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The generation of discrete acoustic tones in the compressible flow around an aerofoil
is addressed in this work by means of nonlinear numerical simulations and global
stability analyses. The nonlinear simulations confirm the appearance of discrete
tones in the acoustic spectrum and, for the chosen flow case, the global stability
analyses of the mean-flow dynamics reveal that the linearized operator is stable.
However, the flow response to incoming disturbances exhibits important transient
growth effects that culminate in the onset of aeroacoustic feedback loops, involving
instability processes on the suction- and pressure-surface boundary layers together
with their cross-interaction by acoustic radiation at the trailing edge. The features of
the aeroacoustic feedback loops and the appearance of discrete tones are then related
to the features of the least-stable modes in the global spectrum: the spatial structure
of the direct modes displays the coupled dynamics of hydrodynamic instabilities on
the suction surface and in the near wake. Finally, different families of global modes
will be identified and the dynamics that they represent will be discussed.
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1. Introduction

Tonal noise on aerofoils is a type of aerodynamic noise that arises from a complex
interaction of boundary-layer instabilities on the pressure and suction surfaces with the
acoustic pressure field generated by the flow (see Brooks, Pope & Marcolini 1989, for
a classification of the different physical mechanisms that can lead to noise radiation on
aerofoils). It is a phenomenon commonly observed on low-speed and glider aeroplanes
as well as on fans and ventilators, where it manifests itself as discrete and well-defined
peaks in the sound pressure spectrum approximately 30 dB above the background
noise. Even though known and studied since the 1970s, renewed research attention
in tonal noise has recently been generated owing to the increased interest in wind
turbines and micro-unmanned air vehicles. In these latter applications, a minimized
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FIGURE 1. (Colour online) Sketch of typical tonal noise features: (a) strong, distinct peaks
in the far-field pressure spectrum rising above the broadband noise; (b) dependence of the
frequencies on the free-stream velocity U. The thick black line indicates the dominant
(largest-amplitude) frequency, displaying a ‘ladder’ structure.

acoustic impact on the environment and a noise-free operation is desirable or even
imperative.

The work of Paterson et al. (1973) is commonly considered to be the first
experimental study that specifically addressed the tonal noise phenomenon on aerofoils
and characterized the flow regimes where acoustic tones were present in the sound
spectrum. Their work was followed by many more investigations of a theoretical (Tam
1974; Fink 1975; Kingan & Pearse 2009), experimental (Wright 1976; Longhouse
1977; Arbey & Bataille 1983; Brooks et al. 1989; McAlpine, Nash & Lowson 1999;
Nash, Lowson & McAlpine 1999; Nakano, Fujisawa & Lee 2006; Arcondoulis,
Doolan & Zander 2009) and, more recently, a numerical nature (Desquesnes, Terracol
& Sagaut 2007; Le Garrec, Gloerfelt & Corre 2008; Sandberg et al. 2009; Jones,
Sandberg & Sandham 2010; Jones & Sandberg 2011; Tam & Ju 2011). However,
despite four decades of research efforts and studies, an encompassing and widely
accepted description of the physical mechanisms underlying the rise of discrete tones
is still wanting. Based on the above-mentioned investigations, we shall give a brief
résumé of the principal features and our current understanding of tonal noise on
aerofoils; for a chronological presentation we refer the reader to Desquesnes et al.
(2007).

Experimental studies in open-jet wind tunnels report the tonal noise phenomenon for
aerofoil sections with a chord length in the range 0.08 m< c< 0.3 m, small angles
of attack 0◦ < θ < 8◦, and flow speeds in the range 10 m s−1 <U < 50 m s−1 which,
for typical atmospheric conditions, translates to (chord-based) Reynold numbers in the
range 105 < Re < 2 × 106; see Desquesnes et al. (2007). In these cases, a pressure
probe placed in the far field produces a spectrum with distinct, equispaced peaks fn

above the broadband wind-tunnel noise (see sketch in figure 1a). These peaks are
perceived by the human ear as a strong whistling sound, and pressure measurements
indicate that it originates from a dipolar acoustic source located near the trailing edge.
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It has also been observed that small variations in the free-stream velocity U yield
shifts in the dominant frequency ωn,max that scales as U0.8; however, at discrete
velocities, previously secondary peaks ωn rise and overtake the dominant frequency
ωn,max in amplitude. Since the tones are discrete, the effect manifests itself as a
sudden jump in the dominant frequency, resulting in a ‘ladder’ structure as illustrated
in figure 1(b).

The overall trend for the maximum frequency evolution is fn,max∼U3/2 (see dashed
line in figure 1b). The acoustic levels of the discrete tones increase with velocity
U, reach a maximum, before becoming imperceptible as the boundary layers on
the aerofoil surface undergo transition to turbulence. In Paterson et al. (1973), an
empirical law for the overall evolution of the principal tone fn,max was derived as
f =KU3/2(cν)−1/2, with K = 0.011, ν as the kinematic viscosity and c as the aerofoil
chord. In terms of the Reynolds number Re and the Strouhal number St = fc/U, the
above relation reads St=KRe1/2.

The occurrence of multiple equispaced peaks following a ladder structure has
been observed experimentally in several studies, among them Arbey & Bataille
(1983), Nakano et al. (2006), Takagi et al. (2006), Arcondoulis et al. (2009) and
Chong & Joseph (2012). In numerical studies, the same multiple-peak structure of
the far-field pressure spectrum has been confirmed by Desquesnes et al. (2007),
Le Garrec et al. (2008) and Jones & Sandberg (2011); the frequency-ladder structure
induced by a varying free-stream velocity, on the other hand, has not been investigated
numerically as the calculations are computationally expensive. It is noteworthy that
the experiments of Nash et al. (1999), as well as the numerical simulations of Tam &
Ju (2011), report only a single frequency peak. Interestingly, the experimental cases
that featured multiple peaks are correlated to experiments carried out in open-jet
wind tunnels, whereas the case where only one peak is observed corresponds to an
experiment in a closed-section wind tunnel. In Le Garrec et al. (2008), it is suggested
by means of numerical simulations that the observation of a single tone can be related
to the effect of the wind-tunnel walls on the potential flow.

For common ranges of Reynolds numbers and angles of attack, owing to the adverse
pressure gradient downstream of the maximum thickness of the aerofoil, the boundary
layer on the pressure side detaches over the last quarter of the chord, leading to a
large laminar separation bubble (Longhouse 1977; Nash et al. 1999; Desquesnes et al.
2007) that extends up to the trailing edge. Furthermore, the frequencies of the discrete
tones fall within the range of frequencies at which the pressure-surface boundary layer
can sustain instability waves – a fact that has been confirmed by most studies of tonal
noise and by a spatial stability analysis. Nonetheless, a physical mechanism based
solely on boundary-layer instabilities cannot explain a frequency-selection process
with multiple discrete peaks. Despite the separation bubble on the pressure surface,
the reverse flow is typically small (approximately 10 % of the free-stream speed),
and it is thus unlikely that absolute instabilities are present (Hammond & Redekopp
1998). Indeed, local stability analysis of velocity profiles from experimental data
(Nash et al. 1999) and numerical simulations (Jones, Sandberg & Sandham 2008;
Tam & Ju 2011) have confirmed that the boundary layers and the wake do not sustain
absolute instabilities.

Based on the above observations, different types of ad hoc mechanisms have been
suggested in the last four decades, involving mostly aeroacoustic feedback loops (Tam
1974; Wright 1976; Arbey & Bataille 1983; Desquesnes et al. 2007; Chong & Joseph
2012). These mechanisms involve convective instabilities in the boundary layers and
separated-flow regions, which amplify incoming disturbances and produce, as a result
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of the trailing-edge geometry, significant acoustic scattering. The acoustic waves that
propagate into the far field would in turn excite the boundary layers upstream, thus
reinforcing discrete frequency components following an integer-wavenumber phase
condition.

It also appears fair to state that a proper analysis of the instability processes as
well as the role of the different flow features during the tonal noise-generation process
has been limited in the past by the confined scope and restrictions of classical local
stability theory and the use of this tool to address non-parallel flows and long-distance
feedback interactions.

The above observations are supported by the study of Jones & Sandberg (2011). In
that study the evolution of a small perturbation in aerofoil flows was investigated by
means of two-dimensional numerical simulations, and therefore, their analysis was not
restricted by local or parallel-flow assumptions. It was established that aeroacoustic
feedback loops may be present, possibly playing a significant role in the frequency
selection. It is then suggested that the tonal-noise generation mechanism is intrinsically
global, as it involves instability mechanisms of different flow phenomena coupled with
boundary-layer receptivity to acoustic disturbances.

In this respect, global stability theory has enabled significant progress over the
past decade towards our understanding of separated flow dynamics at the onset of
unsteadiness (see, for example, Gallaire, Marquillie & Ehrenstein 2007; Ehrenstein
& Gallaire 2008; Marquet et al. 2008; Alizard, Cherubini & Robinet 2009; Marquet
et al. 2009; Cherubini, Robinet & De Palma 2010). We thus propose a global stability
analysis of the tonal-noise phenomenon as it provides a theoretical framework
and basis for addressing the complex features of the problem without further
simplifications or assumptions.

A great variety of flow regimes can produce discrete tones in flows around aerofoils.
For the present study, we focus on a flow case similar to the one analysed in
Desquesnes et al. (2007), since their two-dimensional simulations exhibited features
similar to the experiments conducted by Nash et al. (1999). It should be noted that,
for typical Reynolds numbers, the flow is turbulent – and therefore intrinsically
three-dimensional – on a large extent of the suction surface and near the trailing
edge on the pressure surface. Nevertheless, it has been found in experiments that the
far-field sound radiation and associated boundary-layer instabilities are coherent in
the spanwise direction, and it is thus commonly accepted that the main features of
the generation of tones can be assessed by two-dimensional simulations.

Besides gaining further insight into the coupled dynamics of the boundary layers on
both surfaces, the near wake and the subsequent acoustic radiation, we wish to assess
whether multiple tones can be explained using global stability theory and how this
type of analysis can capture the dominant observed structures as well as long-distance
feedback effects.

The outline of the paper is as follows. Details about the flow configuration, the
numerical scheme and the result from the nonlinear simulations are presented in § 2,
together with spectra from pressure measurements, properties of the mean flow and
time series of the flow fields. In § 3, the flow linearized about the mean flow is
investigated using an impulse response analysis which reveals a sequence of dynamic
components that repeat cyclically. A linear global stability analysis of the full flow
is presented in § 4, including an analysis of the global spectrum, the location of the
associated global modes, their acoustic contributions and their role in the tonal-noise
phenomenon. A summary of our results and conclusions are offered in § 5.
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2. Nonlinear simulations
2.1. Problem description and numerical tools

2.1.1. Governing equations and flow case
The present study is concerned with uniform flow around an aerofoil section at rest

in an unbounded domain. This flow obeys the two-dimensional compressible Navier–
Stokes equations for an ideal gas; the reference values for the non-dimensionalization
of the flow variables are those of the unperturbed flow (except for the entropy, where
the ideal gas constant r has been taken as the reference value), the reference length
scale is the aerofoil chord, and the temporal scale is the residence time over one unit
length. The governing equations, written in terms of the pressure p, the entropy s and
the velocity field u, then read

1
p

(
∂p
∂t
+ u · ∇p

)
=−γ∇ · u+ (γ − 1)

(
∂s
∂t
+ u · ∇s

)
, (2.1a)

ρ

(
∂u
∂t
+ u · ∇u

)
=− 1

γM 2
∇p+ 1

Re
∇ · τ , (2.1b)

and

p
(
∂s
∂t
+ u · ∇s

)
= γM 2

Re
τ : ∇u− γ

(γ − 1) PrRe
∇ · q, (2.1c)

where Re stands for the Reynolds number, Pr for the Prandtl number, M for the Mach
number and γ for the specific heat ratio. The viscous stress tensor τ and the heat flux
q are given by the standard constitutive laws

τ = (∇u+∇ut
)+(µv

µ
− 2

3

)
(∇ · u) I, (2.2a)

and
q=−∇T, (2.2b)

respectively. The gas has been assumed to have a constant viscosity and a constant
heat conductivity. The above system of equations is augmented by the state equation
p= ρT , the equation for the entropy (γ − 1) s= log (p/ργ ), and the definition of the
speed of sound a2 = p/ρ.

In the present study, a NACA 0012 aerofoil section with a sharp trailing edge has
been considered at two degrees of incidence. The modified thickness line is given
by y(x) = ±(t/0.2)(c0

√
x − c1x − c2x2 + c3x3 − c4x4), with t = 0.12, c0 = 0.296 375,

c1 = 0.126 35, c2 = 0.351 95, c3 = 0.283 775 and c4 = 0.101 85. We choose a Reynolds
number of 2 × 105 and a Mach number of 0.4. Note that the Mach number chosen
for the present study is moderately higher than in the simulations performed by
Desquesnes et al. (2007). This choice allows for larger time steps and thus smaller
simulation times. The Prandtl number has been taken as 0.71 and the heat capacity
ratio as 1.4. At the aerofoil surface, a no-slip adiabatic wall boundary condition is
employed.

The above equations and boundary conditions form a closed system that can be
discretized in space and integrated in time numerically, once a suitable initial condition
has been specified.
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2.1.2. Numerical schemes
The numerical code used in the present study is based on the pseudo-characteristics

formulation of Sesterhenn (2000), and the key steps of the derivation will be briefly
recalled here. Prior to discretization, the compressible Navier–Stokes equations can
be written in arbitrary curvilinear coordinates ξ using a grid mapping given by
x(ξ). The nonlinear advection terms are rearranged to explicitly contain the so-called
pseudo-characteristics. In a next step, the equations are discretized in space on a
structured grid using high-order compact differences. Once the sign of the advection
speed for the pseudo-characteristics is known, a fifth-order upwind-biased scheme
known as CULD (see Adams & Shariff 1996) is applied. The dissipative terms and
the grid metric terms are computed using a third-order centred compact scheme (see
Lele 1992).

The use of a pseudo-characteristics formulation not only allows for the upwinding
of advective terms but also facilitates the implementation of numerically accurate
and stable boundary conditions. At the boundaries of the spatial domain, the
incoming pseudo-characteristics are specified such that the flow variables exhibit the
desired behaviour: no-slip adiabatic wall at the aerofoil surface, and non-reflecting
inflow/outflow at the inlet /outlet of the computational domain. The reader is referred
to Poinsot & Lele (1992) and Lodato, Domingo & Vervisch (2008) for further details
on appropriate boundary conditions for compressible flow simulations.

In addition, a sponge layer has been included downstream of the aerofoil section
at the outlet of the computational domain, to further attenuate spurious reflections
(see Bodony 2006). The implementation has been performed by adding a spatially
dependent damping term −σ(x) (v − vref

)
to the governing equations; the variable vref

denotes the reference state of the flow variables in the far field. The value of the
sponge-layer parameter σ(x) is zero for x < Lw + 1 − Ls; for x > Lw + 1 − Ls it has
been taken as

σ (x)= A
{

1+ exp
(

Ls

x− (Lw + 1)
+ Ls

x− (Lw + 1− Ls)

)}−1

, (2.3)

where A is a free parameter, and Ls is the length of the sponge layer measured from
the downstream outlet. The specified initial condition has been taken as the reference
state vref .

At this point, the temporal evolution of the compressible Navier–Stokes equations
reduces to the time integration of a system of ordinary differential equations

dv

dt
=F (v) , (2.4)

where v is the composite state vector containing the flow variables (p, s, u) at every
grid point, and F(v) denotes the nonlinear function that arises from the spatial
discretization of the governing equations and the implementation of the boundary
conditions. Finally, the above system of equations is integrated in time by means of
the explicit fourth-order low-storage Runge–Kutta scheme RK4(3)5[2R+]C given in
Kennedy, Carpenter & Lewis (2000).

2.1.3. Numerical grids and simulation parameters
We define four numerical grids with increasing resolution and domain size: a coarse

grid (G1), a refined grid (G3), an intermediate resolution (G2) and a large domain size
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FIGURE 2. (Colour online) Numerical grid used in the present calculations. The grid
geometry is defined by the length of the wake section Lw and the normal extent Ln, and
it is discretized using ma points on the aerofoil, mw points along the wake and n points
in the normal direction. A sponge layer of length Ls is added at the downstream outflow
boundary.

Grid spacing Domain size
Simulation wle wte hle = hte wfar hfar Lw Ln

G1 1.62× 10−3 1.50× 10−3 5.00× 10−4 6.00× 10−3 2.70× 10−2 7.55 7.34
G1S2 1.62× 10−3 1.50× 10−3 5.00× 10−4 6.00× 10−3 2.70× 10−2 12.62 11.41
G2 1.08× 10−3 1.00× 10−3 3.33× 10−4 4.00× 10−3 1.80× 10−2 7.63 7.06
G3 7.22× 10−4 6.67× 10−4 2.22× 10−4 2.67× 10−3 1.20× 10−2 7.68 7.66

TABLE 1. Numerical grids and simulation parameters.

(G1S2). The computational domain and relevant geometrical parameters are illustrated
in figure 2, and the parameter values for every numerical grid are provided in tables 1
and 2.

The computations have been run from an initial condition derived from the potential
flow solution until a statistically steady state has been established. For each simulation,
the initial transient dynamics, representing approximately 10 time units, have been
discarded. We have stored snapshots of the evolving flow field in intervals of 1t =
0.01, yielding a total of 15 000 snapshots for case G1, and 5000 snapshots for the
remaining cases.

2.2. Instantaneous flow fields

As a first step in our flow analysis, we use nonlinear simulations (case G3) to provide
a qualitative description of the principal characteristics of tonal aerofoil noise.
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FIGURE 3. (Colour online) Instantaneous flow field showing (a) vorticity levels and
(b) dilatation contours, after a quasi-periodic regime is established.

Relaxation Time stepping Spatial discretization
Simulation Ls A η± CFL 1t T n ma mw

G1 2 3 5.0 1.2 1.79×10−4 150 384 1280 1280
G1S2 2 3 2.5 1.2 1.79×10−4 50 576 1280 1920
G2 2 3 5.0 1.2 1.19×10−4 50 512 1920 1920
G3 2 3 5.0 1.2 7.87×10−5 50 768 2880 2880

TABLE 2. Numerical grids and simulation parameters (continuation).

In figure 3, a typical flow field is illustrated by the instantaneous vorticity ωz =
∂xv − ∂yu and the instantaneous dilatation d = ∂xu+ ∂yv at t= 30. The vorticity field
(figure 3a) allows us to visualize boundary-layer separation with reattachment on the
pressure surface and on the suction surface of the aerofoil. At the reattachment of
the boundary layers, vortical structures are continuously emerging with positive and
negative vorticity components. The dilatation field (figure 3b) reveals the presence of
acoustic waves in the far field at a characteristic wavelength, emanating from the near
wake and in counter-phase between the upper and lower half-planes of the aerofoil.

Even though the flow in this study is not strictly periodic, it is informative to
visualize a representative flow-field sequence over one vortex-shedding period. The
flow evolution from t= 30.00 to t= 30.20, shown every 0.05 time units, is depicted
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FIGURE 4. (Colour online) Representative flow field sequence showing (top row, a–e)
instantaneous vorticity levels and (middle row, f –j) dilatation contours near the trailing
edge, and (bottom row, k–o) dilatation contours of the far field, over one vortex shedding
period. The colour scales are given in figure 3.

in figure 4. We focus on the flow evolution near the trailing edge (top row, a–e), and
middle row, f –j) and the associated far-field dynamics (bottom row, k–o).

The evolution of the vorticity field in the near wake, figure 4 (top row, a–e) shows
the passage by the trailing edge of a vortex shed by the suction-surface separation
bubble, and the detachment of a vortex from the separation bubble on the pressure
surface. The visualization of the vorticity field illustrates that secondary vortices, with
significantly smaller spatial extent, arise from the interaction of the larger vortical
structures with the geometric singularity of the trailing edge.

Inspection of the dilatation field near the trailing edge, figure 4 (middle row, f –j),
shows that the radiation of acoustic waves occurs at the same frequency as the
shedding of vortical structures. In addition, after the formation of the secondary
vortices described before, secondary acoustic waves with considerably smaller
amplitude and wavelength are generated; see figure 4(c,h).

The far-field dilatation, figure 4 (bottom row, k–o), shows the propagation of
acoustic waves emitted from the near-wake region. The analysis of the entire
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FIGURE 5. (Colour online) (a) Streamwise velocity recorded at a probe in the far field
at (x, y)= (1, 0.5), and low-frequency flapping showing the instantaneous vorticity fields
at: (b) the suction-surface separation bubble at t= 43.30, (c) the suction-surface separation
bubble at t = 55.99, (d) the pressure-surface separation bubble at t = 43.30, and (e) the
pressure-surface separation bubble at t= 55.99.

temporal series illustrates that the amplitude of the emitted waves depends on the
precise phase relation between the passage of the vortex shed by the suction-surface
separation bubble, and the shedding of a vortex from the pressure side. However,
this visualization does not allow us to directly identify the contribution of these
hydrodynamic features to the sound radiation.

We present in figure 5(a) the streamwise velocity signal recorded at the probe
point (x, y) = (1, 0.5). In addition to the oscillations produced by the acoustic
waves described above, a noticeable low-frequency oscillation is present. This
feature is illustrated in figure 5(b–e) by displaying the vorticity fields for both
separation bubbles at t= 43.30 and t= 55.99, the times at which the pressure signal
maximum and minimum is reached, taking into account the retarded time between
the trailing edge and the probe point. The time at which the streamwise velocity
signal reaches a maximum or minimum is correlated with a low-frequency motion in
the pressure-surface separation bubble; no substantial changes have been observed in
the separation bubble on the suction surface.

These low-frequency oscillations seem to have been overlooked in previous
calculations and experiments that address the tonal-noise generation mechanism;
nonetheless, it is a well-known feature of elongated separation bubbles (see Dovgal,
Kozlov & Michalke 1994, and references therein).
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FIGURE 6. (Colour online) Frequency content of the pressure signal extracted from the
probe at (x, y)= (1, 0.5) for different numerical grids.

Frequency bands
35.5–38.1 38.1–40.8 40.8–43.4 43.4–46.1

Simulation ωpeak |p|peak ωpeak |p|peak ωpeak |p|peak ωpeak |p|peak

G1 37.02 4.1×10−4 39.47 3.2×10−4 41.93 7.0×10−4 44.38 4.3×10−4

G1S2 36.82 3.5×10−4 39.47 5.5×10−4 41.93 7.2×10−4 44.38 5.6×10−4

G2 37.22 4.6×10−4 39.88 3.3×10−4 42.34 2.7×10−4 44.79 4.2×10−4

G3 37.02 4.5×10−4 39.68 5.4×10−4 42.34 4.6×10−4 44.79 4.6×10−4

TABLE 3. Values of selected frequency components and their amplitudes in the pressure
spectrum shown in figure 6.

2.3. Acoustic spectrum
For each numerical grid, the frequency content of the pressure signal extracted at
(x, y)= (1, 0.5) has been estimated using the Welch method, together with a Hamming
window; the window length has been taken as 3072 samples with an overlap of 50 %.
The amplitude of the pressure signal for varying frequency is given in figure 6.

A set of equally spaced peaks is easily identified in the pressure spectrum in the
frequency range 35 < ω < 45. These discrete components are clearly related to the
acoustic emission observed in the flow evolution; see figure 3. The precise values of
the frequencies and amplitudes of the acoustic tones are included in table 3.

Even though the amplitudes of the acoustic tones cannot be considered fully
converged, the presence of the tones and the frequency at which they occur are
independent of the domain size and grid resolution. Low-frequency oscillations
(ω< 2) are also readily identified in the frequency spectrum.

2.4. Mean-flow analysis
Before launching into a global analysis, the characteristics of the mean flow will
be described. The pressure coefficient distribution over the aerofoil, not shown here,
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FIGURE 7. (Colour online) Mean-flow skin-friction coefficient distribution over the
aerofoil. SS and PS denote suction surface and pressure surface respectively.

Pressure surface Suction surface
Simulation xs xr umin xs xr umin

G1 0.717 0.974 −0.11 0.411 0.662 0.05
G1S2 0.714 0.970 −0.12 0.411 0.659 −0.04
G2 0.715 0.974 −0.11 0.400 0.684 −0.06
G3 0.728 0.977 −0.10 0.405 0.686 −0.07

TABLE 4. Separation, reattachment points and maximum reverse flow on the
pressure-surface and suction-surface boundary layers.

confirms that the boundary layers on both surfaces of the aerofoil are subjected to
adverse pressure gradients: from x= 0.04 to the trailing edge for the suction surface,
and from x= 0.24 to the trailing edge for the pressure surface. The separation point
and the zones of reverse flow can further be determined by the zero crossing and
negative values, respectively, of the skin-friction coefficient cf (x) = 2Re−1(t · τ · n).
In this expression, n is the wall-normal vector, and t is the vector tangential to
the aerofoil surface in the direction of the free-stream velocity. The skin-friction
coefficient, shown in figure 7, confirms the presence of separation bubbles on the
pressure and on the suction surfaces. The mean separation and reattachment points,
together with the maximum reverse flow are given in table 4. Note that, in the case
studied by Desquesnes et al. (2007) where tonal noise is present, no suction-surface
separation was observed, but marginal separation was found instead. Given the
parameter choice in both cases, it is conceivable that this discrepancy arises from a
different value of the Mach number.

The boundary-layer velocity profiles are presented in figure 8 showing the wall-
tangential velocity component ut(n, x). The velocity profiles on the suction surface
(figure 8a) and on the pressure surface (figure 8b) are characterized by inflection
points due to the combined effect of the negative pressure gradients and the separation
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FIGURE 8. (Colour online) Boundary layer mean velocity profiles on (a) the suction
surface and (b) the pressure surface. The inflection points are indicated in black.

bubbles, thus indicating that hydrodynamic instabilities may grow by inviscid
mechanisms. These observations are in agreement with the results of Nash et al.
(1999) and Desquesnes et al. (2007). Local stability characteristics of typical velocity
profiles found in separated boundary-layer flows are given in Dovgal et al. (1994).

Previous studies – experimental and numerical – have drawn attention to the
standard deviation of the mean flow in the separation bubbles, which for the present
calculations is shown in figure 9. The standard-deviation profiles on the suction side
consist of two peaks that appear after the mean reattachment point, indicating an
increased amount of unsteadiness caused by vortex growth and advection. On the
pressure surface, only a single peak in the standard deviation appears at the separated
shear layer. By inspection of the averaged streamlines close to the trailing edge (see
figure 9, inset), we observe that the pressure-surface separation bubble gives rise
to two counter-rotating trailing vortices that continue into the wake. This feature is
related to the two-dimensional nature of the simulation.

At this point, the presented calculations and observations suggest that a strong
interaction occurs between (i) the dynamics of the separated flow on both sides,
(ii) vortices shedding into the wake and (iii) the scattered acoustic waves. Our aim is
then to understand the different degrees of participation of these flow features in the
generation of sound and their role in the establishment of a self-sustained process.
These goals will be addressed in the following sections.

3. Impulse response analysis
3.1. Numerical set-up

Even though most global stability concepts are formally defined in the continuous
domain, we directly present the framework for the spatially discretized equations.
Once the nonlinear compressible Navier–Stokes equations have been spatially
discretized, the calculation of the temporal evolution is reduced to the integration
of a set of ordinary differential equations given in (2.4). Linear analysis is then based
on the Jacobian of this nonlinear function F(v) around a base flow V.
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FIGURE 9. (Colour online) Root-mean-square (r.m.s.) of velocity fluctuations, showing
streamlines in the regions of growth of unsteadiness near the reattachment of the
separation bubbles on the suction surface and on the pressure surface.

Provided that the physical mechanisms under investigation are well represented
by the nonlinear model and its linearized dynamics, the operator A will form the
foundation for our further study. In the following, we consider the linear dynamics
of a small perturbation u given by the initial-value problem

dv

dt
=Av, with A=

(
∂F
∂v

)
V

and v(0)= u. (3.1)

3.1.1. Choice of base flow
The Reynolds number of the first bifurcation for our aerofoil flow occurs at

approximately Rec ≈ 9 × 103 (Akbar 2010); the steady solution for the present
flow configuration, not shown here, displays boundary-layer detachment close to the
aerofoil nose, leading to a massive separation bubble that extends over dozens of
chord lengths downstream. A similar observation was made in the numerical study
of Jones & Sandberg (2011), where the steady solution was deemed unphysical, and
the mean-flow dynamics were considered.

Previous studies on more simplified geometries have observed that a stability
analysis of the mean flow can accurately reproduce the frequencies found in fully
nonlinear simulations (see Barkley 2006, for example). In the context of tonal
noise, previous investigations have highlighted the predominant role of the stability
characteristics of the pressure-side boundary-layer, which is not affected by nonlinear
saturation effects. Therefore, the mean flow will be taken as the linearization point
(referred to as the base flow) for the global stability analysis.

3.1.2. Evaluation of the linearized operator
Although conceptually simple, the linear algebra problems that arise from linear

stability calculations are not straightforward to solve: the high dimensionality of A
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puts severe restrictions on the numerical methods that can be chosen for practical
implementations. This choice is further restricted by the fact that the operator A is
in general dense, owing to our choice of discretization. The limitation is twofold: the
storage required for the full operators is prohibitive large, and the computational time
required for solving the entire problem using dense algorithms far exceeds typical
computational resources.

In this context, the only numerical methods that provide a solution to our problem
are necessarily based on iterative matrix-free algorithms. Algorithms based on
Krylov subspace techniques are thus the methods of choice, as they solely rely
on matrix–vector products Av. For our case, we have augmented our direct numerical
simulation code by an evaluation procedure of matrix–vector products for the
linearized operator A (see Fosas de Pando, Sipp & Schmid 2012). At this point,
the above initial-value problem can been integrated using an exponential Krylov
time-integration scheme (Sidje 1998).

3.2. Temporal evolution of the norm

In the following, the initial condition u is taken as a divergence-free localized
perturbation at the leading edge of the aerofoil, where the vector components are
defined by

p(x, y) = 0, (3.2a)
s(x, y) = 0, (3.2b)

ρ̄(x, y) u(x, y) = −(y− y0)/r0 exp
(− ((x− x0)

2 + (y− y0)
2
)
/r2

0

)
, (3.2c)

ρ̄(x, y) v(x, y) = (x− x0)/r0 exp
(− ((x− x0)

2 + (y− y0)
2
)
/r2

0

)
, (3.2d)

where x0 = −0.015, y0 = −0.1, r0 = 0.005 and ρ̄(x, y) is the non-dimensional
base-flow density.

The subsequent flow evolution has been computed over T = 30 time units, and
snapshots of the flow field have been collected every 1t = 0.01. In figure 10, we
present the evolution of the norm (details about the norm used in this work are
given in appendix A) of the perturbation ‖v(t)‖ = ‖etAu‖ as a function of time. It
is important to point out that only the contributions of perturbations within a circle
of radius 1.25 centred at mid-chord are considered. Formally, the above measure is
a semi-norm, and it has been chosen such that the features described below become
independent of the domain size. Two regimes can clearly be distinguished: (i) for
t 6 5, transient effects account for a large increase in amplitude, reaching a maximum
‖v(tmax)‖ ≈ 103 for tmax ≈ 2.5; (ii) for t > 2.5, the amplitude decays exponentially,
i.e. eNt, with N ≈−0.23. In addition, the individual contributions of the pressure, the
entropy and the velocity terms to the amplitude are represented.

The aim is then to understand the flow features responsible for both the transient
growth and the asymptotic regime. The transient-growth mechanisms are analysed
in terms of the instantaneous snapshots of the flow field and the evolution of the
amplitude from t= 0 to t= 5.5 (figures 11–13). For each snapshot, the colour levels
have been normalized by the ∞-norm of v(t). The flow dynamics in the asymptotic
regime are assessed in terms of the entropy signal recorded at both surfaces of the
aerofoil (figure 14).
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FIGURE 10. (Colour online) Impulse response of the linearized direct operator A showing
the temporal evolution of the amplitude of the initial disturbance. Two regimes can be
distinguished: for short times t 6 2.5, the linearized operator exhibits important transient
growth of the disturbances; for longer integration times t > 2.5, the amplitude decays
exponentially, verifying the stability of the linearized operator.
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FIGURE 11. (Colour online) Initial growth of disturbances in the vicinity of the leading
edge showing the dominant effect of the suction surface.

3.3. Initial growth of disturbances: from the leading edge to the trailing edge
Let us focus first on the transient-growth mechanisms that appear as the initial
perturbation, displayed in figure 10, is advected along the pressure and suction
surfaces of the aerofoil. The decrease in amplitude at early stages t< 0.5, figure 10,
can be interpreted in terms of the flow field evolution shown in figure 11(a–c).
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FIGURE 12. (Colour online) Analysis by impulse response: convective growth of
instabilities on the pressure-surface and suction-surface boundary layers, followed by
substantial acoustic radiation after the passing of disturbances at the trailing edge.

Owing to the transport of the disturbance by the base-flow velocity field, the
perturbation separates into travelling perturbations along the suction and the pressure
surfaces, and it experiences shear within the boundary layers; see figure 11(b,c). In
more detail, and from a local point of view, the perturbation can be interpreted as a
combination of acoustic, free-stream and boundary-layer modes. As the perturbation
is advected, it evolves according to the local dispersion relation: each single mode is
characterized by its respective phase speed, and grows or decays in space according
not only to the local spatial growth rate, but also to the projection onto the modes of
the immediate downstream profile. The advection speed of the emerging wavepackets
is then given by the group velocity, since they consist of a superposition of local
modes of the same branch.

At the edge of the boundary layer, the perturbation propagates at the free-stream
velocity and at constant amplitude. However, a part of the perturbation within the
boundary layer projects onto local boundary-layer modes, that may present spatial
growth or decay. Close to the leading edge, the boundary layers are subjected to
positive pressure gradients (x < 0.04 for the suction surface and x < 0.24 for the
pressure surface) and, for the given flow regime, this indicates that the boundary-layer
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FIGURE 13. (Colour online) Analysis by impulse response: feedback loop showing
instantaneous perturbation evolution, visualized by the streamwise velocity component.
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FIGURE 14. (Colour online) Analysis by impulse response: entropy signal at (a) the
suction-side probe (x, y) = (0.6597, 0.0474), (b) the pressure-side probe (x, y) =
(0.9497,−0.0176), displaying the instantaneous signal in grey and the envelope in black.

modes are stable. The fraction of the perturbation that travels inside the boundary
layer is then damped as it travels along convectively stable profiles, from where we
can explain the initial decrease in amplitude of the perturbation.

In figure 11(d), the convective growth of a wavepacket on the suction surface can
be attributed to inviscid-type instability mechanisms, since the local velocity profiles
at these locations are inflectional (figure 8a). Contrarily, the pressure-surface boundary



A global analysis of tonal noise in flows around aerofoils 23

layer is expected to be convectively stable for x<0.24, explaining thus why the global
linear dynamics for 0.5< t< 1 is predominantly localized on the suction surface.

The subsequent flow evolution is represented in figure 12. For 0.5 < t < 1,
the dominant mechanisms are related to Kelvin–Helmholtz instabilities within the
shear layer of the suction-surface separation bubble. A local maximum in amplitude
(figure 10) is reached at t≈ 1, and it coincides with the instant when the wavepacket
approaches the reattachment point xr,s ≈ 0.66; see figure 12(a) and table 4. For
1 < t < 1.6, we observe a decrease in amplitude as the wavepacket propagates in
the reattached flow. This behaviour can be related to a mismatch in the stability
characteristics between the separation bubble and the reattached flow: the wavepacket
does not project efficiently into convectively unstable waves in the reattached-flow
region. After passing the trailing edge, the wavepacket produces scattering of acoustic
waves in counter-phase between the upper and lower half-planes (figure 12b).

For 1.5< t< 2.7, the amplitude increases due to the growth of a wavepacket on the
pressure-side separation bubble; see figure 12(b–d). Note that although perturbations
are damped close to the leading edge, for x> 0.3 the velocity profiles are inflectional
(figure 8b) and therefore support spatial growth. It is reasonable to expect that the
spatial growth rates of the attached – but inflectional – profiles are comparatively
smaller than the spatial growth rates in the separation bubble where there is reverse
flow. Indeed, by inspection of the flow field, one observes that most of the growth
takes place in the shear layer of the separation bubble 0.7< x< 1.

A more intense acoustic radiation is observed as the pressure-surface wavepacket
passes the trailing edge, compared to the suction surface wavepacket. Although in
both cases the radiation has the same qualitative characteristics, it is found that: the
frequency is slightly lower for the acoustic waves generated at the pressure surface
than for the ones from the suction surface, and, more importantly, the acoustic field
produced by the waves from the pressure surface is more intense than the one from
the suction surface. For 2.7< t < 3.5, the wavepacket is located in the wake, where
the dynamics is dominated by convection.

At this point, it is also important to state that no region of absolute instability, i.e.
regions where the growth of wavepackets with zero group velocity takes place, exists
in the flow. Further confirmation has been obtained by analysing the local velocity
profiles: all velocity profiles exhibit negative temporal growth rates at the respective
pinch points in the complex plane.

3.4. Regeneration of wavepackets: feedback effects
The flow evolution for 4< t< 5.5, depicted in figure 13, displays the same sequence
of events that has been observed for 1 < t < 2.5: the wavepacket, issued from the
boundary layer on the suction surface propagates downstream, emerges (figure 13a)
and scatters acoustic waves as it passes by the trailing edge (figure 13b); a second
wavepacket emerges on the pressure surface (figure 13b) and at its passage by the
trailing edge, it radiates substantial acoustic energy into the far-field (figure 13c),
generating in turn a wavepacket on the suction surface (figure 13d).

It is important to mention that for the first cycle, the instabilities were triggered
by the initial perturbation at the leading edge. In contrast, for 3.5 < t < 5, the
triggering mechanism can be attributed to the receptivity of both boundary layers
to free-stream disturbances originated downstream. This proposition is supported
by the observation that the period between consecutive wavepackets is of the same
order as the convective time over the aerofoil length. The above observation raises
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the question of whether the receptivity mechanism can mainly be attributed to the
acoustic waves or to hydrodynamic disturbances induced by the wavepacket at the
trailing edge.

On the one hand, the hydrodynamic features would excite the boundary layers
upstream by a mechanism of forced receptivity due to a match in frequency and
wavelength. On the other hand, the acoustic waves have the same frequency but
a different wavelength than the hydrodynamic features and would thus require a
mechanism of natural receptivity. Although the forced receptivity mechanisms are
more efficient than the natural receptivity, it should be noted that the acoustic radiation
decays algebraically with the distance from its source, whereas the hydrodynamic
perturbations decay exponentially with the distance. Consequently, as far as the
receptivity mechanism is concerned, the far-field acoustic radiation dominates over
the far-field hydrodynamic disturbances (see, for instance, figure 13d).

3.5. Cross-talk between the suction and pressure surface
At this point, it is instructive to analyse the long-time behaviour in order to gain
insight into the features of the feedback loop. To this end, we present in figure 14
the entropy signal, where the temporal decay has been factored out, recorded at the
probes near the reattachment point of the suction-surface separation bubble (x, y) =
(0.6597, 0.0474), figure 14(a), and near the reattachment point of the pressure-surface
separation bubble (x, y)= (0.9497,−0.0176), figure 14(b).

For the transient regime observed before, we readily identify the period of
wavepacket shedding on the suction surface as 1Ts ≈ 2.96, and that on the pressure
surface as 1Tp ≈ 2.78. For longer times, t> 8, there is an increase in complexity of
the behaviour as the acoustic radiation, emitted by wavepackets from either surface,
is prone to interact with the opposite boundary layer.

It is thus found that, for the present case, there exists a complex feedback loop
involving hydrodynamic features on the pressure and suction surfaces of the aerofoil
as well as in the near wake. The above features are related by feedback-loop effects
due to the natural receptivity of the boundary layers to the upstream-propagating
acoustic waves.

4. Global stability analysis
4.1. Mathematical set-up and global mode calculation

In this section we present a complementary approach to gain further insight into
the description of the linearized dynamics: a more quantitative picture of the flow
behaviour arises from the eigenvalue spectrum of the linearized operator A. For this
we assume a modal decomposition into elementary solutions of the form vkexp(−iωkt),
where the direct global mode vk and the global frequency ωk are given by the solution
of the eigenvalue problem

Avk =−iωkvk. (4.1)

The above decomposition allows us to determine and categorize the physical
mechanisms that are present in the flow. At early times, all direct modes (regardless
of their growth rate) may be important for the dynamics of the flow. On a long
time scale, the dynamics is mainly governed by the least-stable global modes. In this
section, we focus first on the features of the least-stable direct global modes, which
may play an important role in the observed feedback loop and, more importantly,
may be linked to the structure of the acoustic spectrum in the nonlinear simulations
as well as in experimental investigations.
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FIGURE 15. (Colour online) Global spectrum of the tonal noise problem in the complex
frequency plane. The greyscale indicate the relative residual with respect to the operator A.

4.1.1. Numerical details on the global mode calculations
Prior to launching into the global modes analysis, we summarize here the

parameters of the numerical calculation that permit us to obtain the global spectrum.
In order to compute the least-stable global modes, we apply the Krylov–Schur
technique (Stewart 2002), as implemented in the eigensolver SLEPc (Hernández,
Román & Vidal 2005), to the operator that represents the temporal advancement
over time 1t for the direct operator e1tA. This approach is usually known as the
time-stepper method (Edwards et al. 1994).

In the present calculations, the size of Krylov subspaces is 2048, and the time step
between consecutive snapshots is taken as 1t= 0.015. The results from the nonlinear
simulations (table 3) hint at ω≈44 as the most probable location for the global modes
of interest. In order to improve the convergence of the eigenvalues at this location in
the complex plane, we have enabled the use of the harmonic extraction technique in
the eigensolver with the shift parameter σ as ei1tω. It is important to mention that
the estimate of the relative error with respect to the propagator is commonly more
optimistic than the actual error. For this reason, the degree of convergence is measured
according to the relative residual εk = ‖Avk + iωkvk‖2/‖ωkvk‖2.

4.2. Features of the global spectrum
The computed global spectrum is depicted in figure 15, showing the location of global
modes in the complex plane ω= ωr + iωi according to the angular frequency ωr and
the temporal growth rate ωi. Since the operator A is real, the spectrum is symmetric
with respect to the vertical axis, and it thus suffices to focus on the features of the
global modes in the right half-plane.

A first inspection of figure 15 confirms that the operator A is stable, since all
the eigenvalues fall into the lower half of the complex plane ωi < 0. No isolated
branches of global modes can be observed in the spectrum. For increasing frequency,
the growth rate associated with the least-damped modes shows two maxima: at ω ≈
43.87 − 0.22i and close to the origin ω ≈ 0. These maxima correspond, within a
reasonable approximation, to the main frequencies observed in the acoustic tones from
the nonlinear simulations ω≈ 41.84 (see table 3) and low-frequency components.
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FIGURE 16. (Colour online) (a) Detailed view of the global spectrum showing the
least-stable (or leading) global modes. The modes M1–M4 are considered, and the
corresponding eigenvalues are ωM1 ≈ 43.87 − 0.22i, ωM2 ≈ 44.63 − 0.37i, ωM3 ≈ 45.55 −
0.36i and ωM4 ≈ 46.29 − 0.24i. The relative residuals for the modes shown fall below
10−5. (b) Spatial structure of the global mode labelled M1, displaying the real part of the
associated near-field pressure levels, and the real part of the streamwise velocity levels in
the vicinity of the aerofoil surface (inset). The mode presented here has been normalized
by the maximum value of the velocity field in the near wake 1< x< 1.2.

4.3. Leading modes: the coupled dynamics of the separation bubbles
Figure 16(a) provides a detailed view of the spectrum for the subdomain comprising
the leading global modes. It reveals that the leading global modes consist of multiple
local maxima in growth rate centred around the maximum growth-rate peak at
ωr ≈ 43.87 and ωi = −0.22. The frequency difference between consecutive maxima
is nearly constant and equal to 1ωr ≈ 2.44, and the temporal growth for the local
maxima is approximately ωi ≈−0.22. Between these peaks, the frequency difference
of neighbouring eigenvalues is 1ωr = 0.34, and their minimum growth rate is
approximately ωi =−0.35.

We next consider the mode labelled M1 in the spectrum (see figure 16a)
corresponding to the local maximum in growth rate, represented in figure 16(b)
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FIGURE 17. (Colour online) Evolution of the streamwise velocity peak along the aerofoil
chord (a) on the suction surface and (b) on the pressure surface of the aerofoil for the
modes labelled M1–M4 in figure 16.

by the real part of the streamwise velocity component for the downstream half of the
aerofoil (inset) and the real part of the associated pressure in the near field of the
aerofoil.

In order to facilitate a comparison, the leading global mode has been normalized
by the maximum value of the velocity in the near wake 1 < x < 1.2, which for
the displayed modes occurs at approximately x = 1.15. From the velocity fields
at the aerofoil, we conclude that the modes represent shear-layer instabilities
with predominant spatial support downstream of the reattachment point of the
suction-surface separation bubble and in the wake. For increasing frequency the
characteristic wavenumber of the oscillations increases. Under the chosen scaling,
the spatial growth becomes noticeable on the suction surface for x> 0.5 and on the
pressure surface for x> 0.95. These locations fall within the respective regions given
by the separated shear layer and the reattachment point of the separation bubble.
Therefore, we can deduce that the family of global modes in the range 40<ω < 50
represents the coupled global dynamics of both separation bubbles.

In the pressure field we observe the acoustic footprint of the boundary-layer
instabilities. In the near field, the mode displays substantial levels of acoustic radiation
into the free stream with higher wavelengths. The radiation can be attributed to a
dipolar acoustic source contained in the global mode at the trailing edge, whose
acoustic pattern corresponds to cylindrical waves in counter-phase between the upper
and lower half-planes. Furthermore, the acoustic waves show a preferred upstream
directionality.

The chosen global modes M1–M4 exhibit over a range of frequencies nearly
identical features in both the hydrodynamic instabilities and the associated acoustic
radiation. We then focus on the evolution of the maximum peak of the streamwise
velocity (figure 17) and of the pressure peak (figure 18) on both surfaces of the
aerofoil. The evolution of the streamwise velocity peak on the suction surface
(figure 17) displays the exponential growth of the instability waves at 0.53< x< 0.62.
This range coincides with the separated shear layer at the edge of reattachment. As
already hinted by the impulse response analysis, further downstream the mode decays
exponentially in space until it reaches the trailing edge. Further upstream, the velocity
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FIGURE 18. (Colour online) Evolution of the pressure peak along the aerofoil chord
(a) on the suction surface and (b) on the pressure surface of the aerofoil for the modes
labelled M1–M4 in figure 16.

values are approximately constant (in logarithmic scale) and they correspond to the
levels of velocity fluctuations outside the boundary layer. On the pressure surface,
the exponential growth of streamwise velocity takes place near the trailing edge
0.9 < x < 1, where the base flow exhibits a separated shear layer at the location of
the reattachment. Similarly to what has been observed for the suction side, upstream
values of the velocity are nearly constant (in logarithmic scale) and are related to
velocity fluctuations outside the boundary layer.

The evolution of the pressure fluctuations on the suction and pressure surfaces
reveals the appearance of standing waves on the suction surface and, to a lesser
extent, on the pressure surface. On the suction surface, the nodes of the standing
wave are located at x ≈ 0.5 and are uniformly distributed for 0.8< x < 1. Note that
their location varies significantly for the different modes. On the pressure surface,
however, the node is located at x ≈ 0.95. Detailed inspection shows that the modes
with the higher growth rates (M1 and M4) are correlated with the location of the
suction-surface node at x ≈ 0.95, which corresponds to the location of the node on
the pressure surface.

It is important to point out that the identified region of dominant exponential growth
does not necessarily imply that all growth takes place at this location: upstream, the
amplitude of the hydrodynamic perturbations is far smaller than the induced level
of fluctuations associated with the acoustic waves. Since the acoustic waves and the
hydrodynamic perturbations occur at the same frequency, we are unable to determine
precisely the exact location of the origin of exponential growth.

At this point, it is convenient to compare the occurrence of the local maxima in
the global spectrum with the location of the equally spaced tones in the acoustic
spectrum; see table 5. For frequencies where this comparison can be performed, the
agreement between the acoustic tones and the spacing in the global spectrum is
excellent: the maximum relative error is 1.1 %. These observations suggest that the
tonal noise phenomenon and the occurrence of multiple equally spaced peaks in the
acoustic spectrum have their physical origin reflected in the characteristics of the
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Frequency peaks
Case G1 ω−2 ω−1 ω0 ω1 ω2

Linear: global modes — 39.24 41.38 43.87 46.30
Nonlinear: Fourier 37.02 39.47 41.93 44.38 —
Relative difference — 0.5 % 1.1 % 1 % —

TABLE 5. Comparison between the tones in the acoustic spectrum for the nonlinear
simulation (see table 3, case G1) and the frequency of the global modes with local maxima
of temporal growth rate in the global spectrum. The peak with maximum growth rate and
the loudest tone in the nonlinear simulation are indicated in bold.

global spectrum, and, more importantly, the principal mechanism can be ascribed to
the linearized dynamics of the flow.

We observed in the impulse response analysis (in § 3) that, triggered by the passage
of perturbations at the trailing edge of the aerofoil, an aeroacoustic feedback loop
establishes itself and subsequently drives the disturbance evolution. The features
of this feedback loop were then described phenomenologically in terms of the
dynamics of hydrodynamic and acoustic wavepackets, and their origin was linked to
local properties of the base flow. Even though for short times we observed distinct
wavepackets, for longer times, we could no longer identify individual wavepackets
but rather high-frequency components modulated by low-frequency oscillations with a
period of Tf ≈ 2.8. With the direct global modes extracted, we are now in a position
to provide a complementary description of the feedback loop in terms of the dynamics
of the least-stable modes: for sufficiently long time, the temporal evolution is mainly
given by a superposition of the least-stable global modes, since the remaining modes
have comparatively smaller growth rates. As was discussed before, the global modes
display the most relevant physical features that are also observed in the nonlinear
simulations, matching in spatial structure as well as in frequency. The question
remains, then, of how the global modes can account for the above feedback loop.

To answer this question, we consider the superposition of two plane waves with
similar spatio-temporal characteristics: their respective frequencies are taken as
ω + 1ω and ω − 1ω, and the wavenumbers are α + 1α and α − 1α. Hence
their superposition is given by

A(x, t) = exp (i [(α +1α)x− (ω+1ω)t])+ exp (i [(α −1α)x− (ω−1ω)t])
= 2 cos (1α(x− cgt))exp

(
iα(x− cpt)

)
, (4.2)

with the phase velocity cp = ω/α and the group velocity cg = 1ω/1α. From this
expression, it is readily observed that for 1ω � ω and for 1α � α the evolution
can be interpreted as oscillations at the average frequency ω and wavenumber
α, modulated by a low-frequency component at half the frequency difference
1ω and half the wavenumber difference 1α. Moreover, the velocity of the
low-frequency component is given by the group velocity cg, which is different
from the phase velocity of the high-frequency component cp. In other words, the
waves display beating, which arises from their linear superposition and is linked to
their spatio-temporal resemblance.

In an analogous manner, global modes with similar spatial structures and nearly
matched frequencies can also exhibit beating. The evolution of the flow can be
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described by a superposition of global modes v(t)=∑i aiviexp(−iωit). For each pair
of modes vk and vl, we can write their superposition as

akvke−iωk t + alvle−iωlt = 2 [cos (1ωt)v − i sin (1ωt)1v] e−iωt, (4.3)

where ω= (ωl+ωk)/2,1ω= (ωl−ωk)/2,v= (alvl+akvk)/2, and 1v= (alvl−akvk)/2.
The above expression shows that the same decomposition in terms of a high-frequency
carrier wave and a low-frequency modulation can be performed. In the context of
fluid dynamics, this beating between global modes has been observed in several fluid
cases; see for instance Schmid & Henningson (2002) for the case of a falling liquid
curtain and Ehrenstein & Gallaire (2008) and Cherubini et al. (2010) for the beating
of separation bubbles.

For the present case, we can estimate the typical period of the feedback loops from
half the difference between the peaks at both extremes of the leading modes; we get
1ω= 2.44. This estimate is in good agreement with the angular frequency associated
with the period of the feedback loops that was observed in the impulse response:
ωp= 2π/1Tp≈ 2.26. The difference in frequency can be attributed to the fact that the
full interaction involves multiple modes with similar frequencies, which complicates
the mechanism. The propagation velocity of the wavepackets is given by the group
velocity cg =1ω/1α, where 1α is obtained from the spatial structure of the global
modes involved in the feedback loop.

From a global perspective, it can be concluded that the feedback loop that appears
in the impulse response (and that has also been observed in the nonlinear simulation)
arises from the interaction of the leading global modes with similar frequencies. Their
modal interaction describes the growth of wavepackets on the suction and pressure
surfaces and includes the radiation of acoustic waves. We emphasize that the feedback-
loop phenomenon cannot be attributed to any individual global mode.

4.4. High-frequency modes: suction-surface shear-layer instabilities
Our attention is now directed towards the features of the remaining modes of the
spectrum. We present in figure 19 a closer view of the global spectrum for the range
of high frequencies ωr > 50.

This part of the global spectrum contains modes with increasingly lower temporal
growth rates, representing short-time-scale dynamics. Four representative modes,
labelled H1–H4 in figure 19, are depicted in figure 19(b–e), visualized by the real
part of the streamwise velocity. The high-frequency direct modes have been scaled
by the maximum value of the streamwise velocity on the suction surface, which for
the displayed modes occurs at approximately x= 0.60.

The direct mode H1, depicted in figure 19(b), displays features similar to the
coupled dynamics between the suction-surface and pressure-surface separation bubbles
that was observed for the leading modes in the frequency range 30 < ωr < 50.
Although acoustic radiation is observed, it is comparatively smaller than that of the
leading modes. Owing to the higher frequency, the spatial scales are noticeably shorter
than those of the leading modes M1–M4. For even higher frequencies (figure 19c)
we observe a qualitative change from mode H1 to mode H4: the direct global mode
reduces the spatial support in the near wake of the aerofoil, and on the suction
surface, the front of the global mode moves upstream into the shear-layer region.
In the reattached flow region, the mode describes the advection by the free stream,
lacking significant interaction with the boundary layer. Furthermore, the acoustic
radiation disappears for higher-frequency modes (H2–H4). The transition from H1 to
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FIGURE 19. (Colour online) Part of the (a) global spectrum displaying high-frequencies
ωr > 50 and representative direct global modes, visualized by the real part of the
streamwise velocity u. The labels H1–H4 correspond to the eigenfrequencies of the direct
global modes shown in (b) ωH1 ≈ 50.08 − 0.40i, (c) ωH2 ≈ 60.15 − 0.57i, (d) ωH3 ≈
69.89− 0.69i and (e) ωH4 ≈ 80.14− 0.74i. The residual for the modes shown fall below
1× 10−3.

H4 can be explained by returning to the characteristic scales of the different separated
shear layers. In order to comply with the prevalent dispersion relations, the spatial
support of the mode shows shorter wavelengths for increasing frequencies. Since
the thickness of the separated shear layer is smaller on the suction side than on
the pressure side, for short wavelengths (or higher frequencies) the suction-surface
separation bubble supports instabilities whereas the growth on the pressure surface is
less pronounced.

4.5. Low-frequency modes: flapping of the separation bubbles and reattached flow
dynamics

The global spectrum for ω< 35 is displayed in figure 20. As before, we have chosen
four representative modes L1–L4 in order to investigate the features of the global
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FIGURE 20. (Colour online) Part of the (a) global spectrum displaying low frequencies
ωr < 35. Representative global modes, labelled L1–L4 and visualized by the real part of
the streamwise velocity u, are shown in (b) ωL1 = 29.88− 0.46i, (c) ωL2 = 20.12− 0.50i,
(d) ωL3 = 9.99− 0.56i, and (e) ωL4 = 0.20− 0.09i.

spectrum for decreasing frequency. The normalization criterion is identical to the one
described for the high-frequency modes.

The global mode L1 shown in figure 20(b) corresponds to the lower bound in
frequency (and wavenumber) of the modes that represent the coupled dynamics of
the separation bubble on both surfaces. Contrary to the previous case, for decreasing
frequencies we expect an increase in the wavelength of the observed instabilities;
the corresponding global modes should display structures in the shear layers that
exceed the scale of the separation bubbles. Modes L2 and L3 confirm that for
lower frequencies (figure 20c,d) the global modes undergo a qualitative change: the
direct global modes localize downstream of the separation bubble, in the region
where the flow is reattached. For the lowest-frequency mode L4 the wavelength
is comparable with the extent of the separation bubbles; this mode represents
synchronized low-frequency oscillations, in opposite phase, between both separation
bubbles (figure 20e).
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FIGURE 21. (Colour online) Downstream advection effects for the computed modes
showing the real part of the streamwise velocity of (a) low-frequency modes ωLF =
15.33 − 0.55i, (b) leading modes ωMF = 35.02 − 0.48i and (c) high-frequency modes
ωHF = 55.08− 0.51i.

4.6. Effect of convection on the computed global modes
In the description of the modal dynamics, we have so far focused on the dynamics
in the vicinity of the aerofoil surface and the near wake. However, there also exist
global modes that capture the advection of perturbations in the wake as well as the
propagation of acoustic waves in the far field.

In figure 21(a–c) we present the real part of the streamwise velocity for a
representative set modes from each of the families of global modes that have been
identified above. The global modes have been chosen such that the temporal growth
rate is approximately equal to ωi ≈ −0.5. A common characteristic for the selected
modes is the exponential growth in the wake.

The global modes presented above describe the dynamics of instability waves in
the computational domain. These waves reach the trailing edge, after which they are
subjected to advection by the base flow (note that the base flow does not exhibit
significant velocity deficit in the wake). This advective part is characterized by a
(non-dimensionalized) dispersion relation of the form ω = α. As a consequence,
the spatial structure of the global mode in the wake necessarily displays spatial,
exponential growth. In figure 22(a) we display the magnitude of the streamwise
velocity in the wake using a logarithmic scale. Since ωi ≈ −0.5, the spatial growth
rate in the wake can be approximated as −αi ≈ 0.5, as confirmed in the figure. A
similar phenomenon is observed in figure 22(b) for the evolution of the pressure
amplitude in the far field along a vertical line through the trailing edge for the modes
M1–M4; in this case the radial decay of acoustic waves has to be taken into account.
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FIGURE 22. (Colour online) (a) Exponential growth in the streamwise direction to comply
with the dispersion relation of the advection equation ω = α. (b) Amplitude of pressure
fluctuations along a vertical line through the trailing edge.

Following the explanation given in Garnaud et al. (2013) in the context of global
modes in compressible jets, this feature is associated with the advection dynamics. It
represents features of temporally stable perturbations that were emitted earlier: due to
pure advection, they have thus higher amplitudes compared to perturbations that have
been emitted at the current time.

4.7. Free-stream modes
We have presented above the direct global modes that describe instability mechanisms
of the flow in the vicinity of the aerofoil. The description of the operator A in terms
of these global modes is, however, incomplete since a representation of the free-stream
dynamics is missing.

In figure 23 we display two examples of global modes, labelled F1 and F2,
that exhibit free-stream dynamics. The eigenvalues associated with this family of
modes have negative temporal growth rates. They are furthermore characterized by a
prominent spatial support in the free stream. A noteworthy property is the fact that
they show spatial exponential growth towards the outlet and well-defined wavenumbers
in the two spatial directions. The features of the free-stream modes are reminiscent
of the pseudospectral characteristics of both the advection–diffusion equation and the
wave equation with nearly absorbing boundary conditions. The reader is referred to
Trefethen (1997) for further details. From a qualitative point of view, the free-stream
global modes can be understood as the result of both the finite size of the domain
and the dispersion relation of the one-dimensional advection equation ω= α.

Since the domain has a finite extent, any perturbation in the free stream leaves
the domain after a convective time period. As a consequence, the global modes
that describe the free-stream dynamics are damped. In the light of this fact, it is
important to remark that the growth rates of the free-stream modes are inherently
dependent on the size of the domain, and in the limit of an infinitely large domain
they converge towards neutrality, i.e. a zero temporal growth rate. As before, for
a selected α (such that the diffusive effects are negligible), the physics in the
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FIGURE 23. (Colour online) Selected free-stream modes: (a) ωF1 = 1.11 − 0.24i and
(b) F2 ωF2 = 4.97− 0.49i.

free stream can be approximated by pure advection, and therefore the free-stream
eigenvalues with negative temporal growth rates ω have associated global modes with
wavenumber α≈ω: since ωi< 0, the free-stream global modes display structures with
an associated exponential spatial growth of −αi > 0. In the global spectrum there
is no clear separation between free-stream modes and the global modes presented
before. Nonetheless, our calculations show that they are predominant in the region
of low temporal growth rates, where the computed eigenvalues have a rather large
residual.

5. Summary and conclusions
We have addressed the generation of discrete acoustic tones in flow around aerofoils

using numerical techniques. The primary purpose of this investigation has been to
gain insight into the physical mechanisms underlying the occurrence of multiple
peaks in the acoustic spectrum and isolating the principal features of aeroacoustic
feedback, from a global point of view. Nonlinear simulations of the compressible
Navier–Stokes equations showed good agreement with previous experimental and
numerical investigations; in particular, the pressure spectrum displayed strong,
equispaced peaks in frequency, typical of the tonal noise phenomenon and widely
reported in the literature. Two separation bubbles have been found: on the suction
and pressure surfaces of the aerofoil. Based on their dynamics, a quasi-steady state
establishes itself, consisting of vortex shedding and intense acoustic scattering at the
trailing edge.

Further insight could be gained from an impulse response analysis of the linearized
equations, where a localized source of perturbation has been placed near the leading
edge of the aerofoil and evolved in time. A cyclical process consisting of (i)
wavepackets propagating in the suction-side and pressure-side boundary layer, (ii) their
interaction in the vicinity of the trailing edge, (iii) the radiation of sound from the
trailing edge, and (iv) the restimulation of the suction-side and pressure-side boundary
layer, could be observed and analysed. The time scales and frequencies involved in
these processes closely matched the ones observed in the nonlinear simulations. In
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addition, this type of analysis provided clear evidence for a cross-interaction of the
pressure-side and suction-side dynamics by means of an acoustic feedback mechanism.

A global stability analysis of the linearized operator revealed a stable spectrum with
distinct families of global modes corresponding to various physical processes: the low-
frequency flapping of the separation bubbles, the high-frequency dynamics supported
by the shear layers of the separation bubbles, and the free-stream and wake dynamics.
These links could be established by associating eigenvalues in the global spectrum
with the coherent structures given by the corresponding global modes. The overall
dynamics, however, is dominated by the least-stable global modes which exhibit the
typical range of acoustic tones. It is worth pointing out that, among all identified
modes, only the leading modes had a significant acoustic component associated with
their flow fields. Furthermore it has been found that the temporal growth rates of the
leading modes follow a peak structure where the frequencies are in remarkably close
agreement with the discrete frequencies observed in the nonlinear simulations. The
associated spatial structures capture the growth of hydrodynamic instabilities on the
suction surface and in the near wake. According to the frequency spacing and the
spatial structure, these global modes are associated with the feedback loop observed
in both the impulse response and the nonlinear simulations.
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Appendix A. Inner product for compressible flows
The inner product 〈·, ·〉 used in the present study is based on the small-perturbation

energy norm derived by Chu (1965) and Hanifi, Schmid & Henningson (1996) for
compressible flows. The energy E contained in a volume V , written in terms of the
variables (p, s, u), is given by

2E =
∫

V

(
1

γ 2M2

p2

p̄
+ γ − 1
γ 2M2

p̄s2 + ρ̄ ||u||2
)

dV , (A 1)

where ρ̄ and p̄ stand for the base-flow density and pressure, respectively. The
dependence on the physical coordinates x has been omitted, and all quantities are
non-dimensionalized. Once the previous expression is spatially discretized in the
computational domain, the inner product reads

〈w, v〉 =wHMv (A 2)

with

M = diag {mi} , and mi =


1

γ 2M 2

1
p̄

0 0 0

0
γ − 1
γ 2M 2

p̄ 0 0

0 0 ρ̄ 0
0 0 ρ̄


i

∣∣∣∣det
(
∂x
∂ξ

)∣∣∣∣
i

1ξi1ηi,

(A 3)
where the subscript i denotes the grid points.
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