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Quasi-laminar stability and sensitivity analyses
for turbulent flows: Prediction of low-frequency
unsteadiness and passive control

Clément Mettot, Denis Sipp, and Hervé Bézard
ONERA The French Aerospace Lab, 8 rue des Vertugadins, 92190 Meudon, France

(Received 10 October 2013; accepted 10 April 2014; published online 28 April 2014)

This article presents a quasi-laminar stability approach to identify in high-Reynolds
number flows the dominant low-frequencies and to design passive control means to
shift these frequencies. The approach is based on a global linear stability analysis of
mean-flows, which correspond to the time-average of the unsteady flows. Contrary
to the previous work by Meliga et al. [“Sensitivity of 2-D turbulent flow past a D-
shaped cylinder using global stability,” Phys. Fluids 24, 061701 (2012)], we use the
linearized Navier-Stokes equations based solely on the molecular viscosity (leaving
aside any turbulence model and any eddy viscosity) to extract the least stable direct
and adjoint global modes of the flow. Then, we compute the frequency sensitivity
maps of these modes, so as to predict before hand where a small control cylinder
optimally shifts the frequency of the flow. In the case of the D-shaped cylinder
studied by Parezanović and Cadot [J. Fluid Mech. 693, 115 (2012)], we show that
the present approach well captures the frequency of the flow and recovers accurately
the frequency control maps obtained experimentally. The results are close to those
already obtained by Meliga et al., who used a more complex approach in which
turbulence models played a central role. The present approach is simpler and may
be applied to a broader range of flows since it is tractable as soon as mean-flows
— which can be obtained either numerically from simulations (Direct Numerical
Simulation (DNS), Large Eddy Simulation (LES), unsteady Reynolds-Averaged-
Navier-Stokes (RANS), steady RANS) or from experimental measurements (Particle
Image Velocimetry - PIV) — are available. We also discuss how the influence of the
control cylinder on the mean-flow may be more accurately predicted by determining
an eddy-viscosity from numerical simulations or experimental measurements. From
a technical point of view, we finally show how an existing compressible numerical
simulation code may be used in a black-box manner to extract the global modes and
sensitivity maps. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4872225]

I. INTRODUCTION

Turbulent flows are frequently encountered in applications and may exhibit strong low frequency
unsteadiness. The oscillating behavior of the flow may lead to undesirable features such as structural
vibrations or load fluctuations. For such applications, control methods may aim at shifting the
associated frequency so as to prevent structural resonance for example. These methods generally
require the understanding of the inherent mechanisms responsible for flow unsteadiness. Following
the reviews by Collis et al.,1 Chomaz,2 Kim and Bewley,3 and Sipp et al.,4 the present article explores
the potential of flow control based on a linear description of the flow dynamics; the present article
focuses on fully developed turbulent flows presenting low-frequency unsteadiness.

Stability and sensitivity analyzes have first been applied in the case of transitional flows, which
are governed by the Navier-Stokes equations based on the molecular viscosity μ. An equilibrium
point of the governing equations — a base-flow — is first determined and the dynamics of small-
amplitude perturbations around such flows is then analyzed. The base-flow is unstable if there

1070-6631/2014/26(4)/045112/16/$30.00 C©2014 AIP Publishing LLC26, 045112-1
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exists an unstable eigen-mode of the linearized governing equations. Sensitivity of the eigenvalues
with respect to base-flow modifications have been introduced to analyze the sensitive regions of
the flow.5–8 Passive control (by means of a control cylinder, for example) may then be studied by
considering the sensitivity of the eigenvalue with respect to the introduction of a steady forcing. The
experimental control map obtained by Strykowski and Sreenivasan9 in the case of the cylinder flow
could precisely be recovered for a Reynolds number within 46–100.8

The extension of linear stability and sensitivity analyzes to turbulent flows is the purpose of this
paper. The theoretical basis for such an extension is given in Reynolds and Hussain,10 in which the
flow-field is represented as

w = w + w̃ + w′, (1)

where w is the time-averaged flow, w̃ is a low-frequency, large-scale, organized periodic wave, and w′

corresponds to turbulent motions. The organized-wave w̃(t) is extracted thanks to w̃(t) = 〈w〉(t) − w,
where 〈w〉(t) is a phase-average operator based on the fundamental period T of the low-frequency

motions: 〈w〉(t) = limn→∞
∑n−1

i=0 w(t+iT )
n . The time-averaged flow w is governed by steady Navier-

Stokes equations driven by Reynolds stresses stemming both from the organized wave ũi ũ j and
from the turbulent motions u′

i u
′
j (Eq. (2.5) in Reynolds and Hussain10). Meanwhile, the dynamics

of a (small amplitude) organized wave w̃ is governed by Navier-Stokes equations linearized around
w, with an extra driving-term representing the oscillation of the Reynolds stresses ũ′

i u
′
j induced

by the passage of the organized wave w̃ (Eq. (2.6) in Reynolds and Hussain10). Note that without
further assumption, these two equations are coupled (the time-averaged flow and the organized
wave appear in both equations) and may not be solved separately. In the literature, there actually
exist two types of stability analyzes for turbulent flows, depending on the type of time-averaged
flow that is considered. The base-flow approach is concerned with stability of time-averaged flows
w solely driven by Reynolds stresses stemming from the turbulent motions u′

i u
′
j . This means that

the corresponding flow-field only exhibits unsteadiness characterized by high-frequency, fine-scale
turbulence w′, and no low-frequency, large-scale organized waves w̃. In such a case, the time-
averaged flow will be termed base-flow in the following. The equation governing this base-flow is
then decoupled from the organized wave equation and the stability of the base-flow can therefore
be assessed by analyzing the dynamics of small-amplitude organized waves superimposed on the
base-flow. Particular attention will be paid to the amplification mechanisms. For example, if the
base-flow is stable, then the phase-averaged flow 〈w〉 will converge to the base-flow w; if not, an
organized wave w̃ will grow and the phase-averaged flow 〈w〉 moves away from the base-flow
w. The mean-flow approach is concerned with the stability of time-averaged flows w driven by
stresses arising both from organized waves ũi ũ j and from turbulent motions u′

i u
′
j . In this case, the

time-averaged flow will be called a mean-flow in the following. As mentioned above, the equations
governing the mean-flow and the organized wave are coupled in such cases: the results of the stability
analysis need therefore to be interpreted in a particular way; it turns out (see below) that only the
frequency of a nearly marginal eigen-mode exhibits physical insight and that its frequency usually
matches the frequency of the organized wave in the true flow. We will now give some more details
on the base-flow and mean-flow approaches.

A. Base-flow approach

To proceed with the base-flow approach, it is necessary to consider a turbulence model. In
the following, the Reynolds-Averaged-Navier-Stokes equations closed with such a model will be
termed RANS equations. These allow to obtain closed equations for both the base-flow w and the
organized wave w̃. For example, in the case of homogeneous incompressible equations, an eddy
viscosity model based on the kinetic energy ρ〈k〉 = ρ〈u′

i u
′
i 〉/2 and on the turbulent dissipation-rate

ρ〈ε〉 = μ〈∂ j u′
i∂ j u′

i 〉 yields the following phase-averaged Reynolds stress tensor:

ρ〈u′
i u

′
j 〉 = 2

3
ρ〈k〉δi j − 2

ρCμ〈k〉2

〈ε〉 〈Si j 〉. (2)
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Here, Cμ = 0.09, Sij = (∂ iuj + ∂ jui)/2 is the symmetric velocity gradient tensor and δij is the
Kronecker symbol. Note that we used the Einstein-summation convention in the definitions of the
kinetic energy and turbulent dissipation. For small-amplitude organized waves, Eq. (2) yields at the
leading and at the next order

ρu′
i u

′
j = 2

3
ρkδi j − 2μt Si j , (3)

ρũ′
i u

′
j = 2

3
ρk̃δi j − 2μt S̃i j − 2μ̃t Si j , (4)

with μt = ρCμk
2

ε
and μ̃t = 2ρCμkk̃

ε
− ρCμk

2
ε̃

ε2 . The equation governing the phase-averaged turbulent
kinetic energy 〈k〉 (resp. the phase-averaged turbulent dissipation 〈ε〉) then yields a nonlinear equation
for k (resp. ε) and a linear-equation for k̃ (resp. ε̃) if small-amplitude organized waves are considered.
As a result, the base-flow corresponds to a steady solution of the RANS equations while the organized
wave is governed by the unsteady linearized RANS equations. Such a study has been led in the case
of transonic buffet over an airfoil by Crouch, Garbaruk, and Magidov11 and on a transonic cavity flow
by Mettot, Renac, and Sipp.12 The amplification rate of the eigen-vector is a meaning-full quantity,
that may be used as an objective to suppress organized waves in open-loop control strategies.12

On the other hand, the frequency of the eigen-mode only matches the true low-frequency of the
organized wave in the vicinity of the bifurcation threshold, where the amplification rate is nearly
zero. For super-critical parameters, i.e., when the amplification rate of the global mode is of order 1,
one has to take into account the frequency shift due to nonlinear interactions to accurately predict the
true low-frequency of the organized wave. This frequency shift may be evaluated by computing the
mean-flow and second harmonic components of the flow, which are strong components of the flow-
field due to the finite amplitude of the organized wave.13 Prerequisites for the base-flow approach to
predict a relevant low-frequency of the flow are therefore:

� the existence of a turbulence model that captures the low-frequency large-scale flow dynamics;
limitations of the unsteady RANS strategy have been highlighted by Shur et al.14 and Spalart15

in the case of the circular cylinder, for example;
� the existence of a fixed point to linearize about the dynamics;
� to remain close to the bifurcation threshold so that nonlinearities maintain the organized wave

at small amplitudes (in order to keep the nonlinear frequency shift weak).

In some configurations, an approximation may be performed by choosing a frozen eddy-viscosity
μ̃t = 0, which means that neither the turbulence energy (̃k = 0) nor its dissipation rate (̃ε = 0) is
oscillated by the perturbation. In this case, the stability analysis is based on the linearized Navier-
Stokes equations with a viscosity equal to the sum of the molecular-viscosity μ and the eddy-viscosity
μt of the base-flow. In the case of cavity flow, Mettot, Renac, and Sipp12 showed that the eigenvalues
of the frozen eddy-viscosity operator are close to those of the full linearized operator, while Juan
and Jiménez16 and Cossu, Pujals, and Depardon17 showed that this simplified approach successfully
predicted strong transient growth mechanisms associated to very large scale perturbations in channel
and boundary layer flows. In the case of the buffeting flow, Crouch, Garbaruk, and Magidov11 showed
that a frozen eddy-viscosity approach was not capable of capturing the unstable global modes, all
the global modes remaining stable as the Mach number or the angle of attack was increased.

B. Mean-flow approach

If there is a difficulty with one of the prerequisites listed above, then the mean-flow approach may
be followed, since mean-flows may straightforwardly be obtained in any experiment or numerical
simulation by time-averaging. In the literature, stability analyzes around mean-flows were generally
based on the linearization of either the Euler or the Navier-Stokes equations (at high Reynolds
numbers, these linear operators are close). The question of the relevance of eigenvalues/eigenvectors
associated to such linearized operators is therefore raised. Reynolds and Hussain10 argued that
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such approaches implicitly assume that the turbulence affects the wave only indirectly, through
the modified time-averaged flow — we consider a mean-flow and not a base-flow — and not
directly, through its stresses — we assume ũ′

i u
′
j = 0. Past studies have shown that they were

actually efficient means to predict the frequency of organized waves in turbulent flows. Piot et al.,18

Suzuki and Colonius,19 and Gudmundsson and Colonius20 showed that either linearized Euler
or linearized Navier-Stokes equations around the mean-flow successfully exhibited the frequency
of a compressible subsonic or supersonic jet. Same conclusions were obtained by Mattingly and
Criminale,21 Triantafyllou, Triantafyllou, and Chryssostomidis,22 Pier,23 and Thiria and Wesfreid24

in the case of flat-plate, airfoil, and cylinder wakes, by Hammond and Redekopp25 in mixing
layers, and by Barkley26 with incompressible linearized Navier-Stokes equations (global approach)
in cylinder wakes. At much higher Reynolds numbers, Juniper27 showed that stability analyzes
based on Orr-Sommerfeld equations were successful in predicting the unsteady frequencies in a
single stream swirling fuel injector and in a lean premixed gas turbine injector with five swirling
streams. In these studies, only the frequency of the modes is relevant. For cylinder flow, for example,
Barkley26 showed, thanks to a global linear stability study, that the mean-flow exhibits a global mode
displaying the true-frequency of the flow but that the amplification rate was marginally stable for
all Reynolds numbers in the range Re = 46 − 180. There actually exists a theoretical explanation
to these observations, which is valid when the mean-flow is close to a base-flow. In this case,
Sipp and Lebedev13 showed that the mean-flow exhibits a nearly marginally stable eigen-mode
with a frequency that matches the frequency of the true flow, if the mean-flow harmonic is much
stronger than the second harmonic. These studies are reminiscent of early works by Malkus,28 who
conjectured that developed turbulent flows should be stable. Obviously, it seems that the mean-
flow approach is valid for a large variety of flows. A hypothesis could be that all flows that are
driven by Kelvin-Helmholtz like instabilities (jets, shear-layers, wakes) could be analyzed with this
approach. In the following, the mean-flow approach will be termed quasi-laminar approach, as we
use linearized Navier-Stokes equations (and not Euler equations).

C. Approach by Meliga, Pujals, and Serre and objective of the present paper

Meliga, Pujals, and Serre29 actually did a study which mixes the base-flow and the mean-flow
approaches. Considering the case of a two-dimensional (2D) D-shaped cylinder at a moderately
high Reynolds number of Re = 13 000 (a flow driven by Kelvin-Helmholtz like instabilities), they
have computed a mean-flow (as required by the mean-flow approach) by time-averaging unsteady
2D RANS simulations, showed that the full-linearized RANS equations (as required by the base-
flow approach) exhibit a nearly marginal global mode, whose frequency is close to the natural one
(as expected by the mean-flow approach). They then studied the effect on the flow frequency of
the introduction of a small control cylinder in the flow by using a sensitivity analysis and found
that the frequency control map was in close agreement with the experimental study of Parezanović
and Cadot.30 Their results suggest that a sensitivity analysis may be a powerful method to design
open-loop control strategies to shift the low-frequency of a turbulent flow. We believe, and it is the
purpose of this article, that a simpler approach, i.e., a pure mean-flow approach, which is still based
on the mean-flow, but with linearized Navier-Stokes equations based on the molecular viscosity,
could yield similar results. This would be an important step since:

� the mean-flow approach does not rely on a turbulence model; it is therefore much simpler
— linearization of turbulence equations is painful, error-prone, and induces lots of numerical
difficulties — more general — even unsteady flows that may not be reproduced by unsteady
2D RANS simulations may be analyzed — and may even be more accurate — because mean-
flows should be more precisely determined if more accurate methods than unsteady 2D RANS
simulations were used. In so far, application of the mean-flow approach should path the way
to applications of stability and sensitivity analyzes to more industrial configurations.

� It yields better physical insight to understand why a control cylinder at high Reynolds numbers
may be efficient to shift the low-frequency of a turbulent flow.
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To make this point, we propose to revisit the D-shaped cylinder configuration with this sim-
plified approach. An accurate mean-flow will be determined by time-averaging three-dimensional
(3D) numerical simulations. This mean-flow should be more accurate than the one considered in
Meliga, Pujals, and Serre29 since 3D unsteady simulations are closer to reality than 2D unsteady
simulations.14, 15, 31 The quality of the quasi-laminar predictions will be assessed by comparison of
the results with those of Parezanović and Cadot30 and Meliga, Pujals, and Serre.29 Note finally that
this article also aims at presenting a sound and robust numerical approach for the extraction of the
Jacobian and Hessian-related quantities within a discretize-then-linearize approach. The procedure
is solely based on discrete residual evaluations and allows the use of a standard numerical code in a
black-box manner. More details are given in Mettot, Renac, and Sipp.12 We believe that the present
numerical approach is well suited for the application of stability and sensitivity analyzes in industrial
applications.

The paper is organized as follows. We present in Sec. II the theoretical background to perform
the quasi-laminar stability and sensitivity analyzes. The numerical procedure used to perform these
analyzes is detailed in Sec. III and we will show how a numerical code can be used to extract eigen-
modes and sensitivities around mean-flows in the case of compressible Navier-Stokes equations. In
Sec. IV, the unsteady 3D dynamics of the D-shaped cylinder is presented and a two-dimensional
mean-flow is computed from the unsteady data set. The linear stability of the mean-flow with a
molecular viscosity μ is probed in Sec. V and it is shown that the unsteady dynamics of the flow is
caused by the existence of a slightly unstable mode. The sensitivity analysis is performed in Sec. VI,
and the impact of a small steady cylinder onto the unstable mode’s frequency is computed. We will
analyze how the eigenvalues and frequency control maps associated to the quasi-laminar approach
compare with those of Parezanović and Cadot30 and Meliga, Pujals, and Serre.29 Improvements for
the evaluation of the effect of the control cylinder on the mean-flow will be discussed in Sec. VII. A
brief summary and some concluding remarks will be given in Sec. VIII.

II. QUASI-LAMINAR STABILITY AND SENSITIVITY ANALYZES OF MEAN-FLOWS

We consider a turbulent flow in a fixed configuration. In this case, the ensemble average of the
flow-field is steady and we may define the mean-flow as

w(x) = lim
T →∞

1

T

∫ T

0
w(x, t) dt. (5)

In the case of a configuration which is invariant in some direction, the mean-flow w(x) does not
depend on the coordinate linked to this direction, so that the mean-flow may be obtained by averaging
both in time and along the invariant direction.

We now superimpose small amplitude organized waves w̃(x, t) onto the mean-flow w(x) and
consider the Navier-Stokes equations linearized around w with only the molecular dynamic viscosity
μ (with neither a turbulence model nor an eddy viscosity μt ). This approximation renders the whole
procedure very general, since the mean-flow w can easily be obtained from experimental or Direct
Numerical Simulation (DNS). Considering normal modes of the form w̃ = ŵeλt , where λ = σ + iω
describes the amplification rate σ and frequency ω of the perturbation, the linearized Navier-Stokes
equations reduce to an eigenvalue problem

Jŵ = λŵ. (6)

In this equation, J designates the linearized Navier-Stokes operator with viscosity μ. Experience
has shown that there generally exists an eigen-mode that displays weak amplification rate and a
frequency that is close to the dominant frequency of the flow in the experiment or the DNS. Hence,
the present stability analysis should allow the identification of the dominant frequencies of a flow
by investigating the mean-flow stability.

We will now describe how to determine sensitive regions that lead to strongest shift of the
frequency of the flow. For this, we derive the sensitivity gradient of the eigenvalue to mean-flow
modifications ∇wλ. Since the eigenvalue is a function of the Jacobian, which is itself a function of
the mean-flow, the eigenvalue is directly a function of the mean-flow. Therefore, a first-order Taylor
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expansion leads to the following definition of ∇wλ:

δλ = 〈∇wλ, δw
〉
, (7)

where 〈〉 is a given scalar-product. The adjoint J† of the Jacobian J is defined such that, for any
arbitrary vectors u and v we have 〈u, Jv〉 = 〈

J†u, v
〉
. The adjoint modes w̌ correspond to the solutions

of the adjoint eigen-problem

J†w̌ = λ∗w̌, (8)

where * designates the trans-conjugate of a complex quantity.
Finally, we can link the sensitivity gradient ∇wλ to the direct ŵ and adjoint w̌ modes with

∇wλ = H′†w̌, (9)

where H′ = ∂[J(w)ŵ]/∂w is a linear operator related to the Hessian of the governing Navier-Stokes
equations (the precise relation is given in the Appendix). The sensitivity of the frequency to mean-
flow modifications is then given by the imaginary part of the gradient: ∇wω = −�(∇wλ). This
vector-field highlights the sensitive regions of the flow, more precisely it indicates where and how
to change the mean-flow to easily shift the frequency of the flow.

The mean-flow modification due to the introduction of a steady forcing is governed by

R f (w + δw) = δf, (10)

where R f denotes the full RANS-equations closed with an appropriate turbulence-model. For small-
amplitude forcings δf, this equation may be linearized and the mean-flow modification obtained from:
δw ≈ −J−1

f δf, where J f is the Jacobian associated to R f . Here, we will evaluate two simplified
approaches, which avoid the introduction of a turbulence model. The first consists in assuming
that the eddy-viscosity is kept frozen and maintained equal to the eddy-viscosity associated to the
unperturbed mean-flow w as the external forcing δf is applied; this path will be followed in Sec. VII
where we will indicate how to compute an eddy-viscosity μt from an experiment or a numerical
simulation. The second approach, which is more approximate, consists, on top of that, to assume
that the eddy-viscosity is zero (μt = 0), i.e., the Jacobian J f is replaced in the evaluation of the
mean-flow modification by the laminar Jacobian J introduced in Eq. (6) and which is based solely
on the molecular viscosity μ

δw ≈ −J−1δf. (11)

Here, the symbol ≈ refers to the fact that this relation is a rough approximation. Introducing δw from
Eq. (11) into Eq. (7) then leads to the gradient of the eigenvalue with respect to the introduction of
a steady forcing ∇fλ

δλ = 〈∇fλ, δf
〉
, with ∇fλ = −J†−1∇wλ. (12)

The sensitivity of the frequency to the introduction of a steady forcing may be obtained from:
∇fω = −�(∇fλ). This vector field indicates where to introduce a forcing that acts on the mean-flow
to optimally modify the frequency of the flow.

III. NUMERICAL STRATEGY TO OBTAIN THE EIGENVALUE SPECTRUM
AND THE SENSITIVITIES

The eigen-problems and the sensitivity gradients introduced above may be computed either
within a continuous or a discrete framework. The continuous framework consists in deriving all
partial differential equations defining the various quantities introduced above and then spatially
discretize all equations. The partial differential equations defining the sensitivity gradients for the
incompressible Navier-Stokes equations can be found in Marquet, Sipp, and Jacquin8 and those
related to the compressible Navier-Stokes equations in Meliga, Sipp, and Chomaz.32 Various types
of spatial discretizations may be used, such as finite elements8 or finite differences.33 In this study,
we consider a discrete framework where the nonlinear Navier-Stokes equations are first discretized
with a finite-volume technique and then linearized as proposed in Mettot, Renac, and Sipp.12 Such
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a procedure is numerically sound and precise, since first, the discretization choices are done only
once, and second, the adjoint Jacobian is obtained up to machine precision since it is defined with
the trans-conjugate of the Jacobian matrix.12, 34 In particular, we will show how a numerical code
which time-marches the Navier-Stokes equations can be used in a black-box manner to extract the
direct modes, adjoint modes, and various sensitivities.

We now illustrate this discrete strategy with the compressible Navier-Stokes equations, which
after spatial discretization using finite volumes can be recast in the general following form:

dw
dt

= R (w) . (13)

Here, w ∈ RN represents the set of variables describing the flow at each spatial location of the
mesh, for example, (ρ, ρu, ρE) if the density, momentum, and density times total energy are used
to describe the flow. The operator R : 	∈ RN → RN is C2 over the domain 	 , and represents the
discretized residual. Note that we assume here that it includes all boundary conditions. The size N of
the vector w is equal to the product of the number of variable times the number of cells in the mesh.

A. Direct and adjoint eigenvalue problems

The Jacobian matrix J corresponds to the linearization of the discrete Navier-Stokes operator
R around the mean-flow w, and verifies for an arbitrary vector u

Ju = 1

ε

[
R

(
w + εu

) − R
(
w

)]
. (14)

The parameter ε needs to be chosen carefully, since ε needs to be small enough to accurately
approximate the Jacobian but not too small to avoid round-off errors.35, 36 We used double-precision
arithmetics and chose values of ε that depend on the local value of the variable that is linearized: εi =
εm(|wi | + 1) where wi is the ith component of the mean-flow vector and εm = 10−6 — we checked
that same results were obtained with εm = 10−7. Then, by choosing a series of well-defined vectors
u, we can compute all the Jacobian coefficients solely by residual evaluations, which are provided
by the numerical code. Moreover, the Jacobian structure is intrinsically linked to the discretization
stencil, which we chose to be compact, ensuring the sparsity of the matrix. The procedure is then
optimized using a set of vectors u that takes into account the stencil discretization of the residualR as
proposed by Mettot, Renac, and Sipp12 in order to compute all the matrix J coefficients with only a few
residual evaluations. Such numerical strategies also exist in common libraries such as PETSc,37 where
the explicit Jacobian is extracted from finite-difference evaluations with graph-coloring methods.
Different strategies may then be used to solve the eigenvalue problem34 in Eq. (6). Here, we focus on
a shift-invert strategy (open source library ARPACK38) combined with a sparse direct LU parallel
solver for matrices inversion (open source library MUMPS http://graal.ens-lyon.fr/MUMPS/ ). This
procedure is computationally intensive in terms of memory but exploits the sparsity of the matrices
and yields very fast and accurate results for two-dimensional problems (for three-dimensional
configurations, an iterative solver would be better suited, see Mettot, Renac, and Sipp12).

In the following, for the definition of the adjoint mode w̌, given in Eq. (8), we will use an inner
product related to the discretization of the L2-function norm

∀ (u,v) 〈u,v〉 =
∑
i, j

u∗
i 	i jv j = u∗Qv, (15)

where Q is a positive-definite symmetric matrix. In the case of finite-volumes, Q is a diagonal matrix
whose terms correspond to the volume of our mesh cells. The Jacobian being explicitly formed, we
have direct access to the trans-conjugate of the Jacobian J∗. We may then straightforwardly compute
the adjoint mode from w̌ = Q−1w̌∗, where w̌∗ is the eigenvector of J∗ associated to the conjugate
of λ

J∗w̌∗ = λ∗w̌∗ with w̌∗
∗ŵ = 1. (16)
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B. Sensitivity gradients

After some derivation (see the Appendix and for more details Mettot, Renac, and Sipp12), we
can show that the sensitivity gradient takes the form

∇wλ = Q−1H′∗Qw̌, (17)

where the matrix H′ is sparse and verifies for an arbitrary vector u

H′u = 1

ε1ε2
[R

(
w + ε1ŵ + ε2u

) − R
(
w + ε1ŵ

)
(18)

−R
(
w + ε2u

) + R
(
w

)
].

Here, ε1 and ε2 are small parameters. The coefficients of H′ may then be explicitly computed from
residual evaluations using the previous equation. Note that the optimal set of vectors used for the
Jacobian computation can also be used to compute the matrix H′.

The sensitivity of the eigenvalue with respect to the introduction of a steady forcing is finally
obtained by computing

∇fλ = −Q−1J∗−1Q∇wλ. (19)

IV. UNSTEADY DYNAMICS

A. Configuration

We consider a D-shaped cylinder of height D = 25 mm, length L = 2D and invariant in
the z-direction. The computational domain consists in a section of width W = 3D with periodic
boundary conditions in the z-direction. On the inlet boundary, we impose a subsonic inflow condition
characterized by the Mach number M = 0.2, the stagnation pressure p∞ = 11 667 Pa, and the
stagnation temperature T∞ = 292.5 K. The Reynolds number based on the cylinder height, the
free stream density ρ∞, velocity U∞, and viscosity μ∞ (computed with the Sutherland’s law) is
equal to Re = 13 000. All quantities are made dimensionless using the cylinder height D and the
free stream variables ρ∞, U∞, and T∞, and the Strouhal number is defined with S = fD/U∞ where
f is the dimensional frequency of the unsteadiness. This configuration mimics the studies led by
Parezanović and Cadot30 and Meliga, Pujals, and Serre.29

The mesh consists of two blocks discretized in the (x, y)-plane as depicted in Fig. 1(a), and
uniformly extended in the third direction 0 ≤ z ≤ 3 using a step 
z = 7.7 × 10−2. The computational
border is taken at 20D from the cylinder center, which also corresponds to the origin of the cartesian
coordinate system (x, y) (the cylinder base is located at x = 1.5). A tangential law for the evolution
of the discretization steps 
x and 
y is used, imposing the cells adjacent to the downstream edge

FIG. 1. (a) Mesh discretization near the cylinder. (b) Flow spectrum obtained with the signal extracted at a sensor located at
(x = 8, y = −0.5, z = 1.5).
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TABLE I. Block discretization properties.

Discretization points Number of cells

Block 1 357 × 85 × 40 30 345 × 40 = 1.2 × 106

Block 2 150 × 273 × 40 40 950 × 40 = 1.6 × 106

of the cylinder to be square of size 
x = 5 × 10−4 as shown in Fig. 1(a). The mesh is slightly more
refined in the separated region than in the reference study by Travin et al.39 on circular cylinder
flows. The blocks discretization properties are summarized in Table I and lead to a total number of
cells of N 3D

m = 2.85 × 106 for the unsteady 3D simulations and N 2D
m = 71 300 for the 2D stability

and sensitivity analyzes. Non-reflecting conditions are imposed on the outer parts of the domain,
while a no-slip adiabatic condition is imposed on the cylinder surface.

B. 3D unsteady simulation

Rather than resolving all scales of the flow (as done in a DNS study), we use 3D unsteady
RANS simulations to analyze the low-frequency dynamics of the flow. The small-scale turbulence
is modeled using the SAS approach proposed by Menter and Egorov,40 which includes an additional
source term compared to the original k − ω SST model of Menter.41 The effect of this source term
is to reduce the eddy viscosity μt in areas where fluctuations are resolved, allowing the structures to
stay alive and grow. Hence, this model differs from the classical turbulence models in the sense that
it allows the resolution of a larger band of wavelength in the Kolmogorov spectrum. Note that the
additional source term of the k − ω model has been slightly modified by imposing an upper-bound to
the Karman length (SAS-αL model42). Benyoucef42 have shown that the SAS-αL model accurately
reproduces the unsteady features of the 3D wake behind a circular cylinder, which is a configuration
close to our D-shaped one. Note however, that the focus of this article is not the SAS-αL model.
We could have used any numerical (DNS, Large Eddy Simulation (LES), etc.) which provides an
accurate mean-flow and a relevant low-frequency dynamics.

In the following, we use the same numerical code as Benyoucef,42 the elsA software43 developed
at ONERA. It is a finite volume based code, the convective fluxes associated with the mean field
and turbulent equations being discretized using the Roe scheme extended to the second order with a
MUSCL method.44 The Superbee limiter was applied to the mean field variables by default but it was
checked that it had no influence on the solution — no shocks are present in the flow. Also, Harten’s
correction is used45 and the Zheng limiter46 (which is designed to limit the values of ρω outside the
boundary layers) is activated. A central difference scheme is used for the turbulent diffusive fluxes.
The viscous flux of the mean field is calculated at the interface by averaging cell-centered values of
flux density, which are computed from cell-centered evaluation of gradients. The source terms are
discretized using estimates of gradients and variables at cell centers.

C. Flow frequency and mean-flow computation

The time integration is performed using a second-order Gear method, based on a backward
Euler scheme, with a global time step 
t = 4.3 × 10−4, which ensures that the CFL condition is
below 1 in nearly all the computational domain (its value reaches a maximum value of 10 only in the
first few cells close to the cylinder wall in the boundary layers, which is commonly accepted in such
computations). We have recorded the time-evolution of the cross-stream velocity component 6.5
diameters downstream of the cylinder base at (x = 8, y = −0.5, z = 1.5). The spectrum is obtained
by determining the PSD (Welch method) of this signal, see Fig. 1(b).

We observe a strong peak at a Strouhal number of S = 0.23 in close agreement with the one
measured experimentally, S = 0.22.30 We have depicted in Fig. 2 the Q-criterion contours of a
typical snapshot of the flow-field once the oscillatory regime is reached. We observe that, as in the
experiment, separation occurs on the lower and upper walls of the cylinder, and that the flow exhibits
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FIG. 2. Q-criterion contours of the flow field at an arbitrary time in the oscillating regime.

structures typical of a Von-Kármán street in the wake of the object. Yet, we can see that the flow is
fully three-dimensional, as expected from the SAS-αL model.

The mean-flow w(x, y) is then computed by averaging the unsteady snapshots both in time and
in the z-direction. Contours of the stream-wise velocity ρu are plotted in Fig. 3(a) together with
the streamlines of the mean-flow. We observe a recirculation bubble at the rear part of the cylinder
of length lr = 0.89, in relative agreement (8.5% error) with the experimental result lr = 0.82 of
Parezanović and Cadot30 (note that the mean-flow obtained from 2D Spalart-Allmaras simulations
exhibits a recirculation length lr = 0.56, that is 30% lower than the experimental value29).

V. DIRECT AND ADJOINT MODES

The linear stability analysis is performed as presented in Sec. III using a fully discrete formalism.
As explained in Sec. III, to extract the Jacobian and the matrix H′ of the governing equations R, we
need to select a spatial discretization which ensures that R is C2. In the following, we have therefore
switched off the Superbee limiter in the elsA code.

We here restrict the analysis to two-dimensional perturbations, which are the most unstable.
This can be understood from Squire’s theorem,47 which ensures that Kelvin-Helmholtz instabilities
are strongest for such perturbations. The size of the Jacobian matrix J is equal to the number of
cells N 2D

m = 71 300 times the number of variables, here 4 (ρ, ρu, ρv, ρE), i.e., 285 000 number of
degrees of freedom in the direct and adjoint eigenmodes. The Jacobian matrix J is extracted and its
spectrum is analyzed in Fig. 3(b). Similar to Meliga, Pujals, and Serre,29 we observe the existence of
a slightly unstable eigen-mode with a Strouhal number S = 0.26 close to the value computed from
the unsteady simulations (S = 0.23) and in good agreement with the experiment from Parezanović

FIG. 3. (a) Stream-wise velocity contours ρu and streamlines of the 2D mean-flow w(x, y). (b) Stability spectrum of the
mean-flow for 2D perturbations in the amplification rate-Strouhal number plane.
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FIG. 4. Spatial structure of the stream-wise momentum component ρu of (a) the direct unstable mode ŵ and (b) the adjoint
unstable mode w̌, using only a molecular viscosity for the definition of the Jacobian. Only the real part is depicted. The
vertical solid lines are visualization artefact due to the presence of 2 blocks.

and Cadot30 (S = 0.22) and the numerical results of Meliga, Pujals, and Serre29 (S = 0.23 for the
2D unsteady RANS simulations and S = 0.25 for the stability analysis with the linearized RANS
model). As a consequence, a laminar model yields a good first order prediction of the unstable mode
frequency. The spatial structure of the direct mode ŵ is depicted in Fig. 4(a), while the corresponding
adjoint mode structure w̌ is shown Fig. 4(b). Note that both modes include 4 components, one for
each conservative variable ρ, ρu, ρv, and ρE; here, we only depicted the stream-wise component.

We recover typical structures of Kelvin-Helmholtz instabilities with an opposite traveling direc-
tion between the direct and adjoint modes. This feature is due to the opposite sign in the convective
part of the direct and adjoint equations responsible for the non-normality of the Jacobian.48 Both
direct and adjoint mode structures compare well to those computed in Meliga, Pujals, and Serre.29

The following comments can be made regarding the spatial convergence and robustness of the
eigenvalues/eigenvectors. We note that the 2D mean-flow is smoother than any flow snapshot captured
by the 3D simulation (because the mean-flow is the result of an averaging process). Hence, the 2D
mesh (which is a slice of the 3D mesh) is sufficiently refined to well represent all features that appear
in the 3D snapshots and therefore in the 2D mean-flow (shear-layers, boundary-layers). Finally note
that, in stability analyzes, the convergence issues are most often seen on the amplification rate while
the frequency is usually a more robust quantity. Since the quasi-laminar stability and sensitivity
analyzes focus on this latter quantity, we are confident in the fact that the present results display
good convergence and robustness properties.

VI. PASSIVE CONTROL

A. Sensitivity gradients

The matrix H′ is then extracted and the sensitivity gradient to mean-flow perturbations ∇wλ

computed. We will focus only in the following on the sensitivity of the frequency ∇wω, since the
amplification rate is not physically relevant in the case of mean-flow stability analyzes.

We plotted in Fig. 5(a) the spatial structure of the frequency sensitivity ∇wω. The flow is mostly
sensitive near the cylinder surface and inside the recirculation bubble.

The frequency sensitivity to a steady force ∇fω is then computed and depicted in Fig. 5(b).
We observe that a steady force in the stream-wise direction will induce an increase of the mode
frequency near the cylinder surface (x < 1.5 in the figure), while a similar tendency can be observed
in most part of the recirculating area.

B. Steady control of the flow frequency

Similar to Meliga, Pujals, and Serre,29 we consider the impact of a control cylinder of diameter
d = 0.04D onto the flow frequency. The force exerted on the mean-flow by a cylinder of diameter d,
located at (xc, yc) where the velocity and density of the mean-flow are equal to u(xc, yc) and ρ(xc, yc)
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FIG. 5. Spatial structure of the stream-wise momentum component ρu of (a) the frequency sensitivity to mean-flow pertur-
bations ∇wω, and (b) the frequency sensitivity to a steady force ∇fω. The real part is plotted.

may be approximated by the following expression:8

f(xc,yc)(x, y) = −1

2
dCdρu

∥∥u
∥∥ δ(x − xc, y − yc), (20)

where δ(x − xc, y − yc) refers to the Kronecker symbol at (xc, yc), indicating that the force is applied
on an infinitely small spatial support. Note that for the numerical treatment, δ(x − xc, y − yc) is
approximated by a field equal to zero in all cells of the mesh, except at the cell located at (xc, yc),
where it is set to the inverse of the cell area. The drag coefficient was chosen to be equal to Cd = 1,
which is approximately valid for a circular cylinder flow characterized by Reynolds numbers ranging
from 102 to 105. In the experiment of Parezanović and Cadot,30 the Reynolds number based on the
free-stream velocity and the control cylinder radius is equal to 520 in the experiment, which justifies
the chosen value of Cd. The control maps δω(xc,yc) = 〈∇fω,f(xc,yc)

〉
, which indicate the variation of

the frequency of the unstable global mode due to the presence of the control cylinder at (xc, yc),
are shown in the upper part of Fig. 6(a) and can be compared to the previous results of Meliga,
Pujals, and Serre29 in the upper part of Fig. 6(b) and to those of the experiment by Parezanović and
Cadot30 in the lower parts of each figure. We can see that the results obtained with the quasi-laminar
stability/sensitivity approach yield results that are quantitatively similar to those of the experiment of
Parezanović and Cadot30 and to those obtained with a linearized RANS model closed with a Spalart-
Allmaras model (Fig. 6(b)).29 These results are very interesting from an industrial application point
of view. Indeed, they suggest that the impact of a steady device on the frequency spectrum of the
flow can be approximated using a simple laminar model in a linear stability analysis applied to the
mean-flow. We therefore avoid the inherent complexity of a turbulence model or the definition of an
eddy viscosity.

Note finally that we did not take into account the influence of the cylinder flow at the perturbation
level, as introduced by Hill,5 Marquet et al.,49 Meliga, Sipp, and Chomaz,32 Pralits, Brandt, and
Giannetti,33 and Meliga, Pujals, and Serre,29 since it was shown in these references that this term was
always at least one order of magnitude smaller than the term related to the base-flow perturbations.

VII. ACCURATE EVALUATION OF THE EFFECT OF THE CONTROL CYLINDER
ON THE MEAN-FLOW

We have estimated in Sec. VI the impact of a steady force on the mean-flow with Eq. (11),
which is based on a Jacobian J defined solely with the molecular viscosity. As discussed in Sec. II,
we know that this is a very gross approximation since the mean-flow is not governed with laminar
equations but with equations involving Reynolds stresses. Hence, to improve the results, we now
evaluate the mean-flow modification δw by a frozen-eddy viscosity approach: δw ≈ −J−1

μt
δf, where

Jμt
is the Jacobian based on an added eddy-viscosity. Instead of Eqs. (12) and (19), we are led to the

following expression of the eigenvalue sensitivity to the introduction of a steady forcing:

∇fλ = −J†−1
μt

∇wλ = −Q−1J∗−1
μt

Q∇wλ, (21)
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FIG. 6. Frequency variation δω(xc ,yc) of the flow due to the presence of a small control cylinder located at (xc, yc). The
results of the quasi-laminar stability/sensitivity analyzes are reported in upper part of Figure (a), while those obtained with
a linearized RANS model involving a Spalart-Allmaras turbulence model29 are given in the upper part of Figure (b). In the
upper part of Figure (c), we have plotted the results given by a quasi-laminar mixed approach, in which an eddy-viscosity
has been taken into account for the evaluation of the mean-flow modifications due to the introduction of a steady forcing (see
Sec. VIII). In all figures, the lower part of the plot depicts the experimental results from Parezanović and Cadot30 and which
were taken from Meliga, Pujals, and Serre.29 Reproduced with permission from P. Meliga, G. Pujals, and E. Serre, Phys.
Fluids 24, 061701 (2012). Copyright 2012 AIP Publishing LLC.

where ∇wλ remains unchanged and designates the sensitivity of the eigenvalue to mean-flow modi-
fications defined in Eqs. (9) and (17). This approach will be called quasi-laminar mixed approach in
the following.

This naturally raises the question of the determination of an eddy viscosity μt from numerical
results or experimental data. For a homogeneous incompressible flow with density ρ, a simple
approach to define the eddy viscosity μt consists in first computing the mean velocity ui , as well
as the Reynolds stress tensor u′

i u
′
j from the experimental or DNS data-sets. In the following, we

will use the standard Reynolds decomposition w = w + w′, in which the fluctuating component w′

incorporates both the organized wave and the turbulent motions. The production of turbulent kinetic
energy P can then be computed from

P = −ρu′
i u

′
j∂ j ui , (22)

while the Boussinesq relation reads

ρu′
i u

′
j = 2

3
ρkδi j − 2μt Si j . (23)
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045112-14 Mettot, Sipp, and Bézard Phys. Fluids 26, 045112 (2014)

Multiplying this relation by ∂ j ui and summing over all indices finally yields

μt = P

2Si j Si j
. (24)

We will not follow this general idea here, but rather take advantage of the fact that the mean-flow
has been determined in this study by time-averaging a SAS k − ω model. Winckelmans, Jeanmart,
and Carati50 showed that the Reynolds stress tensor (required for the evaluation of P) actually
corresponds to the sum of a resolved part — which yields a resolved part of the eddy-viscosity
shown in Eq. (24) — and a modeled part — which induces a modeled part of the eddy-viscosity,
given by the time-averaged turbulent variables μt = ρk/ω. We propose in a first approximation to
consider only the modeled part. We believe that this approximation is sufficient here since the region
where the flow is most sensitive — near the cylinder surface (x < 1.5) — also corresponds to a
region where the unsteadiness in the resolved part is reasonably weak. The frequency control map of
the quasi-laminar mixed approach — Eq. (21) — based on the modeled eddy-viscosity, is shown in
the upper part of Fig. 6(c). We can see that the plot is smoother and even closer to the experimental
result of Parezanović and Cadot30 (lower part of the figure).

VIII. CONCLUDING REMARKS

We performed in this study a linear stability analysis of a turbulent mean-flow, where a quasi-
laminar model was used to compute the eigen-modes and sensitivities of the flow. In particular,
we found that such a simple approach recovers quantitatively the frequency shifts observed in
the experimental work by Parezanović and Cadot.30 The present quasi-laminar approach is very
general and may be applied as soon as a mean-flow is available. Such a mean-flow may be obtained
either by numerical means (DNS, LES, unsteady RANS simulation, steady RANS simulations) or
experimental measurements.

With respect to the work of Meliga, Pujals, and Serre,29 the present results give new physical
insight for shifting the low-frequency of a turbulent flow: it is suggested that accurately capturing
the mean-flow is most important and that the low-frequency of a turbulent flow is best captured by
a quasi-laminar stability analysis. This indicates that the Spalart-Allmaras model used in Meliga,
Pujals, and Serre29 plays a negligible role in the prediction of the sensitive regions of the flow.
Having identified the key-enablers for this prediction, i.e., an accurate mean-flow and a quasi-laminar
sensitivity analysis, now opens the opportunity to tackle a wider range of flow configurations — all
turbulent flows driven by Kelvin-Helmholtz type instabilities — and a wider range of situations —
both numerical and experimental mean-flows may come as an input to the present analysis. We have
also shown how to construct an eddy-viscosity field from a series of velocity snapshots if the more
precise quasi-laminar mixed approach is required.

Note finally that the velocity field is sufficient to describe the flow physics in the case of
uniform density flows driven by incompressible Navier-Stokes equations, while also the density
and the temperature fields are required in the compressible case. With Particle Image Velocimtery
(PIV) measurements in an experiment, it is easy to extract velocity mean-flows. In the compressible
case, a first approximate of the density and temperature fields may be obtained by assuming that
the stagnation temperature and the stagnation pressure are constant in the whole domain (which is a
gross approximation, especially for the stagnation pressure in viscous layers).

APPENDIX: DERIVATION OF THE SENSITIVITY GRADIENT OF THE EIGENVALUE
TO MEAN-FLOW MODIFICATIONS

We detail here the derivation of the sensitivity gradient of the eigen-value to mean-flow modi-
fications ∇wλ in a discrete framework. Considering a small mean-flow variation δw, the eigenvalue
problem in Eq. (6) is perturbed and becomes to the first order

δJŵ + Jδŵ = δλŵ + λδŵ. (A1)
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We then multiply the previous equation with the trans-conjugate of the adjoint vector w̌∗
∗, defined in

Eq. (16)

δλ = w̌∗
∗δJŵ. (A2)

If δJ corresponds to a variation of the Jacobian induced by a variation of the mean-flow δw, then

δJŵ = ∂(Jŵ)

∂w

∣∣∣∣
w=w

δw, (A3)

where the global mode ŵ is assumed to be frozen. This expression may be written in a different
manner using the Hessian H of R

δJŵ = H(ŵ, δw). (A4)

Here, H (u, v) designates the vector z such that zi = ∑
j,k Hi jku j vk , with

Hi jk = ∂2Ri

∂w j∂wk

∣∣∣∣
w=w

. (A5)

Let us introduce the matrix H′ such that H′δw = H(ŵ, δw) for all δw. Equation (A4) may then
be rewritten as

δJŵ = H′δw. (A6)

Introducing Eq. (A6) into (A2), we have

δλ = w̌∗
∗H′δw = 〈Q−1H

′∗
Qw̌,δw〉. (A7)

The sensitivity gradient ∇wλ verifies by definition (7) so that by identification we obtain the following
expression of the gradient:

∇wλ = Q−1H′∗Qw̌. (A8)
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