution of the Euler equations with a slip condition at the head end of
the chamber. This solution is referred to as the Taylor–Culick flow (Culick 1966;
Taylor 1956) and has been widely used as base flow in previous hydrodynamic
stability studies. The first stability analysis of the Taylor–Culick flow was performed
by Varapaev & Yagodkin (1969) using local stability theory and considering a plane
geometry. They demonstrated that the flow becomes unstable downstream of a critical
abscissa. Casalis, Avalon & Pineau (1998) showed that such an analysis compared
well with experimental data, while Griffond, Casalis & Pineau (2000) extended the
local analysis to cylindrical geometries. The stability of the Taylor–Culick flow was
finally addressed by Chedevergne, Casalis & Féraille (2006) using global stability
theory, which accounts for the non-parallel effects. These authors found that the
Taylor–Culick flow was globally stable (all of the eigenvalues of the global linearized
Navier–Stokes operator are damped) but identified discrete stable global modes whose
frequencies matched those measured in solid propellant rocket motors. As pointed
out by Chedevergne (2007), the spectrum is found extremely sensitive to numerical
details and exhibits convergence problems as the number of discretization points in
the axial direction is increased. Chedevergne, Casalis & Majdalani (2012) showed
that direct numerical simulations (DNS) initialized with such global modes evolve
in accordance with the behaviour predicted by the linear stability analysis. Boyer,
Casalis & Estivalèzes (2013a,b) showed that the eigenspectrum obtained when the
computational domain is limited to a short section in the axial direction yields a
spatially converged eigenvalue spectrum.

On the other hand, recent studies in stability theory (see Trefethen & Embree
2005; Sipp et al. 2010; Garnaud et al. 2013a) have shown that stable global modes
do not constitute physically relevant quantities in open flows, especially if their
damping rate is high. In particular, stable global modes often display a lack of
robustness and may be very sensitive. This stems from the non-normality of the
linear-evolution operator, which is due here to the downstream convection of the
perturbations: the direct modes are localized downstream and the adjoint modes
upstream, leading to nearly orthogonal direct and adjoint modes. Such a behaviour
has been described early by Trefethen & Embree (2005) for toy models involving
advection–diffusion operators combined with upstream and downstream boundary
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conditions. This has led the stability community to consider other quantities than
eigenvalues to describe the linear dynamics of stable flows. Trefethen et al. (1993)
suggested to analyse transient-growth and pseudo-resonance mechanisms instead.
Transient-growth mechanisms are best described by identifying optimal initial
perturbations that lead to strongest energy growth at some given time T . In the
frequency domain, pseudo-resonance mechanisms correspond to strong responses of
the flow when the system is excited at some particular frequencies ω. To identify
such pseudo-resonances, a singular value decomposition of the resolvent operator
needs to be performed and, for each frequency, optimal forcings that yield the
strongest response in the flow (the so-called optimal responses) are identified. Such
analyses have first been carried out on simple laminar shear flows (Poiseuille, Couette
flow, etc.) and more recently on their associated turbulent mean flows (McKeon &
Sharma 2010; Moarref & Jovanović 2012; Sharma & McKeon 2013). More complex
configurations, in which the streamwise direction is solved for (global stability
analysis), have also been considered: backward-facing step flow (Blackburn, Barkley
& Sherwin 2008; Marquet et al. 2008), boundary-layer flows (Alizard & Robinet
2007; Akervik et al. 2008; Monokrousos et al. 2010; Sipp et al. 2010; Sipp &
Marquet 2012), homogeneous jet flows (Garnaud et al. 2013b), etc. Several studies
pointed out the fact that stable eigenvalues are not the good quantities to focus on
in the case of strongly convective flows (Sipp et al. 2010; Sipp & Marquet 2012;
Garnaud et al. 2013b), either because they did not describe well the linear dynamics
of the flow (Garnaud et al. 2013a) or because these modes were extremely sensitive
(Barbagallo, Sipp & Schmid 2011).

The sensitivity of global modes in open flows is actually a timely issue that has
been observed even in the case of globally unstable flows, such as a flow experiencing
sudden expansion (Cantwell, Barkley & Blackburn 2010; Sanmiguel-Rojas, del Pino
& Gutierrez-Montes 2010) or a jet in cross-flow (Ilak et al. 2012). The ε-pseudo-
spectrum introduced by Trefethen et al. (1993), may actually be the best quantity to
analyse this issue. It relies on the computation of the resolvent norm for frequencies
lying in the complex plane. If the resolvent norm displays large values in a whole area
around the computed eigenvalues, then these eigenvalues are extremely sensitive. Note
that the resolvent norm, the optimal gains, optimal forcings and optimal responses
are all robust quantities since they are obtained from a normal eigenproblem. The
left and right eigenvectors being identical, the eigenvalue condition number is equal
to 1. On the other hand, the global modes correspond to eigenmodes of the linearized
Navier–Stokes operator, which may be strongly non-normal especially in the case of
open flows due to convective non-normality. As mentioned above, the left and right
eigenvectors tend to be orthogonal which may lead to extreme values of the eigenvalue
condition number, and therefore trigger eigenvalue sensitivity.

The objective of the paper is to understand how discrete peaks can emerge in
flow induced by radial wall injection. We will combine a series of tools to answer
this question. First, we will try to find white-noise forcings for which linearized
DNS simulations display discrete peaks in the frequency spectrum. We will also
compute the frequency response of the flow in such cases to shed some light on this
behaviour. Second, and as suggested by Chedevergne et al. (2006, 2012) and Boyer
et al. (2013a,b), we will explore the ‘eigenvalue’ scenario: for this, we compute
the spectrum of the Jacobian and assess the robustness of the stable eigenvalues by
computing the ε-pseudo-spectrum of the flow. It is hoped here that weakly damped
eigenvalues exist in the vicinity of the discrete peaks and that these eigenvalues are
not too sensitive. Third, we will explore the ‘optimal gain/forcing/response’ scenario.
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For this, we perform the singular value decomposition of the resolvent operator.
Note that if there exist robust weakly damped eigenvalues in the vicinity of the
discrete peaks (‘eigenvalue’ scenario), then the optimal gains should locally display
overshoots, confirming that the eigenvalues of the Jacobian and the singular values
of the resolvent are related quantities. Finally, we will analyse approximations of
the resolvent operator based on the optimal gains/forcing/response quantities. If
the frequency response displays discrete peaks at some given frequencies, then
the approximations should reflect this behaviour: a careful analysis of the terms
involved in the approximations should then help identify the term responsible for the
discrete peaks.

The outline of the article is as follows. We will first (§ 2) present the configuration
and the numerical techniques to spatially discretize the governing equations. The base
flows will be presented in § 3 and compared to the inviscid Taylor–Culick solution.
Then (in § 4), we will perform forced linearized DNS simulations and look for specific
forcings, that are white in time but correlated in space, which produce frequency
spectra with discrete peaks. Results of these simulations will be compared with the
frequency response of the flow. Results pertaining to global modes for flow induced
by radial wall injection will be discussed in § 5. In particular, we will assess the
sensitivity of the computed eigenvalues by analysing the ε-pseudo-spectra. In § 6, we
investigate the pseudo-resonances of the flow by computing the optimal gains, forcings
and responses. In § 7, we consider the approximations of the frequency response based
on the optimal quantities. We will try to identify the term which is responsible for the
discrete peaks in the frequency response. Then (in § 8), we will compare the present
results to those published in the literature for the VALDO experiment (see Cerqueira,
Avalon & Feyel 2009). We will in particular (§ 9) propose a physical scenario based
on the interaction of an acoustic wave and a wall defect to support the relevancy of
the present theoretical approach. Concluding remarks are given in § 10.

2. Flow configuration, governing equations and spatial discretization

The configuration studied in this article focuses on flow induced by wall injection
in an axisymmetric channel. It is a straightforward description of a cold gas apparatus,
named VALDO (Cerqueira et al. 2009), commonly used for the study of pressure
oscillation in Solid Propellant Rocket Motors. We will focus in the following on
the dynamics of an axisymmetric flowfield, which may be justified by the following
arguments. Using a local stability approach, Griffond et al. (2000) have shown
that axisymmetric perturbations were always more unstable than non-axisymmetric
perturbations, and that non-axisymmetric perturbations display an unstable region
within the Reynolds-frequency space that is qualitatively similar to the one of the
axisymmetric perturbations. Also, in the VALDO experiment, since no azimuthal
velocity fluctuations measurements have been performed, it is difficult to assess the
importance of non-axisymmetric fluctuations. At this stage, there is therefore no
strong evidence indicating that such perturbations should behave differently from
axisymmetric ones. Such considerations led several authors, see Chedevergne et al.
(2006) and Boyer et al. (2013a), to only consider axisymmetric perturbations in
their analyses.

The flow field is described in a cylindrical coordinate system (figure 1). The state
vector q stands for the flowfield (u, p)∗ where ∗ designates the conjugate transpose
and u= (ur, uz) designate the radial and axial components of the velocity. Variables
are non-dimensionalized using the pipe radius R and the wall injection velocity Vinj.



774 S. Cerqueira and D. Sipp

Vinj

erez

O ez

FIGURE 1. (Colour online) Cylindrical coordinate system (r, θ , z). The head-end is located
at z= 0 and the (red online) arrows symbolize the flow sidewall injection.

The fluid motion is governed by the forced axisymmetric incompressible Navier–
Stokes equations that read

∇ · u= 0, ∂tu+ u · ∇u+∇p− Re−1∇2u= εf ′ (2.1a,b)

where Re is the Reynolds number based on R, Vinj and the kinematic viscosity. The
term εf ′ is a small-amplitude unsteady volumic source term, that represents noise in
the system. In the following, we will consider three Reynolds numbers, Re = 1600,
2075, 2290, which are relevant for a cold-gas apparatus such as the VALDO set-up.
The boundary conditions are as follows:

u= (−1, 0) on Γin
u= u(r) on Γw

−pn+ Re−1
∇u · n= 0 on Γout

ur = ∂ruz = 0 on Γa,

 (2.2)

which stand for fluid wall injection at Γin, prescribed velocity profile u(r) at the left
boundary Γw, no-stress condition at the outlet Γout and a condition for the flow to be
axisymmetric at Γa. The prescribed velocity profile is zero u(r)= 0 (no-slip condition)
if the computational domain starts at the head end (zb=0); if not (zb>0), a prescribed
velocity profile u(r)= 0 needs to be determined (for example, by interpolation from
an existing flow defined in the entire channel) and applied at Γw.

The flow solution is decomposed into a base flow (Ur, Uz, P)T and a small-
amplitude unsteady disturbance denoted by εq′ with q′= (u′r, u′z, p′)T. After introducing
this decomposition into (2.1), we obtain at leading order the equations defining the
base flow:

∇ ·U= 0, ∇U ·U+∇P− Re−1∇2U= 0, (2.3a,b)

with the same boundary conditions as above.
At the next order in ε, we obtain the equations governing the perturbation:

∇ · u′ = 0, ∂tu′ =−∇U · u′ −∇u′ ·U−∇p′ + Re−1∇2u′ + f ′, (2.4a,b)

with again the same boundary conditions as before, except u′= 0 at the injecting wall
Γin and at the left boundary Γw.

All equations are spatially discretized with a finite-element method. The mesh
structure is depicted in figure 2. Its refinement is controlled by the vertex densities
n1 = 70 (dashed line), n2 = 100 (thin solid line) and n3 = 140 (thick solid line) on



Eigenvalue sensitivity, singular values and discrete frequency selection 775

zb
0

1.0

z f

0.5
0.7

FIGURE 2. Mesh structure: zb and zf denote, respectively, the location of the left Γw
and right Γout boundaries of the computational domain. Here Γin and Γa represent the
injecting wall and the axis of symmetry. The dashed, thin solid and thick solid lines are
characterized by the vertex densities n1 = 70, n2 = 100 and n3 = 140, respectively.

Discretization zb zf nt Discr. type nd.o.f . Boundary condition Γw

D1 0 11 291 092 P1b× P1b× P1 1 022 578 No-slip
D2 0 14 372 920 P1b× P1b× P1 1 309 921 No-slip
D3 0 11 291 092 P2× P2× P1 1 316 172 No-slip
D4 4 8 104 854 P1b× P1b× P1 368 540 Interp. from D1

D5 4 9 133 342 P1b× P1b× P1 468 563 Interp. from D1

D6 3 9 157 424 P1b× P1b× P1 553 165 Interp. from D1

D7 3 8 133 360 P1b× P1b× P1 468 626 Interp. from D1

TABLE 1. Different spatial discretizations: zb and zf are the locations of the left and right
boundaries; nt is the number of triangles, ‘Discr. type’ is the type of finite elements to
represent (ur, uz, p), while nd.o.f . is the number of degrees of freedom of an unknown
(ur, uz, p). The boundary condition applied at Γw depends on the location of the left
boundary Γw and is specified in the last column.

both external and internal boundaries. The spatial extent of the meshes is governed by
the abscissa zb and zf of the left and right boundaries, the head end of the chamber
being located at z= 0.

The unknown velocity and pressure fields are represented either with Arnold–
Brezzi–Fortin MINI elements (see Matsumoto & Kawahara 2000), having four-node
P1b elements for the velocity components and three-node P1 elements for the pressure,
or with Taylor–Hood elements, having six-node P2 elements for the velocity and
three-node P1 elements for the pressure. These spatial discretizations are respectively
first- and second-order accurate. Momentum and continuity equations are first
multiplied by r2 and r to avoid the singularity on the r = 0 axis. The associated
variational formulations are then derived, and the discretized equations obtained for
seven distinct cases: D1 and D3 are based on the same mesh starting at zb = 0 and
extending up to zf = 11 but with different spatial discretizations (first order for D1,
second order for D3); D1 and D2 display the same spatial first-order discretization
but extend up to zf = 11 and zf = 14, respectively, the left boundary being located
at the head end zb = 0; D4, D5, D6 and D7 are all first order but start and end at
different locations zb = 3 or 4 and zf = 8 or 9. The number of degrees of freedom
for an unknown (ur, uz, p) involved in each case is given in table 1.

The equation governing the perturbation (2.4) may then be reformulated in discrete
form as

B
dq′

dt
= Aq′ + PMf ′, (2.5)
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FIGURE 3. Base flow at Re= 1600. Isocontours of radial velocity (a) and axial
velocity (b). Discretization D1.

where A, B, M and P are sparse large-scale matrices. Here, B is defined by B =
PMP∗, M designates the mass matrix, which acts solely on the velocity components,
P is the prolongation matrix, which takes a velocity vector and adds zero pressure
components to yield a velocity–pressure vector and P∗ corresponds to the restriction
operator, which extracts the velocity components from a velocity–pressure vector.

3. Base flow
The base flows, which are solutions of (2.3), have first been determined for

discretizations D1, D2 and D3, for which the boundary condition at Γw corresponds to
no-slip (zb= 0). Then, the base flows for D4, D5, D6 and D7, which all start at zb > 0,
may be computed by considering the radial velocity profile at section zb obtained in
the D1 base flow (see the boundary condition at Γw given in last column of table 1).
The zeros of the nonlinear equations (2.3) are obtained thanks to an iterative Newton
method, in which the matrix inversions were handled by a direct sparse LU parallel
solver (MUMPS package, http://graal.ens-lyon.fr/MUMPS, see Amestoy et al. (2001)).
This iterative process is carried out until the vector two-norm of the residual of the
governing equations becomes smaller than 10−12. Figure 3 shows isocontours of the
base flow computed at Re= 1600 for discretization D1.

Accuracy of the numerical method is assessed by comparing the computed base
flow with the Taylor–Culick analytical solution (Culick 1966; Taylor 1956) for an
axisymmetric flow induced by wall injection in a channel:

U = Urer +Uzez,

= −1
r

sin
(

πr2

2

)
er +πz cos

(
πr2

2

)
ez. (3.1)

We recall that the Taylor–Culick analytical solution does not take into account the no-
slip condition at the head end of the chamber. Therefore some mismatch is expected
in this area that should decrease as we move away from the head-end. We verified that
the base-flow obtained at Re= 1600 displays an excellent agreement with the Taylor–
Culick analytical solution for an abscissa z> 2 (see figure 4). Note that this also holds
for higher Reynolds numbers (Re= 2075, 2290). Such results are in accordance with
those obtained recently by Chedevergne et al. (2012).

4. Discrete frequency selection mechanism with white noise forcing: a DNS study
In this section, we carry out a numerical experiment to show that flow induced by

radial wall injection is globally stable and that such a flow may present unsteadiness

http://graal.ens-lyon.fr/MUMPS
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FIGURE 4. (Colour online) Base-flow at Re=1600. Radial Ur (a) and axial Uz (b) velocity
profiles. The head-end boundary layer is emphasized. Discretization D1.

displaying a series of well-defined peaks in the frequency spectrum in presence of
white noise Gaussian forcing.

For this, we perform for Re= 1600 (with discretization D1) forced linearized DNS
simulations by integrating in time (2.5) and by considering a forcing of the form

f ′ = n(t)f̂ (r, z)= n(t)

(
f̂r(r, z)
f̂z(r, z)

)
(4.1)

where n(t) is a zero-mean white Gaussian forcing of unit standard deviation. Two
distinct spatial forcing structures f̂ (r, z) will be considered. The first is large scale
in z with f̂z = 0 and f̂r = 1 within (0.90 6 r 6 0.95, 2 6 z 6 6) and 0 outside. The
second is similar but less extended in the z direction: f̂z= 0 and f̂r = 1 within (0.906
r 6 0.95, 3.85 6 z 6 4.15) and 0 outside. In the rest of the paper, these two specific
forcings will respectively be referred to as the large-scale and narrow forcings.

From a numerical point of view, we temporally discretize (2.5) thanks to a fully
implicit second-order backward-finite-difference method:

α0Bqm+1 + α1Bqm + α2Bqm−1 = Aqm+1 + β1PMf m + β2PMf m−1, (4.2)

with α0 = 1.5/1t, α1 = −2/1t, α2 = 0.5/1t, β1 = 2/1t and β2 = −1/1t and m as
the time index. The matrix inverses are carried out at each time step by a direct LU
solver (UMFPACK package, http://cise.ufl.edu/research/sparse/umfpack/, see Davis &
Duff (1997)). We used 1t = 1/5000 for discretization D1 to keep the CFL number
below 1. The time discretization of (2.5) with the forcing defined in (4.1) induces that
the high-frequency part (ω > π/1t ≈ 15 700) of the exciting noise n(t) is discarded.
This is not an issue since the frequencies of interest in the flowfield are much lower
ω< 200.

Simulations for both forcing structures evolve toward a statistically steady state.
As a consequence, one may infer that the considered base flow is stable (in a linear
set-up, a globally unstable flow leads to diverging signals, which is not the case here),
in agreement with previous studies (Chedevergne et al. 2006). We have represented

http://cise.ufl.edu/research/sparse/umfpack/
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FIGURE 5. Typical azimuthal-vorticity snapshots of perturbation from linearized forced
DNS simulations after the transient has passed away (in the statistically steady state):
(a) large-scale forcing; (b) narrow forcing. Here Re = 1600, discretization D1. The
horizontal straight line above each plot indicates the streamwise extent of the spatially
coherent forcing.

in figure 5 typical snapshots of the flow obtained in this asymptotic regime. We can
see in both simulations large-scale vortical structures associated with low frequencies.
A frequency-selection mechanism is therefore at play since the white noise forcing
injects an equal amount of energy in all frequencies. Note that the vortical structures
emerging in the vicinity of the injecting wall are similar to those computed by
Vuillot (1995). Such vortices are characteristic of the instability of flow induced by
wall injection. In both figures, one may observe small wiggles in the vicinity of the
forcing structure f̂ (r, z). These are linked to the small-scale perturbations triggered
by the forcing injected at high frequencies.

We now analyse the frequency content of the unsteadiness. For this, we have
computed the spectrum of the z component of the velocity field at two different
points located far downstream of the two forcing regions: one near the injecting wall
at (rc= 0.9, zc= 8) and one at the centreline of the channel at (rc= 0, zc= 8). We have
represented the spectra of these two signals (cyan and magenta thick lines) in figure 6
for the large-scale (a) and narrow (b) forcing cases. These spectra have been obtained
by analysing the input signal n(t) defined in (4.1) and the output signals uz(t) obtained
near the injecting wall and at the centreline of the channel. We have represented the
quantity

√|Pnuz/Pnn|, where Pnuz is the cross-power spectral density of n and uz and
Pnn is the power spectral density of n. Here Pnuz and Pnn have been obtained using a
Welch method, with 11 overlapping (50 %) segments of 40 000 samples, which leads
to a resolution of 1ω= 0.79. It appears that the frequency spectra for the large-scale
forcing (figure 6a) display a series of peaks regularly spaced in the frequency range
40<ω < 80. The peaks are located at the same frequencies for the spectra obtained
near the injecting wall and at the centreline of the channel. These peaks are due
to large-scale motions, whose characteristic size scales on the radius of the channel.
For the narrow forcing (figure 6b), the result is different: at all spatial locations, the
frequency spectrum displays a single large hump around the frequencies 40<ω< 80.
Therefore, no discrete series of peaks are observed in this case, indicating that the
discrete frequency selection mechanism observed in figure 6(a) depends on the spatial
structure that excites the flow. Note that the noise has been chosen delta correlated
in time (white noise) in these DNS. This choice has been made for convenience to
obtain a flat broadband exciting spectrum for n(t); yet, only a broadband exciting
noise in the frequency range 0<ω< 100 (which may be more correlated in time) is
actually required to produce similar results.
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FIGURE 6. Spectrum of the uz component near the injecting wall (rc = 0.9, zc = 8) and
at the centreline of the channel (rc = 0, zc = 8) with large-scale forcing (a) and narrow
forcing (b). Here Re= 1600, discretization D1.

The spectra presented in figure 6 actually also correspond to the transfer functions
from the signal n to the z component of the velocity fields at the different spatial
locations that were introduced above. These transfer functions may therefore also be
evaluated by computing the frequency response of the linear input–output system. For
a harmonic forcing of the form f̂

′ = eiωt f̂ , with the large-scale or narrow forcing f̂
defined above, the frequency response consists of determining the sustained asymptotic
response û′ = eiωtû, where û is the solution of

û= R(µ)f̂ . (4.3)

Here R = P∗(µB − A)−1PM is the global resolvent matrix and µ = iω is a complex
scalar related to the considered frequency. We may compute û for any frequency
ω by solving the linear system in (4.3). This was done here by use of the direct
sparse LU solver MUMPS. We have shown in figure 6(a,b) (see black thin lines)
the values of |û(rc, zc)| evaluated at the two spatial locations introduced above as a
function of frequency. We observe that these curves are very close to the frequency
spectra obtained by time-averaging (blue and red thick lines). This good agreement
shows that the spectra obtained by time-averaging are well converged and that the
discrete peaks observed in figure 6(a) may fully be accounted for by an analysis of the
frequency response of the flow û. In the following, we will try to understand which
properties of the resolvent R may explain these observations. We will investigate two
possibilities. The first, already advocated by Chedevergne et al. (2006), suggests that
weakly damped eigenmodes of A may exist in the vicinity of these frequencies. The
second consists of analysing the singular values and modes of the resolvent R and to
look for pseudo-resonances. This has already been achieved in other globally stable
flows, such as boundary layers and jets. Yet, in all of these configurations, no discrete
frequency selection mechanism characterized by a spiky frequency spectrum has been
reported. Note that these two ways of analysing the dynamics is of course related: if
weakly damped global modes exist in the vicinity of some discrete frequencies, then
the singular values should display an overshoot near these frequencies.
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5. Eigenvalue spectrum and ε-pseudo-spectrum for flow induced by radial wall
injection

5.1. Eigenvalues
When considering perturbations under the form q′= q̂eµt, (2.5) yields for zero external
forcing f ′ = 0:

Aq̂=µBq̂. (5.1)

The eigenvalues µ are complex and their real and imaginary parts respectively refer to
the amplification rate σ and frequency ω of the mode. Eigenvalues are obtained in the
vicinity of some complex shift parameter s by looking for the eigenvalues of largest
magnitude of (A− sB)−1B. A power-method consists in repeatedly applying the latter
matrix on a given vector. The use of Krylov subspaces improves the convergence
of such a method and allows to extract multiple eigenvalues. In the present
study, we used the ARPACK library (http://www.caam.rice.edu/software/ARPACK)
in combination with the sparse direct LU solver of the MUMPS package to extract a
series of eigenvalues near some complex shift s.

We have investigated the eigenvalue spectrum of the flow for the seven discreti-
zations D1–D7 introduced in § 2. We considered 11 different shifts s= 0, 10i, 20i, . . . ,
100i and computed in each case 20 eigenvalues that were closest to the shift. For
Re = 1600, we have reported the results in figure 7(a–c) for the discretizations D1,
D2 and D4. We first focus on figure 7(a), which is concerned with discretization
D1, i.e. zb = 0, zf = 11 and a first-order spatial discretization. We observe that all
eigenvalues display a negative amplification rate σ and that the damping rate is
very strong for values of the frequency ω > 20. The computed eigenvalues should
be independent of the shift parameters s that were used. While a perfect match is
obtained at low frequencies (ω 6 30), we observe that this is no longer the case at
higher frequencies (ω > 30), see the inset to figure 7(a) showing a zoom of such a
region. We can see that each shift s yields different eigenvalues, which all display
similar damping rates around −σ ≈ 15. Same behaviour has been observed in the
thesis of Chedevergne (2007) when the number of Chebyshev points is increased in
the axial direction. Final results in his work were obtained with a correct resolution in
the radial direction but a coarse resolution in the axial direction. These under-resolved
results were presented in Chedevergne et al. (2006) and Chedevergne et al. (2012).

Results displaying non-overlapping eigenvalues for different shifts are not common
in the literature. In the case of boundary layers, which are also globally stable
flows, the least-damped eigenvalues representing Tollmien–Schlichting waves were
not found to be very sensitive (see Ehrenstein & Gallaire 2005; Alizard & Robinet
2007; Akervik et al. 2008). In the case of an open cavity flow, Barbagallo, Sipp &
Schmid (2009), Barbagallo et al. (2011) showed that strongly damped global modes
were difficult to compute and dependent on the shift value. This behaviour was
well explained by the advection–diffusion model problem introduced by Trefethen &
Embree (2005).

Figure 7(b,c) show the eigenvalue spectrum for a computational domain extended
up to zf = 14 while keeping zb = 0 (discretization D2) and a domain reduced to the
slice zb= 46 z6 8= zf (discretization D4). We can see that the results are qualitatively
similar in the case of the larger domain (discretization D2) with overlapping
eigenvalues at low frequencies, non-overlapping eigenvalues at high frequencies. The
only difference lies in the fact that the damping rate of the high-frequency eigenmodes
has slightly decreased to −σ ≈ 11. In the case of a shorter axial domain, the situation
is radically different: the low-frequency eigenvalues (ω< 40) have disappeared and the

http://www.caam.rice.edu/software/ARPACK
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FIGURE 7. (a–c) Eigenvalue spectra in the (ω, σ ) plane obtained with discretizations
D1, D2 and D4, respectively. Colours indicate eigenvalues computed with distinct shift
parameters s (shown in b). (d–f ) Corresponding ε-pseudo-spectra in the (ω, σ ) plane. Here
Re = 1600. In (a), the inset corresponds to a zoom of the represented rectangle. In all
other panels, we have drawn the same rectangle to ease comparison. In (d,e), the solid
line refers to the isovalue ε = 10−12.
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high-frequency modes (ω> 40) are now clearly defined with overlapping eigenvalues
obtained for distinct shifts. We have checked that we precisely recover the spectrum
given by Boyer et al. (2013b) who used spectral discretization and the same outlet
boundary condition.

5.2. ε-pseudo-spectrum
5.2.1. Definition and computation

The governing equations (2.5) may be recast in state-space form by eliminating the
pressure p′:

du′

dt
= Ãu′ + f ′. (5.2)

The matrix Ã only acts on the velocity field and corresponds to the matrix A projected
on the divergence-free subspace. In this expression, we assumed that the forcing f ′ is
divergence-free. The resolvent matrix associated with Ã is R̃ = (µ̃I − Ã)−1. The norm
of the matrix R̃ is given by

|||R̃|||Q =max
f̂

f̂
∗
R̃
∗
QR̃f̂

f̂
∗
Qf̂

, (5.3)

where the maximum is searched for in the divergence-free subspace and Q is chosen
to represent the following scalar product:

u∗Qv =
∫
Ω

(ūrvr + ūzvz)r dr dz. (5.4)

The integral is taken over the whole computational domain.
The resolvent norm |||R̃(µ)|||Q is infinite for values of µ corresponding to

eigenvalues of Ã. Furthermore, Trefethen et al. (1993) showed that an arbitrary
complex µ corresponds to an eigenvalue of a perturbed matrix Ã + δÃ for a
sufficiently large perturbation matrix δÃ. It may be shown that the critical size
of this perturbation matrix δÃ is given by |||δÃ|||Q = 1/|||R̃(µ)|||Q. Hence, if |||R̃(µ)|||Q
is very large (say |||R̃(µ)|||Q ≈ 1015), then there exists a very small perturbation matrix
δÃ (say |||δÃ||| ≈ 10−15) such that µ is an eigenvalue of Ã + δÃ. In this case µ is
a quasi-eigenvalue of Ã. The matrix perturbation δÃ may stem from various origins:
discretization scheme, mesh refinement, imperfection in the geometry, location of the
outlet boundary, nature of downstream boundary condition, etc.

One may finally show that the eigenvalues of Ã are the same as those obtained for
the generalized eigenproblem (A, B) defined in (5.1) and that

|||R̃(µ)|||Q = λ1(µ), (5.5)

where λ1(µ)
2 corresponds to the largest eigenvalue of the eigenproblem that will be

introduced below in (6.2) with Qu =Qf =Q.

5.2.2. Results
In the following, we will analyse the ε-pseudo-spectrum of the flow, which consists

of plotting the quantity ε= |||R̃(µ)|||−1
Q in the (ω, σ ) plane. At each point of the plane
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µ= σ + iω, the quantity ε corresponds to the critical size of the perturbation matrix
|||δÃ|||Q so that µ is an eigenvalue of Ã + δÃ. Note that the ε-pseudo-spectrum is
a robust quantity contrary to the eigenvalues of Ã, which are likely to be prone to
ill-conditioning.

We now analyse the ε-pseudo-spectra introduced in § 5.2. We have shown in
figure 7(d) the quantity ε (in logarithmic scale) for discretization D1. We observe that
in the low-frequency region ω< 30, where the eigenvalues overlap (see figure 7a), the
value of ε remains above ε > 10−8, which indicates that the computed eigenvalues are
robust quantities. Note that if µ exactly corresponds to an eigenvalue, we numerically
obtain, as expected, tiny values of ε, i.e. ε < 10−15. We do not see these values in
figure 7(d) because ε has been evaluated only on a relatively coarse mesh in the
(ω, σ ) plane. None of these points obviously was very close to an eigenvalue. Hence,
figure 7(d) has to be considered as a ‘background’ value of ε. It corresponds actually
to a quality measure of the computed eigenvalues: if the background value of ε is
very small, say ε < 10−12, then the eigenvalues found in this region are not very
robust and the whole region may actually be quasi-eigenvalues; if the background
ε is larger, say ε > 10−8, then the eigenvalues are robust and different shifts should
recover the same eigenvalue. Coming back to the description of figure 7(d), we can
see that the background ε reaches extremely small values in the region where the
high-frequency eigenvalues did not overlap in figure 7(a). The solid line indicates
for example the isocontour ε = 10−12: any value µ below this curve corresponds
to an eigenvalue of Ã + δÃ with a tiny matrix perturbation |||δÃ|||Q 6 10−12. It is
conceivable that the shift-invert technique used to extract the eigenvalues introduces
such minute perturbations. Hence, the whole area below the solid line has to be
considered as quasi-eigenvalues. Figure 7(e), which is concerned with the same plot
but for discretization D2 (more extended domain), exhibits a similar behaviour. Yet,
it is seen that for frequencies ω > 30, the ε values are up to two or three orders
of magnitude smaller than those obtained for discretization D1. Hence, the more
extended the domain, the more sensitive the eigenvalues. As a consequence, the
isoline ε = 10−12 has moved toward smaller damping rates (−σ ≈ 11–12), which
is consistent with the location of the non-overlapping eigenvalues in figure 7(b). In
the case of a shorter domain (figure 7f ), the ε values are much higher and always
lay above 10−7 for −σ < 18. This shows that the computed discrete eigenvalues are
robust quantities in the case of a shorter domain, in agreement with the overlapping
eigenvalues shown in figure 7(c). When considering shorter domains, we actually
remove a large part of strongly amplified perturbations, which are triggered upstream
and which grow exponentially in the downstream direction.

We will now analyse in the case of short domains the effect of the left (zb) and
right (zf ) boundary locations on the eigenvalue spectra. For this, we have compared in
figure 8 the spectra related to discretization D4 with those obtained for discretizations
D5, D6 and D7, in which the left and/or right boundaries have slightly been moved
upstream or downstream. The figure shows a close-up view, within 30<ω< 120, of
the eigenvalues that have been obtained with the shift s = 60i. Note that we have
checked that all discretizations D4 to D7 yield overlapping eigenvalues in this region
when different shifts are used (as in figure 7c). We can see that each discretization
yields a different branch of eigenvalues and that each branch displays different
amplification rates, different frequencies and different distances in frequency between
two successive eigenvalues. This shows that, despite the fact that the eigenspectra
are more robust in the case of shorter domains (the ‘background’ value of ε is at
least equal to 10−7 in the region of the computed eigenvalues), the eigenspectra
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FIGURE 8. (Colour online) Comparison between eigenvalue spectra obtained for
discretizations D4, D5, D6 and D7. Here Re= 1600.

remain very sensitive to the locations of the left and right boundaries. It is therefore
impossible to define a unique set of eigenvalues and in particular frequencies which
are intrinsic to the flow. We believe that it is unlikely that an argument based on
a series of eigenvalues obtained for zb = 4 and zf = 8, as promoted by Boyer et al.
(2013a,b), may explain the discrete frequency selection mechanism observed in flow
induced by radial wall injection.

The analysis of the effect of the discretization order reveals (not shown here) that
second-order eigenvalue computations yield a spectrum qualitatively similar to that
obtained with a first-order discretization and that the values of ε remain quantitatively
unchanged, indicating that ε is a robust quantity. Considering figure 7(a,b,d,e), it
seems that ε = 10−12 approximately corresponds to the value where non-overlapping
eigenvalues are obtained. Note that this threshold value is not universal but dependent
on the numerical techniques that were used. Yet, the computed values of ε are robust
(as shown above), so that the region of quasi-eigenvalues defined by ε < 10−12, has
not only a numerical but a true physical sense.

Finally, the computed eigenvalues in regions where ε < 10−12 were shown (not
shown here) to be ‘true’ eigenvalues, in the sense that time-marching (4.2) with an
initial value equal to the real part of an eigenmode yields a solution displaying a time
behaviour consistent with the computed eigenvalue µ. Such results are in agreement
with those of Chedevergne et al. (2012) and Boyer et al. (2013a).

6. Pseudo-resonance

In this section, after a brief introduction of the singular value decomposition
of the resolvent (§ 6.1), we analyse the optimal gains (§ 6.2) and singular modes
(§ 6.3) of the flow. In particular, we will try to understand if such quantities may
help understand the discrete frequency selection mechanism presented in § 4 for the
large-scale forcing. We will conclude this section by an assessment of the influence
of the Reynolds number (§ 6.4).
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6.1. Singular values of resolvent

Considering (4.3), we focus on optimal forcings f̂ which maximize the response û
for a given temporal behaviour µ. More precisely, we look for optimal forcings f̂
maximizing the gain:

G(f̂ )= û∗Quû

f̂
∗
Qf f̂
= f̂

∗
R(µ)∗QuR(µ)f̂

f̂
∗
Qf f̂

. (6.1)

Here, Qu and Qf are two hermitian matrices defining the precise ratio to be optimized:
Qf is meant to be positive definite whereas Qu is positive but may have a non-zero
null-space. For example, û∗Quû may stand for the energy in some subdomain Ωu

while f̂
∗
Qf f̂ could be the energy in the whole computational domain Ωf =Ω . More

information about the choice of relevant norms can be found in Chernyshenko & Baig
(2005) and Blesbois et al. (2013).

Following Sipp & Marquet (2012), this optimization problem is solved by
considering the following generalized hermitian eigenproblem:

R(µ)∗QuR(µ)f̂ i = λ2
i Qf f̂ i, (6.2)

where λ2
i are the optimal gains (λi are also called the singular values) ranked by

decreasing value λ2
1 > λ2

2 > · · · . Here f̂ i are the optimal forcings (the right singular
vectors), which constitute an orthonormal basis f̂

∗
i Qf f̂ j = δij where δij stands for the

Kronecker symbol. The optimal responses (the left singular vectors) are obtained
from

ûi = λ−1
i R(µ)f̂ i. (6.3)

It is easy to verify that ûi is another orthonormal set of vectors, û∗i Quûj = δij. The
solution of the eigenproblem (6.2) is carried out with a Lanczos method implemented
in the ARPACK library (regular mode), while the matrix inverses involved in the
resolvent R (see (6.2) and (6.3)) are performed with the MUMPS package. More
details on the numerical implementation are given in Sipp & Marquet (2012).

Now, let us show how this decomposition straightforwardly characterizes the
frequency response for any given forcing f̂ at frequency ω. For this, we consider the
optimal gains λi, optimal forcings f̂ i and optimal responses ûi obtained for µ = iω.
The expansion of the forcing f̂ onto the set of optimal forcings is given as

f̂ =
N∑

i=1

αi f̂ i, (6.4)

where the complex coefficients αi are readily obtained as the scalar products of the
forcing f̂ with the corresponding optimal forcings:

αi = f̂
∗
i Qf f̂ . (6.5)

The flow response is obtained as an expansion in terms of optimal responses

û=
N∑

i=1

λiαiûi. (6.6)

This relation is central to the whole approach, since for a given forcing f̂ , it
straightforwardly yields the response of the flow û.
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FIGURE 9. The 20 leading singular values λi for discretization D1 (black solid lines) and
leading singular value λ1 for discretization D4 (red solid line) as a function of frequency
ω. Re= 1600.

6.2. Optimal gains
Figure 9 shows for discretization D1 (solid black lines) and Reynolds number Re =
1600, the 20 largest optimal gains λi, solution of (6.2), as a function of frequency ω.
We chose for this Qf =Q and

u∗Quv =
∫
Ω

(ūrvr + ūzvz)(z 6 8)r dr dz, (6.7)

so that the optimization domain is restricted to z6 8. This has been done to make the
results independent of the location of the downstream boundary and of the precise
boundary condition that was used. Hence, we look for a forcing that maximizes the
energy of the flow response in the domain z 6 8. We can see that the first singular
value λ1 is well above the others in the range 30 < ω < 100. The leading gain
λ1 features a smooth curve with no distinct peaks. The maximum of this curve is
obtained for ω≈ 60–65, indicating that a preferred frequency exists for the extraction
of energy within the domain z 6 8. This larger gain near ω ≈ 60–65 emphasizes a
pseudo-resonance mechanism since it cannot be merely explained by the presence of
weakly damped eigenvalues in the spectrum of the linearized Navier–Stokes operator
(see figure 7a) near these frequencies. We also observe in figure 9 that there are
several other branches displaying clear maxima, showing that suboptimal mechanisms
to extract energy exist in this flow. Yet, most of the suboptimal branches are rather
flat: in the case of backward-facing step flow, such branches were shown to be linked
to pure downstream advection of perturbations by the base flow (Dergham, Sipp &
Robinet 2013).

In figure 9, we have also represented (in red) the leading singular value for
discretization D4 (for which the computational mesh starts at zb=4 and ends at zf =8).
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FIGURE 10. Real parts of leading optimal forcing and response at ω= 62.5: (a) f̂1r;
(b) f̂1z; (c) λ1û1r; (d) λ1û1z. Here Re= 1600 and discretization D1.

We can see that the λ1 curve is again a smooth curve (as for discretization D1) despite
the fact that the associated eigenspectrum shown in figure 7(c) exhibits clear distinct
frequencies: this is due to the fact that the damping rates of the discrete eigenvalues
−σ ≈ 16 are higher than the distance between two successive eigenvalues 1ω = 5
(for normal matrices, λ1(ω) is inversely proportional to the distance between iω and
the closest eigenvalue, see Schmid & Henningson (2001)).

6.3. Optimal forcings/responses

The optimal forcing f̂ 1 and response λ1û1 related to the maximum value of the
singular value λ1 obtained for ω = 62.5 are depicted in figure 10(a–d) by the
isocontours of the real part of their radial and axial components. The leading optimal
perturbation f̂ 1 is localized in the region 2< z< 6, close to the injecting wall. It is
characterized by a series of elongated flow structures that lay against the shear, which
are characteristic of the Orr mechanism (Orr 1907). The induced optimal response
λ1û1 features vortical structures which get stronger as we move downstream. Upstream
near z ≈ 4, they are located close to the injecting wall, but their size increases as
we move downstream and the vortical structures extend up to the channel axis when
z > 8. The streamwise wavelength of the structures is seen to increase with z: this
stems from the fact that the phase speed of the perturbations (equal to the local axial
wavelength times the frequency) reflects the downstream advection velocity of the
base flow, which dramatically increases with z due to the radially injected flow.

To further analyse the spatial locations of the leading optimal forcing f̂ 1 and
response λ1û1, we consider the axial energy density function, defined for a given
structure a as ‖a‖z0 =

(∫ r=1
r=0 (‖a(r, z0)‖2r dr)

)1/2, where at a given point (r, z),
‖a(r, z)‖2 = a∗r ar + a∗z az. This quantity has been represented for 0 6 ω 6 115
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FIGURE 11. Density function for the leading optimal forcing and response: (a) ‖f̂ 1‖z0 ;
(b) ‖λ1û1‖z0 . Here Re= 1600 and discretization D1.

in figure 11, both for the leading optimal forcing (a) and response (b). We can
immediately see that, similarly to the leading optimal gain curve, all curves are
smooth as a function of ω with no discrete peaks. We observe that the optimal forcing
is always located upstream and the optimal response downstream. This is reminiscent
of the strong convective non-normality of the flow, a concept introduced by Marquet
et al. (2009). Sipp & Marquet (2012) showed in the case of boundary-layer flow
subjected to Tollmien–Schlichting instabilities that, for a given frequency ω, the
maximum of ‖f̂ 1‖z0 and ‖λ1û1‖z0 as a function of z0 correspond to the location of
branch I and branch II, respectively (in a local spatial stability framework, these
correspond to the upstream and downstream points of zero spatial amplification
rate). In figure 11(a,b), we can see that branch I slightly moves downstream when
the frequency increases and that the flow remains convectively unstable whatever the
downstream position so that branch II does not exist: for ω> 20, the optimal response
is always strongest at the downstream boundary. These results are in agreement with
the local stability analyses performed by Griffond et al. (2000). Also, Sipp & Marquet
(2012) showed that the streamwise density function of λ1û1 is related to the results
given by an eN method, which consists of integrating in the streamwise direction the
local spatial amplification rate at a given frequency. This link is confirmed here, since
figure 11(b) is strongly reminiscent of the eN results shown in Griffond et al. (2000).

Let us make a final comment on the λ1 curve shown with a red solid line in figure 9.
We can see that in the case of a computational mesh starting at zb= 4 (discretization
D4), the leading optimal gain coincides with the one obtained with discretization D1

only for frequencies satisfying ω> 80. As shown in figure 11(a), the optimal forcings
for ω < 80 are precisely located within the region z < 4, a region that has been
removed in discretization D4. Hence, discretization D4 is accurate only for perturbation
frequencies ω> 80, for which the optimal forcings obtained with discretization D1 are
all located within z> 4.
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FIGURE 12. First singular value for Re= 1600, 2075, 2290. Discretization D1.

6.4. Reynolds number influence
The dependence of the leading optimal gain with respect to the Reynolds numbers Re
is studied in figure 12. For each Reynolds number, Re={2075; 2290}, we consider the
appropriate base flow and solve the eigenvalue problem (6.2) for varying numbers of
µ= iω. Results show that the optimal gains only slightly increase with the Reynolds
number. This is in agreement with the inviscid nature of the instability: using a local
stability analysis, Casalis et al. (1998) and Griffond et al. (2000) have proven that
the amplification rates of the instability become nearly independent of the Reynolds
number as soon as the Reynolds number reaches a value of 1000. Also, one can note
that the frequency displaying strongest optimal gain is slightly shifted to higher values
when the Reynolds number is increased.

Comparison of the axial density functions of the optimal forcing and response
at ω = 62.5 shows that (figure 13) the optimal forcings are nearly independent of
the Reynolds number for Re > 1600, and that the optimal responses become slightly
more energetic with increasing Reynolds numbers, in accordance with the fact that
the optimal gains slightly increase with the Reynolds number.

7. Discrete frequency selection mechanism with singular vectors

The results presented in the last section have shown that the leading optimal gains,
forcings and responses of flow induced by radial wall injection exhibit a smooth
behaviour as the frequency is varied. In particular, the leading optimal gain λ1(ω)

does not exhibit any discrete peak, which would have been the case if weakly damped
global modes existed in the vicinity of these discrete peaks (which is not the case,
see § 5). At first glance, such a smooth behaviour of the singular quantities cannot
explain the discrete frequency selection mechanism presented in § 4 for the large-scale
forcing. Further analysis is therefore required.
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FIGURE 13. Axial energy density function of leading optimal forcing (a) and response
(b) for ω= 62.5 and Re= 1600, 2075, 2290. Discretization D1.

We first recall that the discrete frequency-selection mechanism has been precisely
captured by the frequency response computed in (4.3). The information is therefore
definitely contained in the matrix–vector product: û = Rf̂ , with f̂ standing for the
fixed large-scale forcing introduced in § 4. We also know that the singular value
decomposition of R, which provides the optimal gains, forcings and responses, yields
a very efficient approximation (6.6) of the true frequency response (4.3). It is therefore
natural to analyse how many singular values/vectors are needed to reconstruct the
true frequency response.

Figure 14(a,b) compare the true and approximated frequency responses obtained
near the injecting wall (rc = 0.9, zc = 8) (figure 14a) and at the centreline of the
channel (rc = 0, zc = 8) (figure 14b) as a function of frequency. The black, blue
and green solid lines respectively refer to approximations (6.6) obtained with N =
1, 10 and 20 singular values/modes. We can see that, for both spatial locations, the
approximations converge perfectly to the true frequency responses (shown with the red
solid line): with N= 20 singular values, the approximation in green is nearly identical
to the true response. Yet, and most important, it appears that the approximation based
on the leading singular value (N = 1) is sufficient to capture not only the discrete
frequency selection mechanism (all of the frequencies of the peaks are well recovered)
but also the overall amplitude of the true frequency response.

Equation (6.6) with N = 1 yields the following approximation based on the leading
singular value/mode:

û= α1λ1û1. (7.1)

We recall that all quantities on the right-hand side of this equation depend on the
frequency ω and that α1 = f̂

∗
1Qf f̂ corresponds to the projection of the fixed forcing f̂

on the leading optimal forcing f̂ 1. We now focus again on the two spatial locations
(rc, zc), the first near the injecting wall and the second at the centreline of the channel.
Figure 14(c,d) respectively depict for these two points a breakdown of |û(rc, zc)|
(which is shown with black solid lines in figure 14a,b) into the three coefficients
|α1| (red solid lines in figure 14c,d), λ1 (black dotted lines) and |û1(rc, zc)| (black
solid lines) as a function of frequency. As already mentioned above, the frequency
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FIGURE 14. (a,b) Comparison of true frequency response based on (4.3) with
approximations based on N = 1, N = 10 and N = 20 singular modes (see (6.3)). Axial
velocity component at (a) (r= 0.9, z= 8) and (b) (r= 0, z= 8). (c,d) Analysis of leading
order response û= α1λ1û1 at (c) (r = 0.9, z= 8) and (d) (r = 0, z= 8). Here Re= 1600
and discretization D1.

dependence of |û1(rc, zc)| and λ1 yield smooth curves. One may therefore note that
the discrete frequency selection mechanism is due to the |α1| curve, which exhibits
strong oscillations near a series of regularly spaced frequencies. Note that when
focusing on just a few spatial points, it may be useful to consider optimization
domains restricted only to the vicinity of these points: such an idea was introduced
by Chernyshenko & Baig (2005) and may help improve the convergence properties
of the series (6.6).

Approximation (7.1) shows that the frequency spectrum |û(ω)| at a given point
(rc, zc) may be quite complex since it is proportional to three quantities all dependent
on the frequency: the optimal gain function λ1(ω), which does neither depend on the
forcing nor on (rc, zc), the projection coefficient |α1(ω)|, which depends on the forcing
but not on (rc, zc), and |û1(rc, zc, ω)|, which depends on (rc, zc) and not on the forcing.
Hence, for a given forcing, the frequency spectrum at all points in the flow reflects
the shape of λ1(ω) and |α1(ω)|, but a strong modulation from point to point may be
observed due to different shapes of |û1(ω)|. For example, comparing the frequency
spectra near the injecting wall and at the centreline of the channel, we observe in
figure 14(a,b) that the peaks are located at the same frequencies (α1(ω)), but that
the dominant frequencies are within 40 < ω < 90 near the injecting wall and within
20<ω< 60 at the centreline of the channel, a difference due to |û1(ω)|.
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FIGURE 15. (a) Streamwise evolution of the real and imaginary parts of the radial
component of the leading optimal forcing at ω = 53 for r = 0.9. (b) Isovalues of
|α1|/(maxω |α1|). The forcing region is located within (0.90 6 r 6 0.95, zs 6 z 6 6). The
vertical dashed line refers to the large-scale forcing for which zs= 2. Here Re= 1600 and
discretization D1.

In order to better understand the origin of the discrete peaks shown in the |α1(ω)|
curve of figure 14(c,d), let us introduce a simple one-dimensional model that helps to
explain these observations. To start, we note that the leading optimal forcing displays
streamwise oscillations, that have been represented in figure 15(a) by the real and
imaginary parts of the radial component of the optimal forcing f̂1r at rc = 0.9 for
ω = 53. In addition, if larger frequencies are considered, then smaller wavelengths
are observed in the optimal forcing. We now consider the following simplified one-
dimensional model with the leading optimal forcing f̂1 = sin(kz) + i cos(kz), which
is representative of the above-described optimal forcing, with the real and imaginary
parts 1/4 spatial period out of phase but with a constant amplitude. We then consider
a rectangular one-dimensional forcing equal to f̂ =1 within zs 6 z6 ze and zero outside.
It is straightforward to show that in this one-dimensional case,

|α1(k)| = (ze − zs)

∣∣∣∣sinc
[

k(ze − zs)

2

]∣∣∣∣ (7.2)

where sinc is the cardinal sine function. The |α1(k)| curve therefore exhibits intense
oscillating sidelobes that are characteristic of the sinc function. This behaviour is
linked to the Fourier transform of a rectangular pulse, which is equal to the sinc
function: similar observations are made in the signal processing field where the
windowing of a periodic signal by a square window creates strong oscillations.
Finally, oscillations in the |α1(k)| curve yield similar oscillations in the |α1(ω)|
curve since the wavenumber k of the leading optimal forcing increases with the
frequency ω. Hence, strong peaks of the projection coefficient |α1(ω)| are expected
for some regularly spaced frequencies ω. Note that the picture in figure 14 is slightly
more complex, since the oscillations do not reach the zero value: this is due to the
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strong amplitude variations displayed by f̂ 1 (see figure 15a), that have not been taken
into account by the simplified model.

In § 4, we showed that the narrow and large-scale forcings did not exhibit the same
qualitative behaviour, the frequency response of the narrow forcing being smooth
with no frequency selection. We have analysed the results of the narrow forcing in a
similar way. We have observed (not shown here) that the projection coefficient |α1|
is a smooth curve as a function of the frequency ω. This may again be understood
in light of the simplified model for which the projection coefficient is given in (7.2).
Considering the range of frequencies within 20 < ω < 80 (which correspond to the
amplified frequencies), the streamwise wavenumber k of the optimal forcing varies
within k20 < k< k80. The constants k20 and k80 designate the streamwise wavenumbers
of the optimal forcings at frequencies ω= 20 and ω= 80. The phase φ within the sinc
function then varies within (ze − zs)k20/2<φ < (ze − zs)k80/2. For the narrow forcing,
ze − zs is 13 times smaller than in the case of the large-scale forcing. Therefore, the
variations of the phase φ become too small (within the range of amplified frequencies)
to induce oscillations in the projection coefficient |α1(ω)|.

We will now verify that the frequency-selection mechanism described just above
is at play for a wide variety of forcings. As a first step toward exploring a broader
set of forcings, we have computed the frequency dependence of the projection
coefficient |α1(ω)| for forcings beginning at zs and ending at ze = 6, with 0< zs < 6
( f̂r = 1 and f̂z = 0 within (0.90 6 r 6 0.95, zs 6 z 6 6)). In figure 15(b), we have
represented isovalues of |α1| within the (zs, ω) plane. Note that the coefficient |α1|
has been normalized for each forcing zs by its maximum value over all frequencies,
maxω |α1(ω)|, so that the coefficient has a maximum value equal to 1 in each vertical
slice. We can see a great variety of behaviours with respect to the starting position
zs of the forcing structures. It is seen that peaks in the frequency spectrum cover
the entire frequency range 20 < ω < 120. Such a graph needs to be interpreted in
connection with location of branch I: the general trend seen in figure 15(b) follows
closely those shown in figure 11(a). This stems from the fact that the starting zs
position of the forcing needs to be located near branch I to obtain quick variations
of the projection coefficient |α1| as a function of frequency.

Such results underline the major role played by the spatial structure of the forcing in
the existence and location of discrete peaks in the frequency spectrum of flow induced
by radial injection. Within the various forcing structures that have been explored here,
it seems that discrete peaks in the frequency spectrum may be encountered quite often.
Note, however, that the discrete peaks do not exist in the case of a smoother (in z)
forcing. It is the rectangular shape of the forcing that is at the very origin of the
spiky spectrum. Hence, for a noise amplifier flow to exhibit discrete peaks in the
frequency response, the shape of the forcing structure is as important as its location
and extension.

8. Comparison with experimental study
We will now investigate how the present results compare with the experimental

investigations led by Cerqueira et al. (2009) on the VALDO set-up, that has been
devised to investigate the pressure oscillations induced by aeroacoustic phenomena
inside solid propellant rocket motors. With an ambient air apparatus, the radius of the
channel of 30 mm and injection velocities of Vinj = 0.83 and 1.10 m s−1 correspond
to Re = 1660 and Re = 2200, respectively. The laminar–turbulent transition occurs
around z≈ 10. Similar results were obtained in other cold-gas apparatus experiments
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FIGURE 16. Comparison between the leading optimal gain (obtained for Re = 2075)
and the experimental spectrum for Re= 2200. Discretization D1 for stability computation.
Experimental results reproduced from Cerqueira et al. (2009).

(see Varapaev & Yagodkin 1969; Dunlap et al. 1990). It was checked that the mean
flows in the experiment by Cerqueira et al. (2009) favourably compare with the
Taylor–Culick analytical solution for Re > 1660 and 5.6 6 z 6 12.67.

In the experiment, the forcing structures f̂ are of course unknown and a precise
comparison of experimental results with approximation (7.1) is not possible. Here,
we just compare the frequency dependence of λ1 (obtained at Re = 2075) with a
spectrum of fluctuating velocity component obtained at three distinct streamwise
locations, (rc = 0.9, zc = 5.6), (rc = 0.9, zc = 8.93) and (rc = 0.9, zc = 11.2), for
Re = 2200 (as shown in § 6.4, this slight mismatch in Reynolds number is not an
issue since singular quantities only weakly depend on the Reynolds number for
Re> 1600). Results displayed in figure 16 show that experimental velocity fluctuation
frequencies arise in the vicinity of the maximum of λ1(ω). Obviously the discrete
peaks cannot be recovered here since they are due to the projection coefficient |α1|
and not to the optimal gain λ1, which only determines the overall shape of the
spectrum. The second series of peaks observed at higher frequencies are harmonics
of the first series of peaks: they are probably associated with nonlinear effects that
cannot be captured by the present linear approach.

Figure 17 displays a comparison between radial profiles of root-mean-square (RMS)
velocity fluctuations obtained in the experiment (for Re = 1660) and of the leading
optimal response |û1| obtained at ω = 62.5 (for Re = 1600). The overall amplitude
of the response has been fixed at z = 7.93 to match the experimental results. The
radial profile at z= 9.57 has been deduced from the structure of the optimal response.
Although some discrepancies are observed, velocity fluctuation distributions from the
global linear stability analysis are found to be in fairly good agreement with the
experimental data. This statement is true both for the radial distribution at a given
station and for the streamwise amplification.

The present results indicate that we face a true receptivity problem, in which the
central component is the external forcing. This external forcing may actually stem
from various physical origins in the experiment: quality of the air, geometrical defects,
details about how the radial flow is injected in the chamber, nonlinear interactions
with acoustics, etc. Note, however, that the flow being laminar in the experiment up
to z ≈ 10, forcings stemming from turbulent motions f ′ ≈ −u′ · ∇u′ (such as those
considered in turbulent shear flows by McKeon & Sharma (2010)) should not be
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FIGURE 17. Comparison of radial profiles of optimal response |û1| obtained at ω= 63.25
(for Re= 1600) with RMS of velocity fluctuations (obtained for Re= 1660). Two sections
are investigated: (a) z= 7.93, where the overall amplitude of the response has been chosen
to match the experimental profile; and (b) z= 9.57, where the profile of the response has
been deduced from the structure of the leading optimal response. Discretization D1 for
stability computation. Experimental results reproduced from Cerqueira et al. (2009).

considered in the present experiment. In the next section, we will briefly discuss how
a large-scale external forcing of rectangular shape (that has been recognized to be a
key feature to obtain spiky spectra) could in principle be obtained in an experiment.

9. Discussion on the relevancy of large-scale forcing in the experiment
We consider in this section the interaction of an acoustic wave with an elongated

wall defect of rectangular shape. We will start with the case of a two-dimensional
boundary layer, before discussing again the case of flow induced by radial wall
injection.

The forthcoming development is a generalization of Crouch (1992). We consider a
steady laminar two-dimensional boundary-layer flow and an acoustic wave of small
amplitude ε � 1 and frequency ωf interacting with a defect at the wall. Here, the
defect will have an elongated rectangular shape, of small and constant height δ� 1.
The flowfield q= (ux, uy, p)T is given by

q(x, y, t)= q0(x, y)︸ ︷︷ ︸
base-flow

+ δqδ(x, y)︸ ︷︷ ︸
defect

+ [εeiωf tqε(x, y)+ c.c.
]︸ ︷︷ ︸

acoustic wave

+ [δεeiωf tqδε(x, y)+ c.c.
]︸ ︷︷ ︸

interaction

+ · · · .

(9.1)
The defect-induced base-flow modification qδ(x, y) is equal at the wall to −∇q0 · n
at the defect’s location and zero on the rest of the wall (n is the unit vector in the y
direction). Here qδ(x, y) therefore approximately exhibits a rectangular shape close to
the wall. In the free stream, the acoustic wave eiωf tqε(x, y) converges toward the plane
wave solution (uε,x = 1, uε,y = 0), while close to the wall viscous effects generate a
Stokes layer. The nonlinear interaction between the defect and the acoustic wave
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is obtained at order δε, with the computation of qδε(x, y). This component, which
oscillates at the frequency ωf , is determined by two forcings: first, at the wall qδε
must be equal to −∇qε · n at the defect’s location and zero on the rest of the wall
(modification of the acoustic wave due to the defect); second, it is forced in the field
by the nonlinear interaction between the defect-induced base-flow modification qδ and
the acoustic wave qε . Due to the rectangular shape of the defect, these two forcings
also exhibit a nearly rectangular shape. The equation governing eiωf tqδε may actually
correspond to the forced linearized Navier–Stokes equation considered in (2.4): the
two above-mentioned forcing terms may stand for f ′ so that f ′ could exhibit a shape
close to the large-scale forcing considered in the present paper if acoustic waves
interacting with wall defects were considered. The response qδε(x, y) is strongest (and
so is the receptivity of the flow) when the forcing frequency ωf of the acoustic wave
is closest to the peak of the optimal gain curve λ1(ω). If the wall defect is elongated
and displays a rectangular shape, the equivalent forcing that accounts for the wall
defect will look very much like the large-scale forcing of this article. We therefore
expect a spiky spectrum in the case of an acoustic wave interacting with an elongated
wall defect within a boundary layer.

We think that an analogous mechanism may exist in the case of flow induced
by radial wall injection. The acoustic wave is now replaced by a longitudinal
acoustic mode in a pipe (a closed-form solution that accounts for the interaction
with the Taylor–Culick flow and the lateral walls can be found in Majdalani & Van
Moorhem (1998)). If again an elongated defect of rectangular shape is considered,
the problem should be equivalent, as in the boundary-layer case, to a large-scale
forcing of rectangular shape. Hence, an elongated wall defect of rectangular shape
could generate a spiky spectrum. Note, however, that the present proposal did not
convince one of the referees of this paper, who found it unphysical in the context of
solid propellant rocket motors.

10. Conclusion

We have shown in the present article that for certain external forcing structures
flow induced by radial wall injection may display discrete peaks in the frequency
spectrum. This has been established both by performing a forced linearized DNS
simulation and by computing the frequency response of the flow. We have then tried
to explain these observations with global stability analyses. We have first shown
that the eigenvalues of the Jacobian, which are located in the frequency range of
interest, are ill-behaved and extremely sensitive to numerical discretization details if
the computational domain is large. On the other hand, as suggested by Boyer et al.
(2013a,b), these eigenvalues are more robust in the case of shorter domains. Yet, they
still exhibit a strong sensitivity to the location of the left and right boundaries, which
makes it impossible to identify a unique set of discrete frequencies in the Jacobian
matrix that is intrinsic to the flow. These conclusions have been supported by an
analysis of the ε-pseudo-spectrum. We have shown in particular that the ‘background’
value of ε is a quality measure of the computed eigenvalues: if ε is below 10−8 in
some region, then the computed eigenvalues in this region are not anymore robust. We
believe that eigenvalues are not the good quantities to focus on to study the dynamics
of flow induced by radial wall injection. We rather think that in globally stable cases,
especially when the convective non-normality is extremely strong, as is the case
here, it is a better idea to consider the singular values and vectors of the resolvent
matrix. These are robust quantities which are far less sensitive to discretization
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details. Moreover, this decomposition yields a simple approximation of the resolvent
operator, and therefore of the frequency response of the flow, which is based on
the leading optimal gain, forcing and response. We have shown by analysing this
approximation in the case of the large-scale forcing that it is the projection coefficient
of the forcing onto the leading optimal forcing that is responsible for the discrete
peaks in the frequency response. This result is rather surprising since globally stable
flows are related to amplifier flows, which are usually characterized by smooth
broadband frequency spectra (in the case of broadband excitations). Flow induced by
radial wall injection is an example of amplifier flow, which may display frequency
spectra with discrete peaks, despite the fact that the forcing is white. What is even
more striking is that this phenomenon is not linked to weakly damped eigenmodes
(the leading optimal gain curve is smooth and presents a single peak) but to the
projection coefficient of the external forcing onto the leading optimal forcing. Hence,
the structure of the external forcing is a key quantity in such a dynamics showing
that the frequency selection mechanism is not intrinsic but dependent and determined
by the noise environment. In this respect, flow induced by radial wall injection is a
true noise amplifier.

We make the following conclusions with respect to the sensitivity issue. We
have shown that the eigenvalue spectrum is extremely sensitive and should not be
considered in systems which display strong convective instabilities, as is the case here.
Yet, this does not mean that time marching the Navier–Stokes equations will result
in a sensitive solution. Only the eigenvalues are sensitive but the time evolution
of the solution, the singular vectors or the optimal initial perturbations remain
robust quantities. Note however that the singular values depend on the choice of the
optimization domain. Our conclusion is that the optimization domain (and, therefore,
the computational domain in a DNS simulation) should start at the head end if the
low frequencies of the instability need to be accounted for. For the location of the
right boundary of the optimization domain, the choice is guided by the region where
linear growth is expected: for example, in the VALDO experiment, transition occurs
around z≈ 10. Hence, it seems natural to choose 8 or 9 as the right boundary of the
optimization domain to study the linear amplification mechanisms in this set-up.

Results and techniques were presented here in the context of flow induced by radial
wall injection. In particular, we have shown how spiky spectra may be obtained in the
case of large-scale coherent forcings of rectangular shape. We have also provided a
physical scenario explaining how such forcings may be generated from the interaction
of a longitudinal acoustic mode and an elongated defect at the wall. More work is
actually required to confirm the relevancy of this proposal in the case of flow in
solid propellant rocket motors. In particular, a precise characterization of the noise
environment is needed to make progress. Finally, it is important to stress that the
present study is relevant for all amplifier flows and that discrete peaks in frequency
spectra may be observed in such flows due to the shape, extension and location of the
external forcings. The present study also yields some clues for the analysis of flows
displaying strongly sensitive unstable global modes, as presented in the introduction.
It is suggested here to compute the ‘background’ value of ε in the region around the
unstable global modes. If this background ε is very small, then minute perturbations
of the Jacobian operator (changes in boundary conditions, meshing, order of spatial
discretization, location of boundaries) can strongly affect the computed eigenvalues. It
is important to realize that this is not only a numerical but a true physical issue: flows
displaying non-robust unstable eigenvalues should in principle exhibit some dynamical
features that are very sensitive, for example to the chosen experimental apparatus, to
the noise environment, etc.
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