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In this article, we introduce techniques to build a reduced-order model of a fluid
system that accurately predicts the dynamics of a flow from local wall measurements.
This is particularly difficult in the case of noise amplifiers where the upstream
noise environment, triggering the flow via a receptivity process, is not known. A
system identification approach, rather than a classical Galerkin technique, is used
to extract the model from time-synchronous velocity snapshots and wall shear-stress
measurements. The technique will be illustrated for the case of a transitional flat-plate
boundary layer, where the snapshots of the flow are obtained from direct numerical
simulations. Particular attention is directed to limiting the processed data to data that
would be readily available in experiments, thus making the technique applicable to
an experimental set-up. The proposed approach combines a reduction of the degrees
of freedom of the system by a projection of the velocity snapshots onto a proper
orthogonal decomposition basis combined with a system identification technique to
obtain a state-space model. This model is then used in a feedforward control set-up to
significantly reduce the kinetic energy of the perturbation field and thus successfully
delay transition.
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1. Introduction
Fluid systems that fall under the category of noise amplifiers are characterized by

a globally stable spectrum despite the presence of convective instabilities. Boundary
layers are examples of this type of fluid behaviour. External perturbations permeate
the near-wall region during the receptivity phase and initiate disturbances that are
amplified into Tollmien–Schlichting waves as they are swept downstream. If these
instabilities reach sufficient amplitudes, breakdown of the flow into turbulent fluid
motion can occur. Much effort has been expended to understand and control this
breakdown into turbulence by manipulating the underlying instability processes.

While many open-loop control techniques have been developed to delay the
transition process, closed-loop approaches, where actuation depends on sensor
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measurements, are more effective and efficient (Kim & Bewley 2007). However, under
realistic flow conditions, the direct application of closed-loop control techniques is
often not tractable. The high degrees of freedom of fluid systems (often O(106))
are far beyond the capabilities of current control devices, which typically can
handle O(102) variables. As a consequence, the full fluid system has to be properly
reduced, before a controller can be designed for the reduced-order model (ROM). This
methodology has been demonstrated to yield successful control designs (see Bagheri,
Brandt & Henningson 2009; Barbagallo, Sipp & Schmid 2009, among others). In these
investigations, model reduction is accomplished by a flow decomposition (e.g. proper
orthogonal decomposition (POD) or balanced proper orthogonal decomposition
(BPOD)) followed by a Galerkin projection of the equations onto the reduced basis.

In the case of noise amplifiers, external perturbations strongly influence the system
dynamics. Thus, it is very important for the ROM to accurately capture the noise
environment. In particular, ROMs obtained by means of Galerkin projections require
detailed knowledge of the spatial distribution of the upstream noise sources. This
requirement imposes great limitations, especially in experimental situations, where
information about the noise environment is neither directly nor sufficiently available.
A promising alternative to control design based on Galerkin projections derives from
system identification techniques as proposed in Hervé et al. (2012); this approach also
constitutes an encouraging step towards the control of noise amplifiers in experimental
situations.

This paper intends to provide a methodology to obtain reduced-order estimators for
noise amplifiers without using Galerkin projections. While in Hervé et al. (2012) the
model describes only the dynamics between one sensor (upstream measurement)
and another (downstream measurement), here we aim to capture the dynamics
between upstream measurements and the entire perturbation field. This will allow
the reconstruction of the full flow field and, consequently, the design of controllers
that target the kinetic energy of the full perturbation field, not only the variance of
a wall measurement signal. This brings to mind the Galerkin-based output projection
technique introduced by Rowley (2005), which captures the full perturbation field from
a given input. However, the latter technique requires precise knowledge of the spatial
distribution of the input, which is generally not available in amplifier flows. Therefore,
Dergham, Sipp & Robinet (2013) have extended it to account also for any possible
input, so as to obtain a model that captures any input to any output. In the present
work, we aim to obtain a similar model – capturing the dynamics from unknown input
to any output – but with identification methods. The proposed approach consists of a
reduction of the degrees of freedom of the system by (i) a projection of the velocity
fields onto a reduced basis combined with (ii) a system identification algorithm
to obtain the dynamic operators of a reduced-order system. In particular, a link
between velocity fields (e.g. from time-resolved particle image velocimetry (TR-PIV)
data) and time-synchronous wall shear-stress measurements is established, and a
dynamic observer is determined. A key feature of our procedure is its reliance on a
Galerkin model structure, but on the determination of the model matrices by system
identification rather than by integral expressions (Galerkin projections).

The link between velocity fields and wall measurements is reminiscent of linear
stochastic estimation (LSE) techniques (Adrian 1979; Guezennec 1989; Bonnet et al.
1994; Taylor & Glauser 2004; Tinney et al. 2006; Hudy, Naguib & Humphreys 2007;
Tu et al. 2013), where multiple measured inputs are correlated to simultaneous
multiple outputs by averaging over many realizations. Our proposed technique
generalizes this static approach by accounting for the dynamics of either measurement
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data. The comparison between LSE and dynamic observers obtained by Galerkin
projection has already been considered in Rowley & Juttijudata (2005), showing
the superiority of dynamic estimators. A further relation can be demonstrated
to data assimilation techniques, specifically, to the online variant (see e.g. Lewis,
Lakshmivarahan & Dhall 1989) where streaming data are matched to an underlying
model, which is then used to predict future measurement signals. Once a model has
been extracted by our technique from measured data, it can straightforwardly be used
in a closed-loop control application, as will be illustrated below.

The present study is structured as follows. After a brief description of the flow
configuration and the governing equations (§ 2), we present a dynamic observer
obtained by Galerkin projection (§ 3) and by the identification procedure (§ 4).
Section 5 will compare the identified observer with different well-known approaches,
while § 6 will demonstrate how to include the identified model in a control framework.
A summary of results and conclusions are given in § 7. Appendix A gives details
about the employed subspace system identification techniques.

2. Problem formulation
2.1. Governing equations

We choose a zero-pressure gradient boundary layer – a classical and generic flow
that acts as a noise amplifier – as our configuration to design and test the dynamic
observer. This flow is globally stable but selectively amplifies upstream disturbances
by convective instabilities. In a low-amplitude noise environment, two-dimensional
Tollmien–Schlichting waves appear as a result of this instability mechanism.

We consider the dynamics of disturbances u around a base flow U0, which we take
as a Blasius boundary layer. The disturbances u are additionally driven by an external
forcing term, Fww(t), which acts as an upstream disturbance source of unknown origin.
For simplicity, we assume that w(t) is a random process of zero mean and variance
W, while Fw describes a spatial two-dimensional Gaussian distribution centred at
(xw, yw) of spread (σx, σy) and amplitude A. The spatio-temporal evolution of the total
flow field, Utot =U0 + u, is governed by the incompressible Navier–Stokes equations,
augmented by a forcing term,

∂tUtot +Utot · ∇Utot =−∇Ptot + Re−1
δ∗0
1Utot +Fww(t), ∇ ·Utot = 0. (2.1a,b)

The variables are non-dimensionalized using the displacement thickness δ∗0 of the
boundary layer at the computational inlet (x0 = 0) and the free-stream velocity U∞.
Consequently, the Reynolds number is defined as Reδ∗0 =U∞δ∗0/ν. All simulations were
performed at Reδ∗0 = 1000, which ensures the presence of strong Tollmien–Schlichting
instabilities, since Reδ∗0 > Recrit

δ∗ = 520.
The governing equations (2.1) are solved in a computational domain Ω of size

(0, 1000) × (0, 40), sketched in figure 1. A Blasius profile of unit displacement
thickness is prescribed at the left boundary, outflow conditions are employed at the
upper and right boundaries, and a no-slip condition is imposed at the wall. We use
the spectral-element code Nek5000 (see https://nek5000.mcs.anl.gov) to perform the
computations below.

With the base flow U0 as a solution of the unforced (w= 0) steady Navier–Stokes
equations (2.1), the perturbations u are governed by the following equations:

∂tu+U0 · ∇u+ u · ∇U0 =−∇p+ Re−1
δ∗0
1u+Fww(t), ∇ · u= 0. (2.2a,b)

https://nek5000.mcs.anl.gov
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FIGURE 1. (Colour online) Sketch of the flow configuration. The computational domain Ω
is of size (0, 1000)× (0, 40), represented by the light grey box. The upstream receptivity
of the boundary layer to external perturbations is modelled by the noise w, which is placed
at (xw, yw) = (50, 0.95). A sensor located at (xs, ys) = (200, 0) will identify incoming
perturbations, while a velocity window (represented by the dark grey box) is used to
quantify the effect of the forcing on the velocity field.

Here the nonlinear term u · ∇u has been omitted since only low-amplitude
noise W�1 will be considered. This assumption ensures linear perturbation dynamics,
as well as a linear response to the noise w. During the direct numerical simulations
(DNS), white noise is imposed via w(n) to mimic upstream excitations of unknown
source and distribution (mimicking conditions in physical experiments). We use a
time step of dtDNS = 0.1.

2.2. Perturbation dynamics
Choosing the Blasius boundary layer as an example of a noise amplifier and assuming
a low-noise environment, perturbations may be amplified by two different instability
mechanisms: (i) the Tollmien–Schlichting instability, which takes advantage of a
critical layer as well as a wall layer to generate a non-zero Reynolds stress, and
(ii) the Orr instability, where initial perturbations lean against the mean shear but
grow in amplitude as they are tilted by the mean velocity (Butler & Farrell 1992).
The details of these mechanisms can be studied within a local stability framework,
considering perturbations of the form ei(αx−ωt), with ω the frequency and α the
streamwise wavenumber of the perturbation. An analysis of this type shows that the
Blasius boundary layer is convectively unstable to Tollmien–Schlichting waves when
the Reynolds number based on the local displacement thickness δ∗(x) is larger than
the critical value of Re = 520. In figure 2, the neutral curve obtained from a local
spatial stability analysis performed with wall-normal profiles extracted from the base
flow U0 is displayed. The unstable frequencies fall in the interval 0.055 < ω < 0.13
at the computational inlet and 0.015< ω < 0.052 at the end of the domain. When a
localized disturbance is placed inside the boundary layer, the response is a wavepacket
that convects downstream at the local group velocity vg= dω/dα. The group velocity
is a very important parameter, as it sets a characteristic time for the perturbation,
and can easily be obtained from the dispersion relation ω = ω(α). In figure 3, the
dispersion relation is represented for three different Reynolds numbers (corresponding
to streamwise locations at the computational inlet, middle and outlet). For the
considered configuration, the group velocity is estimated as vg ≈ 0.375U∞ using the
real-axis approximation.
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FIGURE 2. (Colour online) Neutral curve obtained by a local spatial stability analysis in
the computational domain.
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FIGURE 3. Spatial dispersion relation for the convectively unstable frequencies at three
different positions within the domain.

2.3. Measurements
This paper aims to provide a data-based technique that is applicable in an experimental
setting. For this reason, special care must be taken to use only data that are readily
available in an experiment. We first consider a wall-friction sensor s (see figure 1),
located at xs = 200 and of spatial extension in the streamwise direction 1x = 0.5,
which measures the wall shear stress,

stot =
∫ xs+1x

xs

∂utot

∂y

∣∣∣∣
y=0

dx+ g

=
∫ xs+1x

xs

∂U0

∂y

∣∣∣∣
y=0

dx+
∫ xs+1x

xs

∂u
∂y

∣∣∣∣
y=0

dx+ g

︸ ︷︷ ︸
s(t)

, (2.3)

where s denotes the fluctuating part of the measurement, which may be obtained by
subtracting the time-averaged value of stot from the signal stot. For the case of low-
amplitude forcing, i.e. for linear perturbation dynamics, the time-averaged value also
corresponds to the base-flow value. The sensor stot (or s) may be corrupted by white
noise g, of variance G (with G small and of the order of magnitude of W).
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In addition to the wall-friction sensor s, we also consider velocity snapshots usnap in
a given domain Ωsnap, which may be chosen smaller than the computational domain
Ω (see figure 1). The fluctuating parts of the velocity field may again be obtained
by subtracting the time-averaged snapshots from the total snapshot sequence. In an
experimental set-up, the velocity snapshots may be obtained by a PIV technique. In
what follows, we will consider time series of composite skin-friction measurements
and velocity snapshots.

3. Structure of a dynamic observer using Galerkin projection

In this section the model reduction technique based on Galerkin projection will
be briefly discussed to motivate the use of identification methods in the design of
ROMs. Special attention will be paid to the structure of the resulting model since it
will form the basis of the system identification approach. We proceed by developing
and analysing the ROM that would result from a projection of the linearized Navier–
Stokes equations onto a POD basis (§ 3.1), which is followed by the introduction of
a Kalman filter allowing us to replace the unknown driving term w(t) by the known
measurements s(t) (§ 3.2).

3.1. Reduced-order model with Galerkin projection by approximation of the
controllability Gramian

A common method used to obtain a ROM of a dynamical system is based on
Galerkin projection, i.e. a projection of the Navier–Stokes equations (2.2) onto an
appropriate basis, such that the input–output behaviour of the full system is preserved
as accurately as possible. The choice of basis is critical. The two most common
options are based on: an approximation of the controllability Gramian, which yields a
POD basis (Rowley 2005; Barbagallo et al. 2009) that maximizes the energy captured
by the ROM, and an approximation of the controllability and observability Gramians,
which yields a balanced basis (Moore 1981; Rowley 2005; Bagheri et al. 2009) that
directly focuses on the input–output relation of the reduced system. In this article,
only ROMs obtained by approximating the controllability Gramian will be considered.

After extracting the POD modes (taking data from the full computational domain)
from the approximation of the controllability Gramian by an impulse response of the
full system (see Barbagallo et al. 2009 for details), the governing equations (2.2) are
projected onto the first k modes to obtain a reduced state-space representation of the
system according to

dX
dt
= A′wX(t)+B′ww(t), (3.1a)

s(t)=C′X(t)+ g(t), (3.1b)

where X(t) is a vector containing the k POD coefficients at time t. Denoting by 〈·〉
the energy-based inner product that has been used to extract the POD modes, the
components of the matrix A′w and of the vectors B′w and C′ are obtained as follows:
A′w,ij = 〈Φi,A Φj〉 (with A the linearized Navier–Stokes operator (2.2) on Ω), B′w,i =〈Φi,Fw〉 and C′i =C Φi (with C as the measurement operator).

A Galerkin projection usually provides a continuous-time format for the state-space
system (3.1). With the remainder of the article pertaining to system identification
methods, it is more convenient to express the governing equations in a discrete-time
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framework. In the discrete-time domain, the mapping of the state vector X from time
t (index n) to t+1t (index n+ 1) reads

X(n+ 1)= AwX(n)+Bww(n), (3.2a)
s(n)=CX(n)+ g(n), (3.2b)

with Bw =
∫ 1t

0 exp[A′w(1t − τ)]B′wdτ associated with the discrete driving term, Aw =
exp(A′w1t) denoting the evolution matrix over a time interval 1t and C=C′.

3.2. Kalman filter
When dealing with noise amplifiers, it is critical to accurately account for the
disturbance environment, as it both triggers and sustains the dynamics of the system.
Despite this requirement, in an experimental set-up, access to accurate information
about the noise environment is, at best, very difficult or, in most cases, impossible.
We thus have to introduce an observer where the noise source term Bww(t) is replaced
by a measurement term Ls(t) that drives, as best as possible, the estimated state of
the system. Formally, the observer may be obtained in a straightforward manner by
introducing a linear estimator of the form

Xe(n+ 1)= AwXe(n)+ L[s(n)−CXe(n)] = AsXe(n)+ Ls(n), (3.3)

where Xe(n) is the estimated state, s(n) is the measurement signal from the friction
sensor (defined by (2.3)) and L represents the gain of the estimator, which can be
selected by the designer to achieve different objectives. If the gain L is selected to
statistically minimize the error ‖Xe − X‖2, the estimator is referred to as a Kalman
filter and L is obtained by solving a Riccati equation (see Burl 1999) of the form

P = AwPA∗w − AwPC∗(CPC∗ +G)−1CPA∗w +BwWB∗w, (3.4a)
L= AwPC∗(CPC∗ +G)−1. (3.4b)

In short, the dynamic observer (3.3) consists of a linear relationship between two
subsequent state vectors Xe(n+ 1) and Xe(n) and the measurement s(n). Its dynamics
is fully determined by the evolution matrix As = Aw − LC and the observer gain L.
We stress that this estimator is effective only if the measurement s remains constant
over the sampling time 1t; for this reason, a spectral analysis of the measurement s
must be employed to determine its frequency content and thus the sampling time 1t.

3.3. Limitations of Galerkin-based methods
Galerkin models based on Gramians are a popular choice for model reduction, owing
to their ease of use in feedback applications, the availability of mathematical bounds
on their convergence and their link to physically relevant flow structures. But despite
their widespread use, Galerkin-based methods for the computation of ROMs suffer
from notable limitations when they are applied to experimental situations.

The favourable properties of the Galerkin model presented in this section stem
from the fact that the POD modes were obtained by accurately discretizing the
integral involved in the controllability Gramian. This requires that an impulse of
w(t) can be generated and its response can be analysed using velocity snapshots.
Furthermore, a very small delay between two successive snapshots and a very long
series of snapshots is desirable. If such requirements are not met, Galerkin projection
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then provides POD-based models that may even become unstable: a posteriori
regularization and calibration techniques are then required to render the models stable
again (Bergmann, Bruneau & Iollo 2009).

One of the most important limitations of Galerkin-based models is linked to the
requirement for a very accurate distribution of the noise sources in the experiment for
amplifier flows, since these sources will drive the dynamics of the system. Generally,
the noise distribution in experimental set-ups will be complex, difficult to represent
and mostly unknown, so that triggering by an impulse in w(t) is nearly impossible.

4. Dynamic observer using system identification techniques
This section introduces an alternative method to obtain a dynamic observer. We

will present a data-driven approach, based on system identification techniques, that
relies solely on observations of the system in the presence of unknown upstream noise
w(t). System identification techniques represent a family of algorithms that efficiently
determine the coefficients of an underlying model directly from observed input–output
data via a statistical learning process. This section aims to obtain a dynamic observer
model such as (3.3) directly from observations of the system. In the following, we
will first briefly recall the basics of system identification techniques, which generate
a model governing the dynamics of given outputs from known inputs (§ 4.1). Second,
we will define the output of our system as the coefficients of the velocity snapshots
in a POD basis (§ 4.2). Third, we will introduce the model structure of the dynamic
observer (§ 4.3), identify the coefficients of the model (§ 4.4) and validate the model
(§ 4.5). Finally, the influence of various parameters on the quality of the model will
be assessed (§ 4.6).

4.1. System identification based on subspace techniques
System identification comprises a wide range of methods of varying applicability and
complexity (see Ljung 1999). In our case, we aim to obtain a linear time-invariant
(LTI) multiple-input–multiple-output (MIMO) system, such as the one given in (3.3).
In general, we have u(n) as known inputs, w(n) as unknown white plant noise and
y(n) as known outputs corrupted by unknown white noise v(n). We aim to determine
the system matrices (A, B, C and D), which govern a state x(n) such that

x(n+ 1) = Ax(n)+Bu(n)+w(n), (4.1a)
y(n) = Cx(n)+Du(n)+ v(n). (4.1b)

The coefficients of the system matrices are chosen such that the estimated output ye(n),
obtained by time marching (4.1) with w(n)= v(n)= 0, is as close as possible to the
measured output y(n) (subject to the white-noise sources w(n) and v(n)), knowing the
inputs u(n). We stress that the state x(n) does not necessarily have to have a physical
interpretation.

System identification consists of three procedural steps (see figure 4). First, the
system is excited by known and unknown input signals u(n) and w(n) while the
outputs y(n) (corrupted by noise v(n)) are recorded. In a second step, a parametrized
model is chosen, in our case an LTI system characterized by the system matrices
A, B, C and D, together with an appropriate identification algorithm. A subsample
of the full dataset, referred to as the learning dataset, is then processed to determine
the system matrices of the model. In a third step, a different part of the data, known as
the testing dataset, is used to drive the identified system, and the output ye(t) produced
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FIGURE 4. (Colour online) Procedural steps of system identification techniques. Step 1:
the system is forced with a frequency-rich input signal and data are acquired. The forcing
term w(n) driving the system should be either known or replaced by a known proxy
measurement s(n). Step 2: after selecting a model structure and appropriate parameters,
the model coefficients are then computed by maximizing the fit between the output of
the system and the prediction of the model for a part of the available data. Step 3: the
model is tested on a dataset different from the one used for learning. If the model does
not reproduce the system dynamics with the required accuracy, a different model structure,
a different parametrization or even a different experiment should be considered.

by the model is compared to the measured true output y(t); based on this validation
test, the model is accepted, adapted or rejected.

The form of the model given in (4.1) makes subspace identification algorithms a
convenient choice. Appendix A presents a brief introduction to these techniques; a
more comprehensive description is given in Van Overschee & De Moor (1996) and
Qin (2006). In this study, the N4SID algorithm (Van Overschee & De Moor 1994)
has been used to obtain all the models.

4.2. Outputs as coefficients of velocity snapshots in a POD basis
We would like to describe the system at each time instant with velocity snapshots usnap.
The large number of degrees of freedom in these snapshots makes direct application
of identification techniques excessively, or prohibitively, expensive. It is thus necessary
to reduce the dimensionality of the measured data. In this article, we use the POD
modes (Lumley 1967; Sirovich 1987) to form a reduced basis. Note that, contrary to
the previous section, the velocity snapshots used to build the POD basis are obtained
in the presence of the true, but unknown, noise environment w(t).

We consider a sequence of m velocity snapshots {Vsnap(n)}n=1,...,m extracted from the
Ωsnap domain and containing the effect of upstream noise w. The sequence needs to
cover a sufficiently large time range to explore all states of the system. Therefore,
even though not mandatory, the time delay between two snapshots can be taken as
quite large, so as to obtain nearly uncorrelated successive snapshots. The POD then
enables us to compute a ranked orthonormal basis {Φi}i=1,...,m of flow fields, satisfying
〈Φi, Φj〉 = δij, i, j = 1, 2, . . . , m, which can be expressed most conveniently as a
linear combination of these m snapshots. Here, the scalar product 〈·〉 is associated
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FIGURE 5. (Colour online) (a) First 100 POD eigenvalues λi of the correlation matrix.
(b) Contours of the streamwise velocity component of the first (Φ1) and 10th (Φ10)
POD modes.

with the energy-based inner product: 〈u1
snap, u2

snap〉 =
∫
Ωsnap

(u1
snapu2

snap + v1
snapv

2
snap) dx dy.

Any velocity field V in Ωsnap can then be projected onto the first k POD modes
according to

yi = 〈Φi,V〉, i= 1, 2, . . . , k, (4.2a)

V′ =
k∑

i=1

Φiyi, (4.2b)

to produce the approximate flow field V′. Properties of the POD guarantee that, for
all k, the error ‖V − V′‖2 = 〈V − V′, V − V′〉 is minimal for the set of m measured
snapshots. For the subsequent derivations, we define the reduced state vector given by
the k POD coefficients by Y= [y1, y2, . . . , yk]T and denote the reduced POD basis by
U = [Φ1,Φ2, . . . ,Φk].

In what follows, snapshots have been obtained with the smaller Ωsnap domain of
dimension (150,950)× (0,40). A total of 1500 snapshots sampled each 1tpod=5 have
been used to obtain the POD basis. From figure 6 a cut-off for the lower frequencies
can be established at f ≈ 10−3, which, considering the total length T of the time data
used to compute the POD basis (T = 1500 × 5 = 7500), guarantees that the lowest
physical frequencies f ≈10−3 have been explored approximately 7500×10−3≈8 times.
Figure 5(a) shows the corresponding eigenvalues of the correlation matrix, confirming
a steady decay over about three decades in the first 30 modes (95 % of the energy is
contained in the first 10 modes). Two selected POD modes, Φ1 and Φ10, are displayed
in figure 5(b).

The time-evolving POD coefficients Y(n) constitute the output of the system. In the
next section, we will seek a model structure for a dynamic observer that is able to
accurately predict Y(n) from the input to the system.

4.3. A dynamic observer obtained by identification techniques
An approximation Ye of the temporal evolution of the reduced state vector Y can be
obtained by time marching a dynamic observer equation, whose structure is similar to
the one given in (3.3), that is,

Ye(n+ 1)= ÃsYe(n)+ L̃s(n). (4.3)
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FIGURE 6. Spectrum of the input signal s(t) obtained from the shear-stress sensor
placed at x= 200.

The quantities Ãs, L̃ and C̃ will be obtained with system identification techniques that
rely solely on knowledge of input–output datasets {s(n), Y(n)}n=1,...,m, rather than by
performing a Galerkin projection and solving a Riccati equation. A relation between
the general formulation of subspace algorithms defined in § 4.1 and the dynamic
observer notation can straightforwardly be defined as Ãs = CAC−1 and L̃ = CB,
assuming that D= 0.

The input s(n) is related to the state Ye(n) according to

s(n)= C̃Ye(n), (4.4)

where C̃ is a measurement matrix, which can be obtained using two different
procedures: its exact definition or an identification techniques. In the first case,
we combine (2.3) and (4.2) to get

C̃exact,i =
∫ xs+1x

xs

∂(Φi · τx)

∂y

∣∣∣∣
y=0

dx, τx =
(

1
0

)
. (4.5)

The evaluation of this expression involves either measuring the POD modes or
combining the measurements {s(n)}n=1,...,m associated with the velocity snapshots
{Vsnap(n)}n=1,...,m, that were used for the construction of the POD basis in § 4.2. In
the second case, we use a simple least-squares method applied to a composite time
series {s(n), Y(n)}n=1,...,m of the learning dataset. It is straightforward to show that

C̃= [s(1) · · · s(m)][Y(1) · · · Y(m)]†, (4.6)

where † denotes the Moore–Penrose pseudo-inverse.
As shown in § 3.1, the true evolution matrix for Y is not Ãs but Ãw. Considering a

model structure for Y similar to the one obtained by Galerkin projection in (3.2), we
see that the state Y(n) is governed by

Y(n+ 1) = ÃwY(n)+ B̃ww(n), (4.7a)

s(n) = C̃Y(n)+ g(n), (4.7b)
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Galerkin projection System identification

Reduced-order state X(n) Y(n)
ROM matrices Aw, Bw Ãw, B̃w
Estimated state Xe(n) Ye(n)
Observer matrices As, L Ãs, L̃
Measurement matrix C C̃exact (obtained by definition)

C̃ (obtained by least squares)

TABLE 1. Notation used for the Galerkin projection and identification based design of a
dynamic observer.

where the known input L̃s(n) has been replaced by the unknown driving term B̃ww(n).
The true evolution matrix Ãw in (4.7) can thus be obtained from the observer matrix
Ãs via

Ãw = Ãs + L̃C̃. (4.8)

The different notations used for the models obtained with Galerkin projection and
identification techniques are summarized in table 1.

4.4. Identification of model coefficients with learning dataset
We obtain data by performing a linearized DNS of the boundary layer in the presence
of unknown noise. We use a sampling interval 1t= 5 for the velocity snapshots and
the shear-stress measurements s. This choice of sampling interval can be justified
by looking at figure 6, where the frequency spectrum of the input signal S( f ) is
represented. This figure shows that the frequency content of s is rather low near the
Nyquist frequency fNyquist = fs/2= 0.1 defined by our sampling interval 1t= 1/fs. The
datasets to be processed are composed of the input signal from the sensor s and
several outputs yi corresponding to the projection of the snapshots onto the set of
POD modes {Φi} (figure 7). Using the N4SID algorithm (Van Overschee & De Moor
1994) and the Moore–Penrose pseuso-inverse, the model parameters Ãs, L̃ and C̃ are
then determined by fitting the model output to the true measured output, as the model
is forced by the recorded input. A ROM has been determined with k= 90 POD modes
and a learning dataset of length Nsnap = 2000.

4.5. Assessment of model performance with testing dataset
The validity of the identified parameters is subsequently confirmed by using a different
dataset (referred to as the testing dataset) and by comparing the model output to
the true output. As this testing dataset has not been used in the identification of the
model, we can assess the predictive capability of the identified model in this manner.
The kinetic energy defined as E(t) = 〈usnap, usnap〉 ≈ Y∗Y is an important variable of
the system since it represents the global dynamics of the flow. The quality of fit
between the energy of the DNS, denoted by E(t), and the value predicted by the
model, denoted by Ẽ(t), can be stated as

FIT (%)= 100

(
1− ‖E(t)− Ẽ(t)‖
‖E(t)−mean(E(t))‖

)
(4.9)
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FIGURE 7. Learning dataset: (a) the measurement s capturing the influence of external
noise and (b,c) the POD coefficients yi obtained by projecting the flow field onto the
POD modes (b) Φ1 and (b) Φ10.

and can be used to quantify the performance of the estimator. Figure 8(a) displays the
measured input signal s from the wall shear-stress sensor, from which all subsequent
flow variables (figure 8b–e) can be derived using the identified model. In our case,
we show (b) the evolution of energy, (c,d) the first and 10th POD coefficient and
(e) the output from a friction sensor placed at x = 600. After a short transient
period, the predicted flow variables closely track their true DNS equivalents, which
yields a relative match of FITener = 93.72 % when evaluated over the time interval
t ∈ [4000, 10 000]. The length of the transient period, estimated as Ttrans ≈ 2000,
can be directly linked to the convective time of the disturbances. As previously
mentioned, Tollmien–Schlichting waves are convected with a group velocity equal to
vg = 0.375. This convective velocity defines the characteristic time Tconv necessary
for the wavepacket to cover the distance between the sensor s and the downstream
edge of the domain Ωsnap. This time (Tconv ≈ 2000) accurately predicts the duration of
transient effects Ttrans. This match between the time the estimator needs to propagate
information and the time the system needs to convect a wavepacket confirms that the
input–output behaviour of the system is well captured by the model. From the POD
coefficients in Ye, the full flow field can be reconstructed from the basis U. Two
examples of this reconstruction, visualized by the streamwise velocity component,
are shown in figure 9 and compared to the equivalent full DNS simulation. The first
instant at t= 3000 has been taken during the transient phase and shows a promising
but incomplete match over the entire flow domain; a second instant at t = 4000
displays an excellent agreement between the flow structure recovered from s(t) via
the identified model and the full DNS solution.

4.6. Influence of some model parameters on performance
System identification techniques usually contain numerous model parameters, which
have to be determined with care in order to obtain a representative and robust model
of the underlying physical process. Subspace identification methods are particularly
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identified model. (b–e) Comparison between the DNS (black) and the model prediction
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FIGURE 9. (Colour online) Snapshots of the streamwise disturbance velocity
component obtained (a) from the DNS and (b) recovered from s(n) via the model
for t = 3000 (top) and t = 4000 (bottom). See supplementary movie 1 available at
http://dx.doi.org/10.1017/jfm.2012.553.

http://dx.doi.org/10.1017/jfm.2012.553


742 J. Guzmán Iñigo, D. Sipp and P. J. Schmid

100

80

60

40

20

F
IT

 (
%

)

0

100

80

60

40

20

0
1000 1500 2000 2500 3000 3500 40 60 80 100 120 140

Nsnap k

(a) (b)

FIGURE 10. (Colour online) Influence of the model parameters on the quality of the
identification. Mean (black) and standard deviation (bars; blue online) of the validation fit
computed from samples of 10 models obtained from different learning datasets. Influence
of (a) the length of the learning dataset Nsnap (for a fixed number of POD modes
Npod = 90) and (b) the number of POD modes k (for a fixed number of snapshots Nsnap=
2000).

advantageous in this respect, when compared to parametrized models (see Hervé et al.
2012), owing to the relative simplicity of their parametrization; in fact, the size of the
state-space model is the only user-defined parameter for subspace techniques.

In this section, we study the influence of the state-space size k (in other words,
the number of POD modes), as well as the number of snapshots Nsnap contained in
the learning dataset, on the quality of our identified ROM. Figure 10 represents the
statistical mean and standard deviation of the fit between the validation dataset and
the predictions of different models. Both graphs have been obtained by computing,
for each point on the curves, 10 models obtained from distinct sections of a long
learning dataset. The total length of the learning dataset is Nsnap = 8000 (40 000
time units) and the different learning sections i begin at different time instants,
tinit
i=0,...,9 = 2500 + 500i. Figure 10(a) shows, for a fixed number of POD modes

(k= 90), the influence of the number of snapshots Nsnap: we observe that a minimum
number of snapshots are necessary to obtain an accurate model. This observation is
common in identification techniques, since the algorithm requires sufficiently long
time sequences from the dynamical system to arrive at statistically converged data.
In our case, the identification procedure requires about 1500× 5= 7500 characteristic
time units to obtain satisfactory results (signal components of the lowest system
frequency f = 10−3 have been explored ∼8 times).

The influence of the number of POD modes k on the model quality (fit) observed
in figure 10(b) is far less trivial. For a fixed number of snapshots Nsnap = 2000, a
minimum number of k=40–50 POD modes are required to obtain a good performance
of the dynamic observer: this is related to the concept of observability of the POD
basis.

Intuitively, a necessary condition for an observable system requires that the input
s(n) and the state Y(n) are well correlated or, in other words, that the measurement
s(n) must be accurately representable by the POD coefficients according to s(n) ≈
C̃Y(n). Figure 11 shows the relative error between the measurement s(n) given by
the sensor in the DNS simulation and the measurement s = C̃Y, with Y obtained
by projection of the velocity snapshots onto the POD modes. The solid and dashed
lines respectively represent the relative error for the case where C̃ is obtained by
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given by C̃exactY(t) (exact definition) and C̃Y(t) (estimated by least squares) for different
numbers of POD modes. Here, ‖ · ‖ indicates the 2-norm on the vertical axis.
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FIGURE 12. Local kinetic energy Ey(x)=
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0 (u
2 + v2) dy for four POD modes: (a) Φ1,

(b) Φ10, (c) Φ22 and (d) Φ24. The estimation sensor is located at xs = 200.

measuring the POD modes (4.5) and by the pseudo-inverse (4.6). The two curves show
a similar behaviour, reflecting the fact that, after a minimum number of POD modes
are taken into account, the POD basis accurately captures the temporal behaviour of
the measurement signal s(n). The relatively high degree of the system (Npod = k= 90)
is related to the inherent lack of observability of the POD basis. POD maximizes the
energy captured by a few orthogonal modes and, as is the case for the boundary layers
(and, more generally, flow amplifiers), the most energetic structures are commonly
localized downstream in the domain of interest. Consequently, the first POD modes
do not show much spatial support in the upstream part of the domain, and higher
modes are necessary to represent the full dynamics of s(n). Figure 12 demonstrates
this tendency, showing that the energy content of the modes at the location of the
estimation sensor is nearly zero up to the 22nd POD mode.

5. Comparison of model obtained by system identification with other techniques
In this section, we compare the performance of our identified dynamic observer to

that of a more common Galerkin-based observer (§ 5.1) and to that of an LSE-based
observer (§ 5.2).
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FIGURE 13. (Colour online) Galerkin-based ROM versus estimated model impulse
responses: (a) from s to ye,1, (b) from s to ye,10 and (c) from s to the perturbation energy
E= Y∗eYe.

5.1. Comparison with model obtained by Galerkin projection
The identification-based dynamic observer presented in this article is similar to the one
obtained by Galerkin projection. However, the identification process will introduce
a bias in the obtained model; this bias will be analysed below. In figure 13, we
compare the performances of the dynamic observer established in (3.3) by Galerkin
projection and the one obtained in (4.3) by identification methods. Even though
the temporal evolution of the POD coefficients is quite similar in both models, a
slight overestimation in energy is observed in the identified system. The temporal
evolution of the POD coefficients furthermore shows small oscillations in the signal
of the identified model (noticeable for sufficiently small signal amplitudes; see
3000 < t < 4000 in figure 13a,b). This oscillatory effect often appears in identified
models and stems from an inadequate representation of some frequencies. It is
important, however, to keep in mind that both models are associated with slightly
different bases, but a fair comparison has to be performed on a common basis. To
this end, we have chosen to project the estimated state Xe onto the POD basis U
used to obtain the identified model.

5.2. Comparison with model obtained by LSE
LSE postulates a static linear relationship between a set of input signals (measurements
from sensors) and a set of output variables of the flow. The LSE estimator can be
formulated as

Ye(n)= R̃S(n), (5.1)
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FIGURE 14. (Colour online) Performance of LSE compared to the dynamic observer. The
input data used by the LSE model come from 10 equispaced shear-stress sensors between
x= 500 and x= 950, while the dynamic observer uses a single sensor located at xs= 200.
(a–d) Comparison between the linearized DNS (black full curve), the identified dynamic
observer prediction (grey dashed curve; red online) and the LSE model (grey full curve;
blue online) for three variables from the testing dataset: (a) the energy of the system and
(b–d) the POD coefficients yi for the first, 10th and 20th mode, respectively.

where Ye(n) ∈Rk and S(n) ∈Rm are vectors containing, respectively, the k estimated
output variables by LSE at time n and the measurements from m sensors at time n,
and R̃ is a matrix obtained by minimizing the mean-squared error between the true
output and the one predicted by the model, in other words, ‖Y − Ye‖2.

In our numerical experiments, a linear estimator has been computed based on
input from 10 shear-stress sensors (equispaced between x = 500 and x = 950) and
20 POD modes representing the flow state. Figure 14 shows a comparison of DNS
results with results obtained from applying either LSE or a dynamic observer. It
appears that, in the case of LSE, a great many more sensors are required to obtain
a model of similar quality (performance) than the one provided by the dynamic
observer. This observation corroborates the need of the estimator to correctly identify
the wavelengths of the Tollmien–Schlichting waves – a requirement that can be met
with very closely spaced sensors. By comparing different POD coefficients, this point
can be further substantiated. For instance, in figure 14, the first POD coefficient
y1 (corresponding to a structure with large wavelengths) is well represented by the
model, while the 10th and 20th POD coefficients (y10 and y20), associated with far
shorter wavelengths, deviate more noticeably from the DNS results. Moreover, the
energy predicted by the LSE model appears rather noisy compared to the DNS.
This feature arises, again, from the poor representation of the shorter wavelengths
of the flow, but it also stems from the inherent lack of accuracy of first-order
truncated stochastic models. This second source of inaccuracies can be alleviated
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FIGURE 15. (Colour online) Snapshots of the streamwise disturbance velocity at t= 8000
(a) obtained from linearized DNS, (b) recovered from a single sensor via the identified
dynamic observer, and (c–f ) recovered from shear-stress sensors via an LSE model:
(c) from 17 sensors equispaced between x = 150 and x = 950, (d) from 10 sensors
equispaced between x= 500 and x= 950, (e) from 10 sensors sensors equispaced between
x= 150 and x= 600 and ( f ) from two sensors placed at x= 150 and x= 950.

by considering higher-order terms, while adding closer-spaced sensors will achieve
a better representation of the poorly estimated wavelengths. It is also important to
notice that the linear stochastic estimator does not contain a transient phase, as
the dynamic observer does. Furthermore, it needs fewer POD modes: the dynamic
observer requires a large number of POD modes to fulfill the observability condition
discussed in § 4.6, whereas the linear stochastic estimator is not subjected to this
constraint. It has been verified that including more than 20 POD modes does not
further improve the performance of the LSE model.

Figure 15 represents snapshots of the streamwise disturbance velocity at a given
instant (t= 8000) for six different cases. The first two snapshots represent results from
the DNS and from a reconstruction by the identified dynamic observer based on a
single sensor located at xs = 200, respectively. The last four snapshots are obtained
via LSE using different numbers of sensors placed at different positions. In the first
of the LSE cases (figure 15c), 17 equispaced sensors, located between x = 150 and
x= 950, are considered. A satisfactory prediction of the velocity field is obtained with
this configuration, even though the structures far upstream are not as well represented
when compared to the dynamic observer. In figure 15(d,e) 10 sensors have been placed
equidistantly, in one case, between x=500 and x=950 and, in a second case, between
x= 150 and x= 600. When the 10 sensors are concentrated in the downstream part of
the domain, upstream information is lost, and vice versa for an upstream placement of
the sensors. Finally, figure 15( f ) uses only two sensors (at x= 200 and x= 950): this
time, LSE fails to recover any relevant information about the flow structures. These
results underline the fact that LSE requires spatial support of the input information
(sensors) over the whole domain due to the strong convection, while the dynamic
observer only needs information from a localized input signal. In summary, the above
numerical experiments show that a dynamic observer model is preferable over a linear
stochastic estimator (LSE) model in providing an accurate approximation of the flow
field from localized and sparse measurements.
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6. Application of optimal control

The successful recovery of full-state information from single wall shear-stress
measurements by a dynamic observer enables the design of a variety of effective
control schemes, which we demonstrate next. For this purpose, a control signal u
is placed at (xu, yu) = (250, 1) (downstream of the sensor s), which constitutes a
feedforward control configuration. The governing equations (3.3) of the dynamic
observer are modified to reflect this addition. We have

Ye(n+ 1)= ÃsYe(n)+ L̃s(n)+ B̃uu(n). (6.1)

Following Hervé et al. (2012), the system is excited with a frequency-rich signal u in
order to identify the new term B̃u. The unknown system matrices Ãs, L̃ and B̃u may
then be determined in a similar way as described in § 4. From there, the true linear
system matrix Ãw that governs the perturbation dynamics ((4.7) with added control
term) can be extracted following (4.8). This matrix is then used for the design of
a linear–quadratic regulator (LQR) optimal controller u(n)=KY(n), which minimizes
the cost functional

∑∞
n=0 Y(n)∗QY(n)+ `2|u(n)|2, where Q is a positive definite weight

matrix and ` is a user-specified parameter to balance disturbance energy and exerted
control energy. Following a standard procedure (see Burl 1999), the control gain K
can be obtained by solving a Riccati equation involving Ãw, B̃u, Q and `.

Two different control objectives Q have been considered: (i) the suppression of
the energy E(t) inside the velocity window (Q = I) and (ii) the control of the signal
variance recorded by the downstream friction sensor cp (Q = C̃

∗
pC̃p, with C̃p the

measurement vector associated with cp and obtained with the least-squares technique
introduced in § 4.3 to obtain C̃s). We use a model that comprises 50 modes computed
on a shorter domain (Ωsnap = (200, 700) × (0, 40)). In the controlled simulation, the
measurement s is used to reconstruct the full perturbation field Ye based on the
identified model, and the control law is obtained by applying the control gain K to
this state. Results are shown in figure 16 together with the control signal u(t) and
the friction-sensor signal s. In both cases, a substantial reduction in the respective
objectives can be accomplished. The energy E(t) has been reduced by nearly two
orders of magnitude (a reduction of 96.81 % in the mean perturbation energy),
while the root-mean-square (r.m.s.) value of the friction-sensor signal has been
lowered by ∼88.01 %.

7. Summary and conclusions

A dynamic observer recovering full-state information from single wall shear-stress
measurements has been designed that relies on a POD basis (from measured
snapshots) and system identification techniques. For noise-amplifier flows,
it successfully reproduces the perturbation dynamics (velocity fields) throughout the
full sampling domain and furnishes information about the flow that can subsequently
be used by itself, for flow diagnostics or, in a second step, for LQR-control design.

Within the limits of linear perturbation dynamics, the design process for the
dynamic observer extracts the system matrix from a sequence of snapshots; this
system matrix describes a globally stable flow configuration that is sustained by
selectively amplified random perturbations from the noise environment. The proposed
method thus successfully separates the intrinsic stable perturbation dynamics from the
external noise excitation, which previously could only be quantified in its entirety.
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FIGURE 16. (Colour online) Results of the LQR-control design based on the dynamic
observer. (a) Temporal evolution of the perturbation energy E(t) for the uncontrolled
simulation (grey; red online) and the controlled simulation targeting the energy (black),
together with the control signal u(t) obtained in the case of the energy objective (see
supplementary movie 2). (b) Time signal of the friction sensor cp(t) placed at (xcp, ycp)=
(600, 0) for the uncontrolled (grey; red online) and controlled simulation targeting the
sensor signal cp (black), together with the sensor signal s, which is the same in all
simulations discussed in this figure.

A wide variety of flow analyses is possible once the system matrix has been
extracted. In the present case, we chose to design a closed-loop control scheme,
which, owing to the known system matrix, could now be accomplished using full-state
information control (LQR) algorithms. As a consequence, a significant reduction of
the perturbation energy or sensor signal r.m.s. values could be achieved. Even though
system identification could have been used to determine a direct input-to-output
control law targeting the variance of a downstream wall sensor (Hervé et al. 2012),
the retrieval of full-state information gives a far more physical and structural view of
dynamic processes.

The input data for the design procedure of the dynamic observer are readily
available in experiments, and an application of a dynamic observer in a suitable
experiment is currently planned and will be explored in a future effort. However,
difficulties not accounted for in the present paper are expected to arise in an
experimental situation: noise corrupting the PIV and friction measurements, the
presence of non-localized external forcing or the presence of nonlinearities are some
examples. These challenges will be addressed in a forthcoming study.
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Appendix A. Subspace identification algorithms
Subspace identification algorithms consider the state-space formulation of a

stochastic linear system. Such a system can be written in the process form

x(n+ 1)=Ax(n)+Bu(n)+w(n), (A 1a)
y(n)= Cx(n)+Du(n)+ v(n), (A 1b)

where y(n) ∈ Rny, x(n) ∈ Rn, u(n) ∈ Rnu, w(n) ∈ Rn, v(n) ∈ Rny are the system
output, state, input, state noise and output measurement noise, respectively. The
matrices A, B, C and D are system matrices of appropriate dimensions. The noise
covariances of the system are defined as

E
{(

wj
vj

)(
wi
vi

)T
}
=
(
Q S
ST R

)
δij, (A 2)

where E{x} stands for the expected-value operator.
The general problem of subspace identification consists of obtaining the system

matrices A, B, C and D, as well as the covariance matrices Q, S and R, from
observing a set of input–output measurements.

A.1. Reformulation of the state-space system
The state-space system (A 1) can be rearranged into two equivalent formulations that
emphasize either prediction or estimation (Qin 2006). Considering either formulation,
the one-step linear equations can be written as a multi-step matrix-based expression
that will form the foundation of subspace system identification techniques.

Assuming that the system is observable, a Kalman filter can be designed to estimate
the state variable. We have

x̂(n+ 1)=Ax̂(n)+Bu(n)+L[y(n)− Cx̂(n)−Du(n)], (A 3)

which (omitting the ‘hats’) leads to the innovation form

x(n+ 1) = Ax(n)+Bu(n)+Le(n), (A 4a)
y(n) = Cx(n)+Du(n)+ e(n), (A 4b)

where L is the Kalman gain (which can be obtained from a Riccati equation) and
e(n)= y(n)− Cx̂(n)−Du(n) is the measurement error.

A third equivalent representation, the predictor form, can be written as

x(n+ 1) = Aex(n)+Bez(n), (A 5a)
y(n) = Cx(n)+Du(n)+ e(k), (A 5b)

where z(n) = [uT(n), yT(n)]T, Ae =A − LC and Be = [B − LD, L]. It should be
stressed again that the three model forms can represent the input and output data
(u(n), y(n)) exactly. We thus have the choice of using any of these models according
to convenience.

As a next step, the above one-step vector-based linear difference equations are recast
into multi-step matrix-based expressions. We first define an extended state sequence
X(n) = (x(n), x(n + 1), . . . , x(n + N − 1)), which contains N columns describing
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the state at N consecutive time steps. By iterating p times the predictor form (A 5), it
is straightforward to derive the extended equation

X(n)=LpZ p +Ap
eX(n− p), (A 6)

where

Lp =
(
Be, AeBe, . . . , Ap−1

e Be

)
, (A 7a)

Z p =




z(n− 1) z(n) · · · z(n+N − 2)
z(n− 2) z(n− 1) · · · z(n+N − 3)

...
...

. . .
...

z(n− p) z(n− p+ 1) · · · z(n− p+N − 1)


 . (A 7b)

Under the assumption that all eigenvalues of the estimator matrix Ae fall strictly
inside the unit circle and in the limit p→∞, the term Ap

e can be neglected. This
result can be proven valid even for finite p (Van Overschee & De Moor 1994, 1996).
Equation (A 6) can then be simplified to

X(n)=LpZ p. (A 8)

In addition, if a similar recursive iteration technique is applied to the innovation form
(A 4) we obtain

Y f =Of X(n)+Hf U f +G f E f , (A 9)

where the subscript f denotes the future horizon. Next, the input, output and
innovation data are arranged into Hankel matrices, denoted respectively by U f , Y f
and E f . The structure of these matrices is as follows:

U f =




u(n) u(n+ 1) · · · u(n+N − 1)
u(n+ 1) u(n+ 2) · · · u(n+N)

...
...

. . .
...

u(n+ f − 1) u(n+ f ) · · · u(n+ f +N − 2)


 , (A 10)

and similar for Y f and E f .
Furthermore, Of is the extended observability matrix, and Hf and G f are Toeplitz

matrices of the form

Of =




C
CA
...

CA f−1


 , (A 11a)

Hf =




D 0 · · · 0
CB D · · · 0
...

...
. . .

...

CA f−2B CA f−3B · · · D


 , (A 11b)

G f =




I 0 · · · 0
CL I · · · 0
...

...
. . .

...

CA f−2L CA f−3L · · · I


 . (A 11c)
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Combining (A 8) and (A 9) we obtain

Y f =HfpZ p +Hf U f +G f E f , (A 12)

where Hfp=OfLp is the product of the process observability matrix and the predictor
controllability matrix. Equation (A 12) plays an essential role in subspace identification
algorithms.

A.2. Extraction of the observability matrix Of

The goal of the subsequent steps is to recover the matrix HfpZ p, and then Of from
it. First, U f is eliminated from (A 12) by post-multiplying by the projection onto its
orthogonal complement P⊥Uf

= I − UT
f (U f UT

f )
−1U f . In addition, if we assume that

the innovation sequence e(n) is composed of a stationary white noise completely
uncorrelated with the input u(n), we have E fP⊥Uf

= E f , which yields

Y fP⊥Uf
=HfpZ pP⊥Uf

+G f E f . (A 13)

It is also known from Kalman filter theory that E f is uncorrelated with Z p.
Consequently, the noise term E f can be removed by multiplying (from the right)
(A 13) by Z T

p , which yields

Y fP⊥Uf
Z T

p =HfpZ pP⊥Uf
Z T

p (A 14)

and
HfpZ p = Y fP⊥Uf

Z T
p (P

⊥
Uf

Z T
p )
−1. (A 15)

Finally, from (A 8) we obtain that HfpZ p =Of X(n). Assuming that the input u(n)
is sufficiently rich in temporal behaviour to excite all the observable dynamics of the
system, matrix X(n) is ensured to be full row-ranked. In addition, Of has full column-
rank under the assumption of full observability. These properties suggest applying
a singular value decomposition (SVD): (i) to determine the order of the identified
system as the rank of Of X(n) and (ii) to isolate Of . Mathematically, this amounts
to

HfpZ p =
(
U 1 U 2

) (S1 0
0 S2

)(VT
1

VT
2

)
, (A 16)

where the diagonal matrix S has been partitioned so that S2 is negligible compared
to S1. The size of S1 then represents the order of the identified system. Moreover,
the extended observability matrix Of can be extracted according to

Of =U 1S
1
2
1 . (A 17)

A.3. Extraction of the system matrices
Based on Of , two different approaches may be adopted to extract the system matrices.
The first one, denoted as estimation focus, extracts only the system matrices A, B, C
and D from the data. On the other hand, if the noise covariances are needed, a more
complex algorithm, a simulation focus technique, is called for. In this article, we will
briefly introduce the first approach, while a detailed description of the second one can
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be found in Van Overschee & De Moor (1994, 1996) or Juillet, Schmid & Huerre
(2013).

The first step consists in extracting the matrices A and C from Of . This can be
accomplished rather easily by computing the matrix Of−1 as previously done with Of

and by recalling that, by definition, the two matrices are related by the equation
(
I 0
0 Of−1

)(
C
A

)
=Of , (A 18)

which can be solved by least-squares techniques. To determine the remaining matrices
B and D, one uses the fact that the problem is linear in these matrices; a simple
least-squares matching to the output data may be used to find the remaining matrices
(Van Overschee & De Moor 1996).
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