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A transonic flow over the OAT15A supercritical profile is considered. The interaction between the shock wave and

the turbulent boundary layer is investigated through numerical simulation and global stability analysis for a wide

range of angles of attack. Numerical simulations are in good agreement with previous studies and manage to

reproduce the high-amplitude self-sustained shock oscillations known as shock buffet. In agreement with previous

results, it is found that the buffet phenomenon is driven by an unstable global mode of the linearized Navier–Stokes

equations. Analysis of the adjoint global mode reveals that the flow is most receptive to harmonic forcings on the

suction side of the profile, within the boundary layer upstream of the shock foot, in the recirculation bubble

downstream of the shock foot, and on the right characteristic that impinges the shock foot. An eigenvalue sensitivity

analysis shows that a steady streamwise force applied either in the boundary layer or in the recirculation region, a

steady cooling of the boundary layer, or a steady source of eddy viscosity (amechanical vortex generator for example)

all lead to stabilization of the buffetmode. Finally, pseudoresonance phenomena have been analyzed by performing a

singular-value decomposition of the global resolvent, which revealed that, besides the low-frequency shock

unsteadiness, the flow also undergoes medium-frequency unsteadiness, linked to Kelvin–Helmholtz-type instability.

Such results are reminiscent of the medium-frequency perturbations observed in more traditional shock wave/

boundary-layer interactions.

I. Introduction

S HOCK waves almost inevitably occur when dealing with
supersonic flows. The presence of shock waves entails the

existence of discontinuities and regions of high gradients, which are
the shocks themselves, and the shear layers resulting from the
interaction with the boundary layers developing over a surface [1].
The interaction between the shock and the boundary layer can have a
significant influence on aircraft or rocket performance and often
leads to undesirable effects [2]. Considering a flow over a wing, a
strong interaction between the shock and the boundary layers
may lead to catastrophic separation: the consequence can be the
occurrence of large-scale unsteadiness [3], such as high-amplitude
self-sustained shock movements, known as shock buffet. This
phenomenon presents an industrial interest, and it has therefore been
the subject of numerous studies in the past [4].
The buffet unsteadiness is a strong phenomenon that can be

observed in a two-dimensional transonic flow over a profile: it is
known [5,6] that, for a combination of Mach numbers and angles of
attack, the shock unsteadiness dominates the interaction. In the
particular two-dimensional case, the unsteadiness is characterized by
periodic low-frequency shock motions, which are maintained with
no external force [7]. However, the periodic motions occur at
timescales that are much longer than those of the wall-bounded
turbulence, so a numerical simulation performed solving Reynolds-

averaged Navier–Stokes (RANS) equations closed with a turbulence
model may be justified. Insofar, recent numerical studies have
revealed that unsteadyRANS simulations can successfully reproduce
the buffet unsteadiness using various turbulence models [8–11].
When comparing results obtained on the same configuration but
using different turbulence models, the main difference that can be
observed is in the shock-induced separated zone. The shock motions
have been found to be strongly dependent on this particular zone, and
for this reason, a different turbulence model can lead to a different
unsteady prediction. Despite some discrepancies with experimental
investigations on the critical angle of attack that determines the buffet
onset, numerical simulations provide a complete description of the
low-frequency shock motions.
However, besides the shock unsteadiness, a shock-wave/boundary-

layer interaction (SWBLI) may present medium-frequency unsteadi-
ness caused by the separated zone: it is well established [12] that the
interaction between a shockwave anda boundary layer is characterized
by low- and medium-frequency unsteadiness. RANS and unsteady
RANS (URANS) simulations fail to predict the medium-frequency
unsteadiness, probably linked to Kelvin–Helmholtz-type instabil-
ities, and a different approach is needed in order to fully characterize
the flow dynamics. As is commonly done in SWBLI [13], one can
introduce a dimensionless frequency (or Strouhal number) defined as

SL �
fL

Ue
(1)

where f is the frequency, L is a characteristic length of the order of
the separated zone, and Ue a characteristic velocity above the
recirculation bubble. For the buffeting over an airfoil, we chooseL as
the chord c of the airfoil andUe as the velocity in the freestreamU∞.
In other SWBLI configurations, it has been shown [12] that a typical
value of SL � 0.02 − 0.05 describes qualitatively well the shock
motions, whereas a value of SL � 0.1 − 0.5 is typical for medium-
frequency motions of the mixing layer.

Received 30 April 2014; revision received 31 August 2014; accepted for
publication 10 September 2014; published online 16 December 2014.
Copyright © 2014 by the American Institute of Aeronautics andAstronautics,
Inc. All rights reserved. Copies of this paper may be made for personal or
internal use, on condition that the copier pay the $10.00 per-copy fee to the
Copyright Clearance Center, Inc., 222RosewoodDrive, Danvers,MA01923;
include the code 1533-385X/14 and $10.00 in correspondence with the CCC.

*Research Associate, School of Engineering; fulvio.sartor@liverpool.ac
.uk.

†Research Engineer, 39 Quai Lucien Lefranc.
‡Research Scientist, Fundamental and Experimental Aerodynamics

Department, 8 rue des Vertugadins.

1980

AIAA JOURNAL
Vol. 53, No. 7, July 2015

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

A
 D

E
G

L
I 

ST
U

D
I 

D
I 

M
IL

A
N

O
 o

n 
Ju

ne
 1

8,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

35
88

 

http://dx.doi.org/10.2514/1.J053588


Linear-stability analysis has become a tool commonly used in fluid
dynamics, which can often give physical insight to understand flow
unsteadiness [14,15]. According to Huerre [16], occurrences of
unsteadiness can be classified into two main categories: the flow can
behave as an oscillator, in which case an absolute instability imposes
its own dynamics; or it can behave as a noise amplifier, in which
case the system filters and amplifies existing environmental noise,
due to convective instabilities. In the first case, a global-mode
decomposition has the ability to identify the mechanism responsible
for the self-sustained unsteadiness, indicating that the flow is driven
by an unstable global mode. In the second case, the unsteadiness is
usually characterized by a broadband spectrum, and the flow does not
exhibit any unstable global mode. The linearized Navier–Stokes
operator then acts as a linear filter of the external environment, and a
frequency-selection mechanism leads to a broadband spectrum: the
eigenvalue decomposition poorly describes the dynamics of the
phenomenon [14,17]. Flows without an unstable global mode can
nonetheless possess a weakly damped, stable global mode that may
lead to a slightly peaky spectrum when forced by random noise. In
such cases, a singular-value decomposition of the resolvent operator
highlights pseudoresonance phenomena, which are more suitable to
describe the dynamics of a globally stable flow.
In a transonic flow over a NACA0012 profile configuration,

Crouch et al. [18] performed a global stability analysis and found a
strong link between the onset of shock unsteadiness and the
appearance of an unstable global mode. It has been shown that, for a
given Mach number, a critical value of the angle of attack exists,
above which the shock starts to oscillate, in the same way that a
critical Reynolds number is responsible for vortex shedding in a
cylinder wake [19]. In this paper, we consider a similar approach, and
we extend thework by solving the associated adjoint problem and by
computing the sensitivity gradient of the unstable eigenvalue, in order
to find regions of the flow where a steady [20] or harmonic [21]

control should be placed to reduce the buffet phenomenon intensity.
We will finally also analyze the pseudoresonance phenomena in the
flow that generally also occur in SWBLI at medium frequencies: for
this, we perform a singular-value decomposition of the global
resolvent and highlight frequencies that yield the strongest response
with respect to external forcings.
The paper proceeds as follows. The OAT15A profile configura-

tion, which has been experimentally investigated by Jacquin et al.
[22], is presented in Sec. II. Then, a wide range of angles of attack
is numerically investigated by means of RANS and URANS
simulations (Sec. III), spanning from α � 2.5 deg to α � 7.0 deg.
In Sec. IV, we will show how direct global modes may describe the
main features of the flow, how the adjoint global modes may yield
valuable information to analyze the receptivity of the flow, and how a
sensitivity analysis may predict beforehandwhere an actuator should
be placed to suppress the buffet phenomenon. Then, in Sec. V, we
perform a singular-value decomposition of the global resolvent in
order to highlight the pseudoresonance phenomena that may occur at
medium frequencies. SectionVI concludes the paper with a summary
of the major findings.

II. Experimental Investigation

The experiments were conducted in the transonic S3Ch wind
tunnel of ONERA–The French Aerospace Lab, a continuous closed-
loop facility powered by a 3500 kW two-stage fan. The model is an
OAT15A supercritical aerofoil characterized by a c � 0.23 m chord
length, a relative thickness of 12.3%, and a 0.78 m span. The central
region of the wing is equipped with 68 static pressure taps and 36
unsteady Kulite transducers. In their investigation, Jacquin et al. [22]
considered several combinations of Mach number and angles of
attack, adjusted by means of adaptable walls. In the numerical study,
we will only consider M � 0.73 with variation of the incidence
α. The stagnation conditions were near ambient pressure and
temperature, and theReynolds number based on the chord lengthwas
around Rec � 3 × 106. The boundary-layer transition was triggered
on the model using a carborundum strip located at x∕c � 0.07 from
the leading edge.
Figure 1 shows the mean distribution of the wall pressure

coefficientCp around the profile for four angles of attack. The upper
part of the curves,which corresponds to the suction side of the profile,
is characterized by a pressure plateau before the compression caused
by the shock. Starting from α � 3.5 deg, this pressure jump is
smeared out along the profile, indicating an unsteady position of the
shock. In Fig. 1, one can also observe the effect of the carborundum
strips located at x∕c � 0.07 (on both pressure and suction sides of the
profile), which create a compression wave particularly visible in the
schlieren image of Fig. 2.
The buffet onset can also be noticed from the power spectral

density of pressure in Fig. 3: for α � 3.0 deg, the shock is steady,
with the signal energy remaining low and distributed among all
frequencies. However, a small bump can be detected between 40 and
100 Hz, with the amplitude of this bump increasing with the angle of

Fig. 1 Pressure coefficient distribution. Experimental investigation
from Jacquin et al. [22].

Fig. 2 Instantaneous schlieren images from Jacquin et al. [22].
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attack. For higher values of α, the bump becomes narrower and a
peak that corresponds to the buffet frequency (f � 69 Hz) is visible
from α � 3.25 deg. When increasing the angle of attack, the peak
frequency remains at f � 69 Hz, indicating that the buffet frequency
does not depend on the angle of attack. On the contrary, as also shown
byother studies [5,7], the buffet frequency is sensitive to the upstream
Mach number. Unfortunately, the experimental studies focused only
on the low-frequency unsteadiness; none of the spectra presented by
Jacquin et al. [22] yielded any information about a possible medium-
frequency bump in the premultiplied spectra, as usually observed in
other SWBLIs.
Figure 2 shows the instantaneous schlieren images for the two

extreme shock positions when the buffet phenomenon is observed:
here, at α � 3.5 deg. On both images, one can recognize the shock
wavewith the classical lambda pattern.When the shock is in themost
upstream position (Fig. 2a), the separation regions covers half of the
profile, and the recirculation bubble can be recognized by a bright
zone close to the profile under the mixing layer (the darker zone that
starts at the shock foot). When the shock is in the most downstream
position (Fig. 2b), the separation is smaller, and the shock is better
captured by the schlieren image because of less three-dimensional
effects.
Independent of the shock position, the compression wave caused

by the carborundum strip is always visible on the schlieren image,
starting from the profile at x∕c � 0.07. Slightly upstream, one can
recognize in both cases of Fig. 2a bright curved line: as will be shown

in the next sections, this is a left characteristic line,which has a central
role in the stability of the flow.

III. Base Flows and Unsteady Nonlinear Simulations

The numerical simulations were performed using RANS equa-
tions, solved with the elsA v3.3 code [23]. The Spalart–Allmaras
turbulence model [24] has been used to provide closure for the
averaged Reynolds stresses. The simulations mimic the wind-tunnel
testing conditions described in Sec. II, with boundary conditions
that match the experimental situation: the stagnation pressure and
temperature are 101,325 Pa and 300 K, whereas the Mach number is
M � 0.73. TheOAT15A aerofoil of chord c � 0.23 m is modeled as
an adiabatic no-slip wall, the boundary layer on the profile is fully
turbulent, and the Reynolds number was set to Rec � 3.2 × 106

based on the chord length. The angle of attack has been adjusted by
changing the velocity vector components in the far-field condition,
given by u � U∞ cos α and v � U∞ sin α, where u and v are the
horizontal and vertical velocity components, andU∞ � 240.93 m∕s
is the reference velocity modulus.

A. Spatial Discretization

We use a two-dimensional structured grid: a C-type mesh where
far-field conditions are imposed 44 chords away from the profile. The
reference grid is composed of 72,000 cells: 120 nodes in the direction
normal to the profile (approximately 40 inside the boundary layer),
90 nodes in the horizontal direction in thewake, and 210 nodes along
each side of the profile. The first mesh point in the boundary layer is
always below y� � 0.9 on the profile. Two additional grids have
been considered for amesh convergence study,wherewe changed the
grid refinement in the shock region. Considering the chord length c as
a characteristic dimension, the grid definition in the shock region is
Δx∕c � 0.003 for the reference mesh, and Δx∕c � 0.002 and
Δx∕c � 0.001 for the convergence study.
Figure 4 shows the whole domain used in the numerical

investigation: in Fig. 4a, one can see the whole domain, where only
one point out of eight is represented along the profile and one point
out of four is represented in the direction perpendicular to it for the
referencemesh. The shock region displays a constant grid refinement
in the streamwise direction: Fig. 4b presents a zoom of the shock
region, showing all the grid cells. The grid refinement influences the
shock thickness but not the shock location.
A second-order AUSM� �P� upwind scheme is used for the

mean convective fluxes [25]. Roe and Jameson schemes were not
considered due to poor shock treatment when investigating the
stability of the flow. A first-order Roe scheme with Harten’s

Fig. 3 Power spectrum of pressure at x∕c � 0.45. From Jacquin
et al. [22].

Fig. 4 Reference mesh used for the numerical simulation and for the stability analysis.
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correction is used for the turbulent convective fluxes, and a second-
order central difference scheme is used for the diffusive fluxes.

B. Governing Equations

After spatial discretization, the governing equations can be recast
under the following form:

dw

dt
� R�w� (2)

wherew ∈ RN represents the set of conservativevariables describing
the flow at each spatial location of the mesh in the domainΩ, andR:
Ω ∈ RN → RN is differentiable within Ω and represents the discrete
residuals. Steady solutions �w ∈ RN , referred to as base flows, are
defined by the equation

R� �w� � 0 (3)

In the examined case, the governing equations contain the Spalart–
Allmaras equation; thus, the base flow �w takes into account the
Reynolds stresses involved in the turbulence model.

C. Temporal Discretization

A first-order backward-Euler scheme with local time stepping
has been used to converge to the steady-state solutions, whereas
unsteady computations were performed using a second-order Gear’s
formulation with a physical time step fixed at Tst � 5 · 10−7 s. This
yields a maximum Courant–Friedrichs–Lewy (CFL) number of
about 13 in the boundary layer upstream of the shock, 26 in the wake
of the aerofoil, and less than one in most of the domain. At least eight

Newton subiterations are required at each time step to decrease the
norm of the residuals by a factor of 10.

D. Base Flows (RANS)

A set of 10 simulations is performed, imposing different angles of
attack, spanning from α � 2.5 deg up to α � 7.0 deg every
Δα � 0.25 deg. The maximal Mach numbers (occurring before the
shock) associated to the lower and upper values of α correspond to
M � 1.35 andM � 1.50.
Using a local time step with a CFL condition of 10, all

computations converge to steady solutions, characterized by explicit
residuals that have decreased by at least eight orders of magnitude.
Figures 5 and 6 present the horizontal velocity field u and boundary-
layer profiles at different chordwise locations for the particular case
of α � 3.5 deg, which corresponds to the buffet-onset condition
(see next).
In Fig. 5, one can notice that the separation region starts at the

shock foot and that the recirculation bubble modifies the shape of the
shock into a lambda pattern. The reattachment point is fixed to the end
of the profile, and thus does not vary with the angle of attack.
However, when the angle of attack is very high, the flow does not
reattach at all.
Figure 6 presents the wall normal velocity profile across the

boundary layer, where the dots indicate the mesh points. Those
profiles are obtained at three different streamwise locations,
corresponding to x∕c � 0.15, x∕c � 0.30, and x∕c � 0.45, in the
supersonic region before the separation occurring at x∕c � 0.50. In
all the cases, one can notice the viscous sublayer and the log region.
Regardless of the location, an asymptotic value of u� � 22 m∕s is
always reached outside the boundary layer. The boundary layer
becomes thicker as it develops along the profile and approaches the
shock wave.
Figure 7 shows the pressure coefficient distribution along the

profile for various angles of attack. For the smallest angle of
attack, the results compare reasonably well with the experimental
measurements of Jacquin et al. [22] presented in Sec. II, even if with
some difference in the shock position, probably due to the fact that, in
the numerical simulation, the trailing edge is sharp. For higher angles
of attack, the unsteadiness of the shock wave in the experiment
smears out the pressure distribution, which is not observed in the
steady base-flow solutions. Yet, in all cases, the distribution of the
wall pressure coefficient Cp around the profile is characterized by a
pressure plateau before the shock, as in Fig. 1. On the pressure side of
the profile, the Cp coefficient does not present a strong dependency
on the incidence.
The increase of the angle of attack yields a slight decrease of the

pressure coefficient on the suction side of the profile (Fig. 7 presents
-Cp), and it induces an upstream movement of the shock: a
configuration with a high angle of attack will be characterized by a
stronger shock that causes a larger recirculation bubble. Figure 8
presents a comparison between two base-flow solutions obtained
with the lower and higher angles of attack considered in this study.

Fig. 5 Horizontal velocity field, with RANS solution at α � 3.5 deg
(buffet-onset condition).

Fig. 6 Boundary-layer profiles, with RANS solution at α � 3.5 deg
(buffet-onset condition). Fig. 7 Pressure coefficient distribution for different angles of attack.
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The displacement of the separation point as α increases can also be
observed in Fig. 9, which presents the distribution of the skin-friction
coefficient for angles of attack up to α � 3.5 deg.
Two distinct separated regions are visible for α � 2.5 deg and

α � 2.75 deg: one at the shock foot and one at the trailing edge. For
α � 3.0 deg, the recirculation region extends from the shock foot
until the end of the profile. In this case, as will be shown next, the
unsteady RANS simulation still converges to the steady-state
solution. This behavior is not in agreement with the idea that buffet
onset occurs once the separation bubble extends from the shock foot
to the trailing edge, as proposed by Pearcey and Holder [26]. As
previously stated by Crouch et al. [18], the results do not show a clear
link between buffet onset and the qualitative features of the flow
separation.
The configurationswith angles of attack greater thanα � 4.5 deg,

as the one presented in Fig. 8b, are not commonly investigated
because of their limited industrial interest. However, as will be shown
in next sections, those configurations are interestingwhen considered
from a stability point of view.

E. Unsteady Nonlinear Simulations (URANS)

URANS computations are initialized with nonconverged RANS
solutions, for which the residual 2-norm is about 10−3. When the
angle of attack is small, URANS computations converge toward a
steady solution, and no unsteady phenomena is observed. Increasing
the angle of attack, URANS simulations indicate an unsteady
behavior as soon as α ≥ 3.5 deg: in which case, the shock wave
begins to oscillate back and forth with a periodic motion.
Figure 10a presents the time evolution of the lift coefficient for the

buffet-onset configuration: after a long transient, a periodic motion
sets in that is characterized by a frequency around 77 Hz. The mean
value of the lift coefficient exactly coincides with the value obtained
solving the steady RANS equations, and it is around Cz � 0.974.
This indicates that, as the perturbation develops, no mean flow
harmonic seems to be generated by the nonlinearities.

Figure 10b presents the same plot but for higher angles of attack:
the mean lift coefficients (the steady-state values again always
correspond to the mean values obtained on the saturated limit cycles)
decrease when increasing the angle of attack (from Cz � 0.970
when α � 4.0 deg to Cz � 0.958 for α � 4.5 deg), whereas the
amplitudes of the oscillations increase (note the scale changes
between Figs. 10a and 10b). When α � 4.0 deg, the buffet
phenomenon frequency is still at f � 77 Hz, but when considering
higher angles of attack, the frequency of the unsteady phenomenon
slightly increases up to 80 Hz.
It is seen that the transient is shortest when α � 4.00 deg: both for

α � 3.50 deg and α � 4.50 deg, the simulations need more time to
reach the periodic states. This result is counterintuitive and will be
explained next with the stability analysis. The numerical simulations
also indicate that, up to α � 6.0 deg, the flows remain unsteady: a
further increment of the angle of attack then yields simulations that
again converge to a steady solution. This phenomenon, known as
buffet offset, has been observed in other studies [5,27], but to the

Fig. 8 RANS solution at different angles of attack.

Fig. 9 Skin-friction coefficient distribution for different angles of
attack.

Fig. 10 Evolution of lift coefficient in URANS solutions for different
angles of attack.
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authors’ knowledge, it has never been documented for the OAT15A
profile.
Note that the critical angle for buffet onset obtained here

(α � 3.5 deg) exactly corresponds to the value found by Deck [10]
by means of zonal detached eddy simulation, and it roughly
corresponds to the threshold value α � 3.25 deg observed in the
experiment by Jacquin et al. [28]. However, this value slightly
disagrees with the URANS computations by Deck [10], performed
with the Spalart–Allmaras turbulence model, where the onset was
found to be at α � 4.0 deg. The discrepancies between these values
could be due to the laminar-turbulent transition of the boundary layer,
fixed by a carborundum strip in the experimental case or numerically
imposed in the case of Brunet [9] and Deck [10] at x∕c � 0.07.
However, as reported in other configurations [9,11,29], it is known
that numerical simulations need a higher angle of attack to reproduce
the buffet phenomenon.

IV. Analysis of Unstable Global Modes

We now analyze the stability of the base flows by performing an
eigenvalue decomposition of the global Jacobian matrix.

A. Global Modes

We consider the evolution of a small amplitude perturbation ϵw 0

superimposed on the base flow: w � �w� ϵw 0, with ϵ ≪ 1. The
equation governing the perturbation is given by the linearization to
the first order of the discretized Eq. (2):

dw 0

dt
� Jw 0 (4)

The Jacobian operator J ∈ RN×N corresponds to the linearization of
the discrete Navier–Stokes residual R around the base flow �w:

Jij �
∂Ri

∂wj

����
w� �w

(5)

whereRi designates the ith component of the residual, which is an a
priori function of all unknowns wj in the mesh. The J operator
involves spatial derivatives, and it is a sparse matrix. The proposed
formalism does not assume homogeneity of the base flow in a given
direction, and it corresponds to the biglobal linear-stability analysis,
as introduced by [15]. The analysis is two-dimensional (2-D), andwe
assume that the base flow and fluctuations are homogeneous in the
third direction. The stability of a base flow is then determined by
scrutinizing the spectrum of the matrix J, and particular solutions of
Eq. (4) are sought in the form of normal modes w 0 � ŵeλt. Then,
Eq. (4) may be recast into the following eigenvalue problem:

Jŵ � λŵ (6)

The real part of the eigenvalue λ is the growth rate σ. If at least one of
the eigenvalues λ exhibits a positive growth rate σ, the base flow �w is
unstable. We refer to unstable flows as oscillators, since the unstable

mode will naturally grow and impose its dynamics to the flow.
regardless of any external perturbations. Noise amplifiers refer to
globally stable flows, in which case an external forcing term is
required to maintain unsteadiness.

B. Numerical Strategy

To compute the linearized operator, we follow a strategy based on a
finite difference method to obtain Ju, where u is an arbitrary vector.
More precisely, we evaluate the Jacobian matrix by repeated
evaluations of the residual function R. The code used to perform a
computational fluid dynamics simulationmay then be used in a black
box manner: assuming that the code generates a valid discrete
residual R�u�, one may obtain Ju with the following first-order
approximation:

Ju � 1

ϵ
�R� �w� ϵu� −R� �w�� (7)

where ε is a small constant. By choosing a series of well-defined
vectors u, we can compute all the Jacobian coefficients involved in
Eq. (5) solely by residual evaluations, which are provided by the
numerical code. Moreover, the Jacobian structure is intrinsically
linked to the discretization stencil, which we chose to be compact,
ensuring the sparsity of the matrix. The procedure is then optimized
using a set of vectorsu that take into account the stencil discretization
of the residualR in order to compute all thematrix J coefficients with
only a few residual evaluations. Note that the shock smoothing
proposed by Crouch et al. [30] was not required here, since the
linearized equations were obtained by a “discretize-then-linearize”
approach rather than a “linearize-then-discretize” approach. More
details on the numerical strategy can be found in [31].
The eigenvalue problems in Eq. (6) are solved using Krylov

methods combined with a shift-invert strategy (open source library
ARPACK [32]), so as to focus on the least-damped eigenvalues.
Matrix inversions are carried out in the following with a direct
sparse lower–upper (LU) solver for distributed memory machines
(MUMPS§ or SuperLU-dist¶). The inverses are quickly obtained.
However, this method has very high requirements in terms of
memory: typically around 50 times the size of the matrix to be
inverted.

C. Results

The eigenvalue spectra for all angles of attack are presented in
Fig. 11. It is seen that nearly all eigenvalues are roughly independent
of the angle of attack, except one in the frequency range of the buffet
phenomenon: a dashed–dotted line in Fig. 11 indicates the trajectory
of this eigenvalue as the angle of attack increases. The flow is globally
stable for small angles of attack, up to α � 3.25 deg. Then, the least
stable eigenvalue crosses the real axis between α � 3.25 deg and
α � 3.5 deg: as observed by Crouch et al. [30], the onset of

Fig. 11 Eigenvalue spectra for various angles of attack andM � 0.73.

§Data available online at http://graal.ens-lyon.fr/MUMPS/ [retrieved
2014].

¶Data available online at http://acts.nersc.gov/superlu/ [retrieved 2014].
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instability is due to a Hopf bifurcation, since the frequency of the
mode is nonzero at criticality. A further increase in α results in a
strengthening of the instability growth rate, up toα � 4.0 deg. Then,
the growth rate begins to decrease and we can observe buffet offset
after α � 6.0 deg.
The physical frequency of the buffet phenomenon resulting from

the eigenvalue decomposition near buffet onset at α � 3.5 deg is
77 Hz, which is satisfyingly close to the experimental value of 69 Hz
found by Jacquin et al. [22] in the same configuration. It is worth
saying that a value of exactly 77 Hz was found in the experimental
investigation whenM � 0.74 instead ofM � 0.73, as in the present
study. After buffet onset, the frequency of the unstable mode remains
constant up to themost unstable configurationα � 4.0 deg, and then
it increases up to 80 Hz for α � 6.0 deg: the “return to stability”
phenomenon goes with a slight increase of the shock-buffet
frequency. The angles of attack that define the thresholds of buffet
onset and offset compare favorably with the numerical results
obtainedwith theURANS simulation presented in Sec. III. Similarly,
the frequency of the unstable modes accurately corresponds to those
observed on the saturated limit cycles presented in Sec. III.E. This is a
striking result, indicating that the mean flow harmonic and the
second-order harmonic generated by nonlinearities remain weak as
the amplitude of the unstable globalmode increases (see [33]). This is
reminiscent of the fact that the mean values of the lift coefficient on
the saturated limit cycles correspond to those of the base flows (see
Sec. III.E). Such results are not common: for example, in the case of
cylinder flow [34], the base-flow and limit-cycle frequencies
increasingly diverge as the Reynolds number departs from criticality.
When considering a frozen eddy viscosity approach [31,35], in

which case the eddy viscosity is not allowed to fluctuate and is forced
to remain constant and equal to the base-flow value, no unstable
global modes are found. This observation is in agreement with the
study of Crouch et al. [18], who documented the same behavior for
the buffet on a NACA airfoil. This also constitutes a striking result,
since the frozen eddy viscosity approach usually yields results that
are close to those obtained with the linearization of the full operator
(see [31] for the case of open-cavity flow).
When considering meshes characterized by finer grid refinement

(both the base-flow solution and the eigenvalue problem are solved
again), a small shift in the real part of the eigenvalue is observedwhile
the frequency of the mode remains constant: in Fig. 11, the square
open symbols show the position of the least-damped eigenvalue at

α � 3.5 deg, obtained considering different grids. Hence, both the
base-flow solutions and the eigenvalue spectra may be considered as
spatially converged.
Figure 12 presents the spatial structure of the direct unstable global

mode at α � 4.5 deg: the mode is most energetic within the shock
wave for all the conservative variables, but a nonnegligible con-
tribution is located in the mixing layer. In the horizontal momentum
component, the mode is also present in the recirculation bubble.
Interestingly, we note that the horizontal momentum component
displays values of opposite signs within the shock wave and the
separated zone: this indicates that, when the shock moves down-
stream (positive horizontal momentum perturbations), the bubble
contracts (negative horizontal values), and vice versa.
If we look at the turbulence component in Fig. 12, we can notice

that the buffet phenomenon is associated to large-scale fluctuations of
the eddy viscosity, which propagate in the wake. This is due to the
contraction and expansion of the recirculation bubble, caused by the
shock displacement.

D. Adjoint Problem

In addition to the direct eigenvalue problem introduced in Eq. (6),
we also consider the adjoint problem: we define the adjoint Jacobian
matrix J† such that, for any arbitrary vectors u and v, we have

hu; JviQ � hJ†u; viQ (8)

The scalar product h·; ·iQ is a discrete inner product inCN based on a
positive definite Hermitian matrix Q, such that

hu; vijQ � u�Qv (9)

where � denotes the conjugate transpose. We choose Q so that
hu; uijQ represents the square of the function 2-norm. With a finite
volume approach,Q is then a real diagonalmatrix for which the terms
Qi correspond to the volume Ωi of each cell i. The solutions of the
adjoint eigenproblem ~w are given by

J† ~w � λ� ~w (10)

where the quantity ~w is called the adjoint global mode, associated to
the direct global mode ŵ [14]. The convection operator present in the

Fig. 12 Unstable global mode for α � 4.5 deg andM � 0.73. Real parts of different components.
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governing equations yields a strongly nonnormal Jacobian J, so that
perturbations propagate downstream in the direct global mode and
upstream in the adjoint global mode [36]. The adjoint global
mode indicates the most sensitive region to manipulate the buffet
phenomenon:more precisely, it is the optimal region in spacewhere a
harmonic forcing has strongest effect on the dynamics of the unstable
global mode, in order to either suppress/strengthen the oscillation
amplitudes on the saturated limit cycle or modify its frequency [21].
The adjoint globalmode is depicted in Fig. 13 for the configuration

corresponding to α � 4.5 deg. The most sensitive regions are
localized mostly on the suction side of the profile, in the boundary
layer upstream of the shock foot and in the recirculation bubble. The
adjoint global mode in the supersonic flow region has a triangular
shape, for which the edges follow the boundary layer, the upwind part
of the sonic line, and an oblique line impinging on the profile exactly
where the boundary layer separates.
To investigate the nature of this line, we consider the theory of

characteristics [37]: by recasting the hyperbolic equations governing

the compressible flow in characteristic form, we obtain typical lines,
called the characteristic lines, along which information propagates in
the supersonic region. The angle of those lines with respect to the
base-flow velocity direction is given by

γ � 	tan−1
���������������

1

M2
l − 1

s
(11)

where Ml is the local Mach number. Figures 13a–13d show the
superposition of the adjoint global mode with the left and right
characteristic lines, associated to the negative and positive signs in
Eq. (11), respectively. In particular, the right characteristic lines run
from the top left to the bottom right of the figure, whereas the left
characteristic lines run from the bottom left to the top right.
The oblique part of the adjoint global mode follows exactly the

right characteristic line that impacts on the shock foot, where the
recirculation bubble begins. This feature can be interpreted as

Fig. 13 Unstable adjoint mode for α � 4.5 deg andM � 0.73. Real parts of different components. The sonic and characteristic lines in the supersonic
region are depicted with dashed–dotted and solid lines.

SARTOR, METTOT, AND SIPP 1987

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

A
 D

E
G

L
I 

ST
U

D
I 

D
I 

M
IL

A
N

O
 o

n 
Ju

ne
 1

8,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

35
88

 

http://arc.aiaa.org/action/showImage?doi=10.2514/1.J053588&iName=master.img-012.jpg&w=426&h=481


follows: the separation point has fundamental importance in the
dynamics of the flow, and a modification of its position can influence
the whole dynamics. The adjoint global mode indicates the zone
where the flow presents high receptivity to external forcing. As in a
supersonic flow, information travels along characteristic lines, and
only the supersonic region that is connected to the separation point
through a characteristic line can influence this separation point.
We can see that the adjoint global mode follows the left

characteristic lines only in the upwind part of the supersonic zone.
Yet, it is seen that its amplitude in this region is quite low. Thismay be
explained as follows. The left characteristic lines in this region reflect
on the sonic line and propagate along the right characteristic lines that
hit the separation point. The difference in amplitude suggests that
pressure disturbances that propagate along the left characteristic lines
from the profile to the sonic line have less impact on the buffet
phenomenon than the same disturbances localized directly on the
right characteristic lines and that travel toward and hit the separation
point. This may be understood from the fact that the reflection of the
disturbances on the sonic line involves some losses. Note, finally, that
these left characteristic lines can be seen in the schlieren image of
Fig. 2 by the bright curved line close to the compression wave
generated by the carborundum strip. This indicates that these specific
lines may have some importance in the physics of the buffet
phenomenon. Agostini et al. [38] have recently performed large eddy
simulation computations of an oblique shock at Mach numberM �
2.3 reflecting on a turbulent boundary layer. Using two-point
correlations, they showed how vortical structures in the mixing layer
generate pressure fluctuations that propagate along the characteristic
lines of the expansion fan. This clearly indicates how pressure
disturbances can travel along these characteristics.
In Fig. 13e, we can also observe the spatial structure of the adjoint

global mode far away from the profile: the adjoint mode is located in
the part of the incoming flow that will be convected into the boundary
layers around the profile, showing that disturbances upstream of the
aerofoil may have an influence on the buffeting phenomenon.
Finally, it is seen that excitations downstream of the aerofoil may also
(weakly) perturb the phenomenon due to the fact that acoustic waves
propagate upstream in the freestream subsonic flow.
Figure 14 shows the direct and adjoint global modes for the

configurations corresponding to buffet onset and offset. Even if the
base flow presents some differences in terms of shock position,
separation point location, and size of the recirculation bubble, the

location and spatial structure of the direct and adjoint global modes
remain roughly unchanged.
Following Sipp [21], the spatial structure of the adjoint global

mode indicates the optimal harmonic forcing structure to modify
and shift the natural nonlinear frequency of the flow (lock-on
phenomenon). Harmonic forcingsmay be based either on application
of forces, energy sources/sinks (heating/cooling), or eddy viscosity
sources/sinks (vortex generators). The preferred regions consist of
the boundary layer upstream of the shock foot, the recirculation
region, and the right characteristic line impinging the shock foot.
Concerning the spatial structure of the adjoint global modes,

Figs. 13 and 14 show that the adjoint variables are continuous
with zero gradient across the shock wave. This feature has been
demonstrated in quasi-one-dimensional Euler equations [39] using a
theoretical approach that relies on the derivation of a closed-form
solution of the adjoint equations. In the same paper, it is shown how a
change in sign in either of the hyperbolic characteristic lines is
responsible for a log�x� singularity at the sonic point. However, for
two-dimensional configurations, as is the case here, considering the
influence region of points in the neighborhood of the sonic line, it
may be shown that such singularities no longer exist [40].

E. Eigenvalue Sensitivity and Passive Control

Passive controlmay be studied by considering the sensitivity of the
unstable eigenvalue with respect to the introduction of steady source
terms in the Navier–Stokes equations. Such an analysis highlights
regions of the flow where the introduction of a local control device,
which acts as a steady forcing at the base flow level, yields the
strongest shift in either the amplification rate or the frequency of the
global mode [20,41,42].
The eigenvalue λ is a function of the Jacobian J, which is a function

of the base flow �w, which is itself a function of the steady forcing f .
The eigenvalue λ is therefore a function of the steady forcing f .
Therefore, a first-order Taylor expansion of this function leads to

δλ � h∇fλ; δfiQ (12)

where∇fλ is the gradient of the eigenvaluewith respect to the steady
forcing f .Mettot et al. [31] showed that, in a discrete framework,∇fλ
may be related to the direct mode ŵ and adjoint mode ~w through

∇fλ � −J†−1H† ~w (13)

Fig. 14 Direct and adjoint unstable global modes near buffet onset and offset. Real parts of density components.
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where H � ∂�J� �w�ŵ�∕∂ �w is a linear operator related to the Hessian
of the governing Navier–Stokes equations. The matrix H is sparse
and verifies for an arbitrary vector u:

Hu � 1

ϵ1ϵ2
�R� �w� ϵ1ŵ� ϵ2u� −R� �w� ϵ1ŵ�

−R� �w� ϵ2u� �R� �w�� (14)

Here, ϵ1 and ϵ2 are small parameters. All nonzero coefficients of H
may then be explicitly computed from residual evaluations using the
previous equation. Note that the optimal set of vectors used for the
Jacobian computation can also be used to compute the matrix H.
In the present work, we focus on control objectives that stabilize or

strengthen the instability. We therefore only analyze the real part of
the gradient fields, which are plotted in Fig. 15. If we focus on
the streamwisemomentum source shown in Fig. 15b, we can observe
that a streamwise force in the upstream boundary layer or in the
recirculation bubble will have a stabilizing effect on the unstable
mode. Action in the boundary layer can be interpreted as an
energizing effect of the boundary layer that becomes less prone to
separation, whereas action in the recirculation bubble directly shrinks
the separated zone. Considering Fig. 15c, the energy component
indicates that a steady cooling of the boundary layerwill also stabilize
the unstable globalmode. Finally, considering the turbulencevariable
in Fig. 15d, a negative value in the sensitivity map in the boundary
layer indicates that an increase of the eddy viscosity in the boundary
layer (caused for example by a mechanical vortex generator) will
have a stabilizing effect on the buffet mode. Again, this may be
interpreted by the fact that the size of the separated region will
decrease in this case.

V. Analysis of Pseudoresonances

The flowfield may exhibit strong responses for particular forcings
and frequencies due to the nonnormality of the linearized Navier–
Stokes operator [14,17,43]. We here analyze the receptivity of the
flow to external forcings, which are always present in the upstream
flow (turbulence, acoustic perturbations, etc.). More precisely, for
each frequency, we will extract optimal forcings that lead to the
largest responses: the optimal responses. Such an analysis indicates
the favored frequencies of the flow: in particular, an analysis of the
structure of the optimal forcings/responses may highlight the

respective role of the shock, the mixing layer, or the recirculation
bubble within an amplification process. A similar approach has
already been used to describe pseudoresonances in a channel-flow
configuration [44], turbulent pipe flow [45], Blasius boundary layer
[46], and jets [47].
The numerical simulations of Sec. III and the global-mode

decomposition of Sec. IV indicate that the flow presents self-
sustained low-frequency oscillations when the angle of attack is
betweenα � 3.5 deg andα � 6.0 deg. In those cases, the dynamics
of the flow is dominated by the unstable large-scale perturbation,
described by the unstable global mode. However, the flow may
additionally exhibit fluctuations that are driven by existing external
perturbations, such as noise or freestream turbulence. In the case of
angles of attack below buffet onset and above buffet offset,
pseudoresonances are the only cause of large-scale low-frequency
perturbations. Recall that high-frequency small-scale perturbations
may not be captured by an unsteady RANS approach, since such
perturbations are already accounted for by the turbulence model.

A. Optimal Gains/Forcings/Responses

We consider the response of the flow to small-amplitude external
momentum forcings ϵf 0:

dw

dt
� R�w� � ϵPf 0 (15)

where P is a prolongation matrix, which adds zero components to a
vector containing solely horizontal and vertical momentum forcings
so as to obtain a full vector with density–momentum–energy and
eddy viscosity components. Again, we look for the solutions under
the form w � �w� ϵw 0. At first order, we obtain

dw 0

dt
� Jw 0 � f 0 (16)

We consider, at a given real frequency ω, a forcing and a response
under the forms f 0 � f̂�x; y�eiωt andw 0 � ŵ�x; y�eiωt. Simplifying
and rearranging the equation for ŵ yields

ŵ � Rf̂ (17)

where R�ω� � �iωI − J�−1P is the global resolvent matrix.

Fig. 15 Sensitivity of the growth rate ∇fσ to a steady forcing, for α � 4.5 deg.
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The relation in Eq. (17) gives access, for a given frequency, to the
harmonic response ŵ of the system when forced with a harmonic
forcing of a given spatial form f̂ .We now introduce the gainG, which
is the function of the external forcing f̂ , which is defined for every
frequency as the ratio between the kinetic energy of the response and
the squared L2 function norm of the momentum forcing itself:

G�f̂� �
hŵ; ŵiQe
hf̂ ; f̂iQ

(18)

For the forcing, the scalar product is the same as the one used in
Eq. (9), except that only the momentum components are considered.
For the flow response, as we would like the numerator of gain
function (18) to be the kinetic energy

E �
Z
�u2 � v2� dx dy

of the response ŵ, we define a pseudoscalar product h·; ·iQe such that

hw;wijQe � w�Qew � E (19)

Among all the possible forcings, we are looking for the one that
causes the strongest response in the flow, and thus the forcing that
maximizes the gain function, which is called the optimal forcing.
Introducing Eq. (17) into Eq. (18), we obtain

Gmax�f̂� � sup
f̂

hRf̂ ; Rf̂iQe
hf̂ ; f̂iQ

� sup
f̂

hR†Rf̂ ; f̂iQ
hf̂ ; f̂iQ

(20)

whereR† is the adjoint operator such that hâ; Rb̂iQe � hR†â; b̂iQ for
all â and b̂. For each frequency ω, this optimization problem can be
solved by performing a singular-value decomposition of the
resolvent R or by determining the largest eigenvalue μ2, also called
the optimal gain, of the following eigenproblem:

R†Rf̂ � μ2f̂ (21)

The structure f̂ is called the optimal forcing, whereas the associated
optimal response ŵ can be obtained by solving Eq. (17).
The global resolvent is well defined as long as thematrix (iωI − J)

is not singular. This condition is fulfilled for a given frequency ω, if
there is no eigenvalue of the Jacobian matrix J displaying a real part
equal to zero and an imaginary part equal toω. If this is the case, then
the optimal gain tends to infinity, whereas the optimal forcing and
response tend to the marginal adjoint and direct global modes of
frequency ω.
From a numerical point of view, to compute the optimal gains/

forcings/responses, we again use Krylov methods (ARPACK in

regular mode instead of shift-invert mode) and direct LU solvers
(MUMPS) to evaluate the matrix inverses involved in R and R†.

B. Results

The optimal gains μ2, nondimensionalized by ρ2∞U
2
∞∕c2, are

presented in Fig. 16 as a function of frequency, for different angles of
attack. The overall shape of the gain function corresponds roughly to
a low-pass filter behavior: for all angles of attack, the very first part of
the gain function is a straight horizontal line, whereas a strong
decrease of the gains is observed at high frequencies of f > 10 kHz.
Such a behavior is reminiscent of the results by Plotkin [48] and
Touber and Sandham [49], who argued that the shock exhibits such a
behavior.
Considering the low-frequency dynamics of f ≤ 200 Hz, the

curves present strong peaks around α � 3.5 deg and α � 6.0 deg:
in those configurations, the buffet global mode is closest to the
imaginary axis and the optimal gain tends to infinity, as discussed
before. The highest gains correspond to the frequencies characteristic
of the buffet modes. We observe a slight increase of the frequency of
the optimal gain peak, in accordance with the increase of the global
mode’s frequency presented in Sec. IV.C.
Considering the optimal gains at medium frequencies (200 Hz <

f < 10 kHz) in Fig. 16, we can notice a rise of the gains as the angle
of attack increases. The eigenvalue spectra presented in Sec. IV did
not reveal any globalmode approachingmarginality in this frequency
range. Hence, the bumps in the optimal gain curves observed around
f ≈ 2–3 kHz correspond to pseudoresonance mechanisms.
In the following, we will only discuss the spatial structures of the

optimal forcings/responses for the medium-frequency peaks and not
for the low-frequency peaks, since for the latter peaks, the optimal
forcings/responses are very close to the adjoint-direct global modes
presented before. Figure 17 presents the optimal forcings for the
medium-frequency peak frequencies for four different configura-
tions. Those frequencies are f � 4000 Hz for α � 2.5 deg, f �
3000 Hz for α � 4.0 deg, f � 2000 Hz for α � 5.5 deg, and f �
1400 Hz for α � 7.0 deg. The optimal forcings are located near the
wall on the whole suction side surface for low angles of attack, and
upstream of the shock location for higher α, with a maximum value at
the shock foot. In the supersonic zone, the forcing does not exactly
follow the right characteristic lines that end at the separation point.
Also, it is seen that the forcings display rather small-scale structures,
in accordance with the fact that the considered frequencies are an
order of magnitude higher than in the case of the unstable global
modes. Note that, according to Sipp and Marquet [50], it could be
interesting to exploit the strong receptivity of the flow at these
medium frequencies to manipulate and stabilize the unstable global
mode at low frequency: one may then show that the best excitation
structure corresponds to the optimal forcing, which generates the
most energetic response.
The optimal responses associated to those medium-frequency

forcings are presented in Fig. 18. They indicate that Kelvin–
Helmholtz-type instabilities are at play, with two zones affected by

Fig. 16 Gain function for different angles of attack.
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these medium-frequency motions: the mixing layer caused by the
separated region and the mixing layer after the trailing edge.
Comparing the optimal responses in Fig. 18, one can notice that

the amplitudes grow as the angle of attack increases and that the
contribution of the separated zone is roughly the same as the
contribution due to the trailing edge: the peak in the gain function
indicates that medium-frequency instabilities are the most energetic
for the frequency that can trigger, at the same time, both the mixing-
layer unsteadiness at the shock foot and on the trailing edge.
The evolution of the gain function in Fig. 16 indicates that the

optimal Kelvin–Helmholtz instability frequency becomes smaller as
α is increased. This behavior may be due to the fact that this
unsteadiness depends on the mixing layer thickness: the higher the
angle of attack, the larger the separated zone, and thus the smaller
the frequency. However, the medium-frequency unsteadiness is
broadband, indicating that, in the flow, Kelvin–Helmholtz-type
instabilities are present in the range of 1–4 kHz, contrary to the buffet

unsteadiness, which is characterized by a very narrow peak in the
frequency spectrum.

VI. Conclusions

This paper focused on the unsteady dynamics of the transonic
interaction between a shock and a boundary layer over an OAT15A
profile. The experimental investigation performed by Jacquin et al.
[28] is considered as a reference experimental case and is used to
compare the results. Two-dimensional numerical simulations are
shown to reproduce the periodic motions of the shock wave, known
as the buffet phenomenon: the simulations satisfactorily predict the
unsteady behavior of the interaction, and both the frequency of the
shock motions as well as the critical angle of attack that characterize
the buffet onset are in fair agreement with the experimental
investigation. Buffet offset is also observed when the angle of attack

Fig. 18 Horizontal momentum component of optimal response for medium-frequency unsteadiness, for various angles of attack andM � 0.73.

Fig. 17 Horizontal force component of optimal forcings for medium-frequency unsteadiness, for various angles of attack andM � 0.73.
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exceeds α � 6.0 deg. The results recover and extend the numerical
results obtained in previous studies [9,10].
The steady-state solutions of the RANS equations (the base flows)

are then considered for a stability analysis. In agreement with [18], an
eigenvalue decomposition of the Jacobian matrix indicates that the
buffet phenomenon is linked to a global instability of the flow. The
angle of attack that defines the threshold of the unsteady shock
motions is in agreement with the numerical simulation, and the buffet
offset is accompanied by a small rise in the buffet frequency. The
direct global mode compares favorably with the stability analysis
performed by Crouch et al. [18], whereas the adjoint global mode, for
which the spatial distribution follows the characteristic lines in the
supersonic region of the flow, can be considered to analyze the
receptivity of the flow. Also, the sensitivity gradients showed that a
streamwise momentum force in the boundary layer or in the
recirculation region, a cooling of the flow, or an increase of the eddy
viscosity in the attached boundary layer manage to stabilize the
unstable eigenvalue. Such results are in agreement with experimental
investigations, which showed that vortex generators in the upstream
boundary layer were efficient means to suppress the buffeting
phenomenon.
The eigenvalue decomposition of the Jacobian matrix indicates

that the shock buffet is the only global instability present in the
interaction. However, convective instabilities can arisewhen the flow
is subject to external forcing, such as turbulence or acoustic
perturbations existing in the freestream. A singular-value decom-
position of the global resolvent is performed, and the gain function
shows that the interaction behaves roughly as a low-pass filter:
constant gains are obtained at very low frequencies, whereas a
strong decrease of the gains is observed for high frequencies
(f > 10 kHz). Concerning medium-frequency motions, the global-
resolvent analysis indicates that medium-scale unsteadiness can arise
from the separated zone. Themedium-frequencymotions are present,
both in the mixing-layer above the separated region as well as in the
mixing layer at the trailing edge of the profile. This unsteadiness is
shown to be broadband and not related to the presence of a stable
global mode that approaches marginality at medium frequencies.
Moreover, the intensity of the gains increases with the interaction
strength, whereas the peak frequency decreases as the angle of attack
is increased.
From a physical point of view, the buffeting phenomenon displays

some striking features that will be summed up here: the frequency of
the global modesmainly depends on theMach number and not on the
angle of attack. This shows that the size of the separation region is not
a key parameter of the phenomenon. Also, when time marching the
unsteady RANS equations, the mean lift coefficient remains equal to
the lift coefficient of the base flow: this indicates that the mean flow
harmonic generated by the buffeting mode is weak. Also, it has been
shown that the frequency of the flow on the saturated limit cycle
remains equal to the frequency of the linear global mode: this
indicates again that the mean flow harmonic is weak, but also that the
second harmonic is weak [33]. These observations are in stark
contrast with respect to more traditional flows undergoing a Hopf
bifurcation, such as the cylinder flow or the open-cavity flow [33].
Finally, note that, in the present case, a frozen eddy viscosity
approach does not manage to capture the unstable global modes: to
the authors’ knowledge, this is the sole example of instability where a
frozen eddy viscosity approach does not yield approximately the
same results as a full approach [31,35].

Acknowledgments

The authors would like to acknowledge the financial support of the
French Agence Nationale de la Recherche through the Décollemnts
Compressibles et Oscillations Auto-Induites program, project
number ANR-10-BLANC-914. We are also grateful to Sébastien
Deck, from the ONERA–The French Aerospace Lab Département
d’aérodynamique appliquée (Applied Aerodynamics Department)
department, for his helpful advices on the numerical simulations.

References

[1] Dolling,D. S., “FiftyYears of Shock-Wave/Boundary-Layer Interaction
Research: What Next?,” AIAA Journal, Vol. 39, No. 8, 2001, pp. 1517–
1531.
doi:10.2514/2.1476

[2] Délery, J., and Marvin, J. G., “Shock-Wave Boundary Layer
Interactions,” AGARDograph, AGARD-AD-280, 1986.

[3] Délery, J., “Flow Physics Involved in Shock Wave/Boundary Layer
Interaction Control,” Iutam Symposium on Mechanics of Passive and

Active Flow Control, Springer, New York, 2000, pp. 15–22.
[4] Pearcey, H. H., “A Method for the Prediction of the Onset of Buffeting

andOther SeparationEffects fromWindTunnel Tests onRigidModels,”
AGARD TR-223, 1958.

[5] McDevitt, J. B., and Okuno, A. F., “Static and Dynamic Pressure
Measurements on a NACA 0012 Airfoil in the Ames High Reynolds
Number Facility,” NASA TP-2485, 1985.

[6] Lee, B. H. K., “Oscillatory Shock Motion Caused by Transonic Shock
Boundary-Layer Interaction,” AIAA Journal, Vol. 28, No. 5, 1990,
pp. 942–944.
doi:10.2514/3.25144

[7] Lee, B. H. K., “Self-Sustained Shock Oscillations on Airfoils at
Transonic Speeds,” Progress in Aerospace Sciences, Vol. 37, No. 2,
2001, pp. 147–196.
doi:10.1016/S0376-0421(01)00003-3

[8] Barakos, G., and Drikakis, D., “Numerical Simulation of Transonic
Buffet Flows Using Various Turbulence Closures,” International

Journal of Heat and Fluid Flow, Vol. 21, No. 5, 2000, pp. 620–626.
doi:10.1016/S0142-727X(00)00053-9

[9] Brunet,V., “Computational StudyofBuffet PhenomenonwithUnsteady
RANS Equations,” AIAA Paper 2003-3679, 2003.

[10] Deck, S., “Numerical Simulation of Transonic Buffet over the OAT15A
Airfoil,” AIAA Journal, Vol. 43, No. 7, 2005, pp. 1556–1566.
doi:10.2514/1.9885

[11] Thiery, M., and Coustols, E., “Numerical Prediction of Shock Induced
Oscillations over a 2-DAirfoil: Influence of Turbulence Modelling and
Test Section Walls,” International Journal of Heat and Fluid Flow,
Vol. 27, No. 4, 2006, pp. 661–670.
doi:10.1016/j.ijheatfluidflow.2006.02.013

[12] Dussauge, J. P., Dupont, P., and Debiève, J. F., “Unsteadiness in Shock
Wave Boundary Layer Interactions with Separation,” Aerospace

Science and Technology, Vol. 10, No. 2, 2006, pp. 85–91.
doi:10.1016/j.ast.2005.09.006

[13] Erengil, M. E., and Dolling, D. S., “Unsteady Wave Structure Near
Separation in aMach 5 Compression Ramp Interaction,” AIAA Journal,

Vol. 29, No. 5, 1991, pp. 728–735.

doi:10.2514/3.10647
[14] Sipp, D., Marquet, O., Meliga, P., and Barbagallo, A., “Dynamics and

Control of Global Instabilities in Open-Flows: a Linearized Approach,”

Applied Mechanics Reviews, Vol. 63, No. 3, 2010, Paper 30801.

doi:10.1115/1.4001478
[15] Theofilis, V., “Global Linear Instability,” Annual Review of Fluid

Mechanics, Vol. 43, Jan. 2011, pp. 319–352.
doi:10.1146/annurev-fluid-122109-160705

[16] Batchelor, G., Moffatt, H., and Worster, M., Perspectives in Fluid

Dynamics, Cambridge Univ. Press, New York, 2000, pp. 159–229.
[17] Trefethen, L., Trefethen,A., Reddy, S., andDriscoll, T., “Hydrodynamic

Stability Without Eigenvalues,” Science, Vol. 261, No. 5121, 1993,

pp. 578–584.

doi:10.1126/science.261.5121.578
[18] Crouch, J. D., Garbaruk, A., Magidov, D., and Travin, A., “Origin of

Transonic Buffet on Aerofoils,” Journal of Fluid Mechanics, Vol. 628,
No. 1, 2009, pp. 357–369.
doi:10.1017/S0022112009006673

[19] Jackson, C. P., “AFinite-Element Study of theOnset ofVortex Shedding
in Flow Past Variously Shaped Bodies,” Journal of Fluid Mechanics,
Vol. 182, No. 1, 1987, pp. 23–45.
doi:10.1017/S0022112087002234

[20] Marquet,O., Sipp,D., and Jacquin, L., “SensitivityAnalysis andPassive
Control of Cylinder Flow,” Journal of Fluid Mechanics, Vol. 615,
Nov. 2008, p. 221.
doi:10.1017/S0022112008003662

[21] Sipp, D., “Open-Loop Control of Cavity Oscillations with Harmonic
Forcings,” Journal ofFluidMechanics, Vol. 708,Oct. 2012, pp. 439–468.
doi:10.1017/jfm.2012.329

[22] Jacquin, L., Molton, P., Deck, S., Maury, B., and Soulevant, D.,
“Experimental Study of Shock Oscillation over a Transonic Super-

critical Profile,” AIAA Journal, Vol. 47, No. 9, 2009, pp. 1985–1994.

doi:10.2514/1.30190

1992 SARTOR, METTOT, AND SIPP

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

A
 D

E
G

L
I 

ST
U

D
I 

D
I 

M
IL

A
N

O
 o

n 
Ju

ne
 1

8,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

35
88

 

http://dx.doi.org/10.2514/2.1476
http://dx.doi.org/10.2514/2.1476
http://dx.doi.org/10.2514/2.1476
http://dx.doi.org/10.2514/3.25144
http://dx.doi.org/10.2514/3.25144
http://dx.doi.org/10.2514/3.25144
http://dx.doi.org/10.1016/S0376-0421(01)00003-3
http://dx.doi.org/10.1016/S0376-0421(01)00003-3
http://dx.doi.org/10.1016/S0142-727X(00)00053-9
http://dx.doi.org/10.1016/S0142-727X(00)00053-9
http://dx.doi.org/10.2514/1.9885
http://dx.doi.org/10.2514/1.9885
http://dx.doi.org/10.2514/1.9885
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.02.013
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.02.013
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.02.013
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.02.013
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.02.013
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.02.013
http://dx.doi.org/10.1016/j.ast.2005.09.006
http://dx.doi.org/10.1016/j.ast.2005.09.006
http://dx.doi.org/10.1016/j.ast.2005.09.006
http://dx.doi.org/10.1016/j.ast.2005.09.006
http://dx.doi.org/10.1016/j.ast.2005.09.006
http://dx.doi.org/10.1016/j.ast.2005.09.006
http://dx.doi.org/10.2514/3.10647
http://dx.doi.org/10.2514/3.10647
http://dx.doi.org/10.2514/3.10647
http://dx.doi.org/10.1115/1.4001478
http://dx.doi.org/10.1115/1.4001478
http://dx.doi.org/10.1115/1.4001478
http://dx.doi.org/10.1146/annurev-fluid-122109-160705
http://dx.doi.org/10.1146/annurev-fluid-122109-160705
http://dx.doi.org/10.1126/science.261.5121.578
http://dx.doi.org/10.1126/science.261.5121.578
http://dx.doi.org/10.1126/science.261.5121.578
http://dx.doi.org/10.1126/science.261.5121.578
http://dx.doi.org/10.1126/science.261.5121.578
http://dx.doi.org/10.1017/S0022112009006673
http://dx.doi.org/10.1017/S0022112009006673
http://dx.doi.org/10.1017/S0022112087002234
http://dx.doi.org/10.1017/S0022112087002234
http://dx.doi.org/10.1017/S0022112008003662
http://dx.doi.org/10.1017/S0022112008003662
http://dx.doi.org/10.1017/jfm.2012.329
http://dx.doi.org/10.1017/jfm.2012.329
http://dx.doi.org/10.1017/jfm.2012.329
http://dx.doi.org/10.1017/jfm.2012.329
http://dx.doi.org/10.2514/1.30190
http://dx.doi.org/10.2514/1.30190
http://dx.doi.org/10.2514/1.30190


[23] Cambier, L., Heib, S., and Plot, S., “The ONERA elsA CFD Software:
Input from Research and Feedback from Industry,” Mechanics and

Industry, Vol. 14, No. 1, 2013, pp. 159–174.
doi:10.1051/meca/2013056

[24] Spalart, P. R., and Allmaras, S. R., “AOne-Equation Turbulence Model
for Aerodynamic Flows,” AIAA Paper 1992-0439, 1992.

[25] Mary, I., Sagaut, P., and Deville, M., “An Algorithm for Unsteady
Viscous Flows at All Speeds,” International Journal for Numerical

Methods in Fluids, Vol. 34, No. 5, 2000, pp. 371–401.
doi:10.1002/(ISSN)1097-0363

[26] Pearcey, H. H., and Holder, D. W., “Simple Methods for the Prediction
of Wing Buffeting Resulting from Bubble Type Separation,” Aero
Rept. 1024, National Physical Laboratory, 1962.

[27] Iovnovich, M., and Raveh, D. E., “Reynolds-Averaged Navier–Stokes
Study of the Shock-Buffet Instability Mechanism,” AIAA Journal,
Vol. 50, No. 4, 2012, pp. 880–890.
doi:10.2514/1.J051329

[28] Jacquin, L., Molton, P., Deck, S., Maury, B., and Soulevant, D., “An
Experimental Study of Shock Oscillation over a Transonic Supercritical
Profile,” AIAA Paper 2003-4902, 2005.

[29] Huang, J., Xiao, Z., Liu, J., and Fu, S., “Simulation of Shock Wave
Buffet and Its Suppression on an OAT15A Supercritical Airfoil by
IDDES,” Science China Physics, Mechanics and Astronomy, Vol. 55,
No. 2, 2012, pp. 260–271.
doi:10.1007/s11433-011-4601-9

[30] Crouch, J. D., Garbaruk, A., and Magidov, D., “Predicting the Onset
of Flow Unsteadiness Based on Global Instability,” Journal of

Computational Physics, Vol. 224, No. 2, 2007, pp. 924–940.
doi:10.1016/j.jcp.2006.10.035

[31] Mettot, C., Renac, F., and Sipp, D., “Computation of Eigenvalue
Sensitivity to Base Flow Modifications in a Discrete Framework:
Application toOpen-LoopControl,” Journal of Computational Physics,
Vol. 269, July 2014, pp. 234–258.
doi:10.1016/j.jcp.2014.03.022

[32] Lehoucq, R., Sorensen, D., and Yang, C., Arpack User’s Guide:

Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted

Arnoldi Methods, No. 6, SIAM, Philadelphia, 1998, pp. 1–78.
[33] Sipp, D., and Lebedev, A., “Global Stability of Base andMean Flows: A

General Approach and Its Applications to Cylinder and Open Cavity
Flows,” Journal of FluidMechanics, Vol. 593, Dec. 2007, pp. 333–358.
doi:10.1017/S0022112007008907

[34] Barkley, D., “Linear Analysis of the Cylinder Wake Mean Flow,” EPL
(Europhysics Letters), Vol. 75, No. 5, 2006, pp. 750–756.
doi:10.1209/epl/i2006-10168-7

[35] Mettot, C., Sipp, D., and Bézard, H., “Quasi-Laminar Stability and
Sensitivity Analyses for Turbulent Flows: Prediction of Low-Frequency
Unsteadiness and Passive Control,” Physics of Fluids, Vol. 26, No. 4,
2014, Paper 045112.
doi:10.1063/1.4872225

[36] Marquet, O., Lombardi, M., Chomaz, J., Sipp, D., and Jacquin, L.,
“Direct and Adjoint Global Modes of a Recirculation Bubble: Lift-up
and Convective Non-Normalities,” Journal of Fluid Mechanics,
Vol. 622, March 2009, pp. 1–21.
doi:10.1017/S0022112008004023

[37] Liepmann, H. H. W., Elements of Gas Dynamics, Courier Dover, New
York, 1957, pp. 284–304.

[38] Agostini, L., Larchevêque, L., Dupont, P., Debiève, J. F., andDussauge,
J. P., “Zones of Influence and ShockMotion in a Shock/Boundary-Layer
Interaction,” AIAA Journal, Vol. 50, No. 6, 2012, pp. 1377–1387.
doi:10.2514/1.J051516

[39] Giles, M. B., and Pierce, N. A., “Adjoint Equations in CFD: Duality,
Boundary Conditions and Solution Behaviour,” AIAA Paper 1997-
1850, 1997.

[40] Giles, M. B., and Pierce, N. A., “Analytic Adjoint Solutions for the
Quasi-One-Dimensional Euler Equations,” Journal of FluidMechanics,
Vol. 426, No. 2001, 2001, pp. 327–345.
doi:10.1017/S0022112000002366

[41] Hill, D. C., “ATheoretical Approach for Analyzing the Restabilization
of Wakes,” AIAA Paper 1992-0067, 1992.

[42] Bottaro, A., Corbett, P., and Luchini, P., “The Effect of Base Flow
Variation on Flow Stability,” Journal of Fluid Mechanics, Vol. 476,
Feb. 2003, pp. 293–302.
doi:10.1017/S002211200200318X

[43] Farrell, B. F., and Ioannou, P. J., “Generalized Stability Theory. Part I:
Autonomous Operators,” Journal of the Atmospheric Sciences, Vol. 53,
No. 14, 1996, pp. 2025–2040.
doi:10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2

[44] Jovanovic, M. R., and Bamieh, B., “Componentwise Energy
Amplification in Channel Flows,” Journal of Fluid Mechanics,
Vol. 534, July 2005, pp. 145–183.
doi:10.1017/S0022112005004295

[45] McKeon, B. J., and Sharma, A. S., “A Critical-Layer Framework for
Turbulent Pipe Flow,” Journal of Fluid Mechanics, Vol. 658, No. 1,
2010, pp. 336–382.
doi:10.1017/S002211201000176X

[46] Brandt, L., Sipp,D., Pralits, J. O., andMarquet,O., “Effect ofBase-Flow
Variation in Noise Amplifiers: The Flat-Plate Boundary Layer,” Journal
of Fluid Mechanics, Vol. 687, Nov. 2011, pp. 503–528.
doi:10.1017/jfm.2011.382

[47] Garnaud, X., Lesshafft, L., Schmid, P. J., and Huerre, P., “The Preferred
Mode of Incompressible Jets: Linear Frequency Response Analysis,”
Journal of Fluid Mechanics, Vol. 716, Feb. 2013, pp. 189–202.
doi:10.1017/jfm.2012.540

[48] Plotkin, K. J., “ShockWave Oscillation Driven by Turbulent Boundary-
Layer Fluctuations,” AIAA Journal, Vol. 13, No. 8, 1975, pp. 1036–
1040.
doi:10.2514/3.60501

[49] Touber, E., and Sandham, N. D., “Low-Order Stochastic Modelling of
Low-Frequency Motions in Reflected Shock-Wave/Boundary-Layer
Interactions,” Journal of Fluid Mechanics, Vol. 671, March 2011,
pp. 417–465.
doi:10.1017/S0022112010005811

[50] Sipp, D., and Marquet, O., “Characterization of Noise Amplifiers with
Global Singular Modes: The Case of the Leading-Edge Flat-Plate
Boundary Layer,” Theoretical and Computational Fluid Dynamics,
Vol. 27, No. 5, 2013, pp. 617–635.
doi:10.1007/s00162-012-0265-y

M. Choudhari
Associate Editor

SARTOR, METTOT, AND SIPP 1993

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

A
 D

E
G

L
I 

ST
U

D
I 

D
I 

M
IL

A
N

O
 o

n 
Ju

ne
 1

8,
 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

35
88

 

http://dx.doi.org/10.1051/meca/2013056
http://dx.doi.org/10.1051/meca/2013056
http://dx.doi.org/10.1002/(ISSN)1097-0363
http://dx.doi.org/10.1002/(ISSN)1097-0363
http://dx.doi.org/10.2514/1.J051329
http://dx.doi.org/10.2514/1.J051329
http://dx.doi.org/10.2514/1.J051329
http://dx.doi.org/10.1007/s11433-011-4601-9
http://dx.doi.org/10.1007/s11433-011-4601-9
http://dx.doi.org/10.1016/j.jcp.2006.10.035
http://dx.doi.org/10.1016/j.jcp.2006.10.035
http://dx.doi.org/10.1016/j.jcp.2006.10.035
http://dx.doi.org/10.1016/j.jcp.2006.10.035
http://dx.doi.org/10.1016/j.jcp.2006.10.035
http://dx.doi.org/10.1016/j.jcp.2006.10.035
http://dx.doi.org/10.1016/j.jcp.2014.03.022
http://dx.doi.org/10.1016/j.jcp.2014.03.022
http://dx.doi.org/10.1016/j.jcp.2014.03.022
http://dx.doi.org/10.1016/j.jcp.2014.03.022
http://dx.doi.org/10.1016/j.jcp.2014.03.022
http://dx.doi.org/10.1016/j.jcp.2014.03.022
http://dx.doi.org/10.1017/S0022112007008907
http://dx.doi.org/10.1017/S0022112007008907
http://dx.doi.org/10.1209/epl/i2006-10168-7
http://dx.doi.org/10.1209/epl/i2006-10168-7
http://dx.doi.org/10.1063/1.4872225
http://dx.doi.org/10.1063/1.4872225
http://dx.doi.org/10.1063/1.4872225
http://dx.doi.org/10.1017/S0022112008004023
http://dx.doi.org/10.1017/S0022112008004023
http://dx.doi.org/10.2514/1.J051516
http://dx.doi.org/10.2514/1.J051516
http://dx.doi.org/10.2514/1.J051516
http://dx.doi.org/10.1017/S0022112000002366
http://dx.doi.org/10.1017/S0022112000002366
http://dx.doi.org/10.1017/S002211200200318X
http://dx.doi.org/10.1017/S002211200200318X
http://dx.doi.org/10.1175/1520-0469(1996)053<2025:GSTPIAtpmkset 
http://dx.doi.org/10.1175/1520-0469(1996)053<2025:GSTPIAtpmkset 
http://dx.doi.org/10.1175/1520-0469(1996)053<2025:GSTPIAtpmkset 
http://dx.doi.org/10.1175/1520-0469(1996)053<2025:GSTPIAtpmkset 
http://dx.doi.org/10.1017/S002211201000176X
http://dx.doi.org/10.1017/S002211201000176X
http://dx.doi.org/10.1017/jfm.2011.382
http://dx.doi.org/10.1017/jfm.2011.382
http://dx.doi.org/10.1017/jfm.2011.382
http://dx.doi.org/10.1017/jfm.2011.382
http://dx.doi.org/10.1017/jfm.2012.540
http://dx.doi.org/10.1017/jfm.2012.540
http://dx.doi.org/10.1017/jfm.2012.540
http://dx.doi.org/10.1017/jfm.2012.540
http://dx.doi.org/10.2514/3.60501
http://dx.doi.org/10.2514/3.60501
http://dx.doi.org/10.2514/3.60501
http://dx.doi.org/10.1017/S0022112010005811
http://dx.doi.org/10.1017/S0022112010005811
http://dx.doi.org/10.1007/s00162-012-0265-y
http://dx.doi.org/10.1007/s00162-012-0265-y
http://arc.aiaa.org/action/showLinks?crossref=10.1016%2FS0376-0421%2801%2900003-3

