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A transonic interaction between a shock wave and a turbulent boundary layer is
experimentally and theoretically investigated. The configuration is a transonic channel
flow over a bump, where a shock wave causes the separation of the boundary
layer in the form of a recirculating bubble downstream of the shock foot. Different
experimental techniques allow for the identification of the main unsteadiness features.
As recognised in similar shock-wave/boundary-layer interactions, the flow field
exhibits two distinct characteristic frequencies, whose origins are still controversial: a
low-frequency motion which primarily affects the shock wave; and medium-frequency
perturbations localised in the shear layer. A Fourier analysis of a series of Schlieren
snapshots is performed to precisely characterise the structure of the perturbations at
low- and medium-frequencies. Then, the Reynolds-averaged Navier–Stokes (RANS)
equations closed with a Spalart–Allmaras turbulence model are solved to obtain
a mean flow, which favourably compares with the experimental results. A global
stability analysis based on the linearization of the full RANS equations is then
performed. The eigenvalues of the Jacobian operator are all damped, indicating that
the interaction dynamic cannot be explained by the existence of unstable global modes.
The input/output behaviour of the flow is then analysed by performing a singular-value
decomposition of the Resolvent operator; pseudo-resonances of the flow may be
identified and optimal forcings/responses determined as a function of frequency.
It is found that the flow strongly amplifies both medium-frequency perturbations,
generating fluctuations in the mixing layer, and low-frequency perturbations, affecting
the shock wave. The structure of the optimal perturbations and the preferred
frequencies agree with the experimental observations.
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1. Introduction
Shock-wave/boundary-layer interaction (SWBLI) has been the subject of many

studies during the last 60 years (Dolling 2001). Three configurations are commonly
studied: the case of a compression ramp; the oblique shock impinging on a flat-plate
boundary layer; and the normal shock on a wall (or profile). The latter configuration,
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which is the focus of the current study, is common in air intakes, nozzle exits or in
transonic flow over aerofoils.

Regardless of the configuration, many experimental and numerical studies have
shown the coexistence of two distinct characteristic frequencies: shock motions
involve low frequencies, while the mixing layer downstream of the separation exhibits
unsteadiness whose frequencies are higher than those observed in the shock motions,
but are still below the energetic scales of incoming turbulence. Inside the recirculation
bubble both motions are at play. Turbulent boundary layer fluctuations are referred to
as high-frequency unsteadiness.

As commonly done in SWBLI (Erengil & Dolling 1991b), one can introduce a
dimensionless frequency (or Strouhal number) defined as StL= fLint/Ue where Ue is the
external velocity and Lint is the interaction length scale. Using this scaling, Dussauge,
Dupont & Debiève (2006) have shown that a value of StL = 0.02–0.05 characterises
the shock motions in several configurations. Concerning medium-frequency motions
in the mixing layer, typical values spanning StL = 0.1 to StL = 0.5 are common for
shock-induced separations. Those motions have been associated to Kelvin–Helmholtz
instabilities, which can generate a vortex shedding phenomenon.

The origin of low-frequency motions affecting shock waves is controversial. One
of the first answers was suggested by Plotkin (1975), who developed a mathematical
model where the shock foot is affected by the passage of turbulent eddies, while the
‘stability’ of the mean flow tends to restore the shock to its original position. The
hypothesis of shock motions caused by organised structures in the incoming flow has
been assessed by several experimental investigations: Andreopoulos & Muck (1987)
found that the frequency of the shock unsteadiness is of the same order as the bursting
frequency of the upstream boundary layer. Subsequently, Erengil & Dolling (1991a)
and Dolling & Erengil (1991) found correlations between pressure fluctuations in the
upstream boundary layer and the shock velocity, but in a more recent study Beresh,
Clemens & Dolling (2002) suggest that a thickening/thinning boundary layer is not
the cause of the shock unsteadiness, and that shock motions are inherited from eddies
in the incoming flow.

While the shock is undoubtedly affected by the passage of low- or high-speed
perturbations, upstream events might be only one of several causes of shock
unsteadiness. To prove it, Touber & Sandham (2009) performed large-eddy simulations
(LES) in a shock-reflection configuration, where special care was devoted to prevent
the development of coherent structures in the incoming flow. Low-frequency shock
motions could still be observed. Dupont, Haddad & Debiève (2006) also found
very weak coherence between the pressure fluctuations in the upstream boundary
layer and those at the shock foot. On the contrary, fluctuations at the shock were
strongly correlated with the separated zone. According to those studies, low-frequency
oscillations are not caused by incoming turbulent eddies, but by the coupling between
the dynamics of the separated zone and the shock, either through global instability
of the separation bubble, or through some mechanism of self-sustainment.

The two theories described above, even if in disagreement on the location, support
the idea that the instability is driven by a unique source. However, a plausible model
is that the interaction responds as a dynamical system which is forced by external
disturbances (Clemens & Narayanaswamy 2014). In this respect, Touber & Sandham
(2011) proposed an original derivation of the Plotkin (1975) equation and stated that
the low-frequency unsteadiness was related to a fundamental property of the shock
wave. The model combines numerical evidence and analytical theory to prove that the
coupling between the shock and the boundary layer is mathematically equivalent to a
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first-order low-pass filter: low-frequency unsteadiness is not caused by a forcing, either
from upstream or downstream of the shock, but is an intrinsic property of the global
system.

Linear stability analysis has become a tool commonly used in fluid dynamics,
which can often help to understand flow unsteadiness (Sipp et al. 2010; Theofilis
2011). According to Huerre (2000), occurrences of unsteadiness can be classified into
two main categories: the flow can behave as an oscillator, with an absolute instability
imposing its own dynamics, or as a noise-amplifier, if the system filters and amplifies
existing environmental noise. In the first case, a global-mode decomposition has
the ability to identify the mechanism responsible for the self-sustained unsteadiness.
Otherwise the unsteadiness is characterised by a broadband spectrum and requires an
external forcing to persist. The flow does not exhibit any unstable global mode and
the linearised Navier–Stokes operator acts as a linear filter of the upstream disturbance
environment. In such cases a singular-value decomposition of the Navier–Stokes or
the resolvent operators highlights optimal growth or pseudo-resonance phenomena
(Trefethen et al. 1993; Schmid & Henningson 2001). The connection between
transient growth and convective instability has been discussed by Cossu & Chomaz
(1997) and numerous studies have successfully applied these methods to different
configurations (Ehrenstein & Gallaire 2005; Abdessemed et al. 2009; Alizard,
Cherubini & Robinet 2009; Brandt et al. 2011).

In SWBLI, only few studies have tried to answer the question of the origins of
the unsteadiness through stability analyses. In a laminar interaction, Robinet (2007)
found an unstable global mode. However, the mode was three-dimensional and
non-oscillatory and cannot therefore account for the low-frequency shock oscillations.
In a transonic flow over a profile, Crouch et al. (2009) and Sartor, Mettot & Sipp
(2015) showed that an unstable global mode appears at a critical value of the angle
of attack (or Mach number), above which the shock starts to oscillate. Also, it was
found that the oscillation frequency accurately matches the global mode frequency.
This picture is similar to the case of vortex shedding in a cylinder wake (Jackson
1987) and may be described as a Hopf bifurcation. In a shock impinging on a
turbulent boundary layer configuration, Touber & Sandham (2009) performed a
global-mode decomposition of a mean flow obtained by time- and span-averaging of
a three-dimensional LES computation. The most unstable global mode was stationary,
so the result cannot be considered as relevant to explain flow unsteadiness. Following
a similar approach, Pirozzoli et al. (2010) confirmed the presence of a non-oscillatory
exponentially growing mode, but documented also the presence of slightly damped
oscillatory eigenvalues. Those modes, even if stable, display frequencies comparable
to the unsteadiness observed in full LES.

These partial results indicate that the interaction dynamics could be captured
by a linear stability analysis. Yet an eigenvalue decomposition may not be the
correct approach. If the interaction behaves as a noise amplifier, then the unsteady
behaviour of the flow could be better characterised by an input/output analysis
focusing on the receptivity of the flow to external forcing. In separation bubbles, the
existence of optimal growth phenomena has been proven by Marquet et al. (2008)
and Blackburn, Barkley & Sherwin (2008), who described the flow dynamics by
determining the optimal initial perturbations which maximise the energy gain over
a given time horizon. In configurations where there is a strong frequency-selection
process, working in the frequency instead of the temporal domain has a deeper
physical meaning (Farrell & Ioannou 1996). Hence, following Alizard et al. (2009)
and Cerqueira & Sipp (2014), the existence of pseudo-resonances in a given frequency
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range may explain the existence of a peak in the frequency spectrum of an unsteady
flow. A singular-value decomposition of the resolvent operator may be able to identify
these pseudo-resonances. The outcome of such an analysis yields for all frequencies
an optimal gain, an optimal forcing and an optimal response. The peaks of the
optimal gain curve may then correspond to the preferred frequencies of the flow,
the structure of the optimal response to the structure of the flow unsteadiness, while
the spatial structure of the optimal forcing may indicate where upstream noise or
turbulence could optimally trigger this perturbation. This approach has already been
used to describe the most amplified modes in a channel flow configuration (Jovanovic
& Bamieh 2005), in a turbulent pipe flow (McKeon & Sharma 2010) and in a Blasius
boundary layer (Brandt et al. 2011).

Linear stability analyses are rigorous and widely used in the case of laminar,
transitional flows. Extension to turbulent flows is not straightforward (Mettot, Sipp
& Bézard 2014b). In the case of turbulent flows for which the scale decoupling
assumption holds (Rodi 1997; Iaccarino et al. 2003; Lawson & Barakos 2011),
the dynamics of the large scales of the flow may be captured using unsteady
Reynolds-averaged Navier–Stokes (RANS) equations. The impact of the small scale
dynamics on the large ones is accounted for by a turbulence model, which results in
an additional viscosity (eddy viscosity). Stability analyses involving the linearization
of the full RANS equations have already successfully been performed in the case
of transonic flow over a profile (Crouch et al. 2009; Sartor et al. 2015) or open
cavity flow (Mettot, Renac & Sipp 2014a). Both configurations exhibit well-defined
peaks in the frequency spectrum linked to the existence of a globally unstable
mode. In the present article, we will follow this line of thought and assume that the
above-mentioned low- and medium-frequencies of the SWBLI are captured by time
integration, while the high-frequency motions are taken into account by the turbulence
model.

In this work, we propose to characterise the unsteadiness of the well-documented
transonic SWBLI over the Délery bump (Délery 1978; Bur et al. 2006). We will
compare experimental measurements to linear stability analyses. First (§ 2), the
frequency selection process is highlighted using wall-pressure and skin-friction
measurements. Then, Fourier-mode decompositions of Schlieren photography reveal
the spatial location of low- and medium-frequency unsteadiness, whilst cross-
correlation maps illustrate their spatial structures. Second (§ 3), we will perform
linear stability analyses of a mean-flow obtained by a RANS approach. After a brief
presentation of the stability approaches and of the discretisation choices, we will
discuss the results of the global-mode decomposition – the eigenvalues of the full
linearised RANS equations – and those of the singular-value decomposition of the
resolvent. We will assess the ability of stability both approaches to predict the flow
unsteadiness observed experimentally.

2. Experimental investigation
The experiments were conducted in the S8Ch transonic wind tunnel of the

ONERA Meudon centre, a continuous open-loop facility supplied with desiccated
atmospheric air. Total pressure and temperature were near ambient conditions:
pst = 0.96 × 105 ± 300 Pa and Tst = 300 ± 10 K. The unit Reynolds number is
around Re= 14× 106 m−1, which leads to a value of ReΘ = 3500 for the incoming
boundary layer. An air dryer is placed after the air inlet to control the flow humidity:
during every test, the temperature rise was lower than 2 ◦C, and the dew point is
maintained around −50 ◦C.
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FIGURE 1. (Colour online) The transonic S8Ch wind tunnel in the ONERA Meudon
centre. (a) Photo of the test section. (b) Schematic diagram.

The test section (figure 1) has a span of 100 × 120 mm and its lower wall is a
profile designed to produce a uniform supersonic flow. A second throat of adjustable
cross section is placed at the outlet and causes by choking effect a shock wave whose
position and intensity can be adjusted in a continuous manner. The ratio between the
two sections is 1.12, and the shock occurs at Mach number Ma = 1.4 outside the
interaction region.

Two-component laser Doppler velocimetry (LDV) measurements performed in the
same configuration and facility (Bur, Corbel & Délery 1998; Bur, Coponet & Carpels
2009) have shown that upstream of the shock, the boundary layer on the bump
is fully turbulent with a physical thickness δ = 4 mm and a momentum thickness
Θ = 0.25 mm. The shock position is monitored by the evolution of static pressure
through 36 pressure taps on the lower wall (see figure 12b). The mean velocity field
has been analysed by Sartor, Losfeld & Bur (2012), who performed a particle image
velocimetry (PIV) investigation on the same configuration. Downstream of the shock,
the nominal Mach number is approximately Ma = 0.75 in the upper zone, and its
value increases up to Ma= 0.95 on approaching the triple point where the two shock
legs merge together, as shown in figure 5. The second throat produces a further
supersonic zone which acts like a filter to the existing downstream noise coming
from the wind-tunnel engines. A Schlieren apparatus is used to visualise the flow and
monitor the shock position.

2.1. Unsteadiness at the wall
Low- and medium-frequency fluctuations have been investigated through sensors
placed on the lower wall (figure 2). Both Kulite and hot-film sensors are employed,
giving access to pressure and skin-friction fluctuations, respectively. The output was
amplified and digitised at a sampling frequency of 100 kHz, then Fourier analysis
has been performed using 50 % overlap and a Hanning window function, on blocks
of 32 768 samples each. This yields, for every spectrum and for both measurement
techniques, a frequency resolution of f = 3 Hz. The unsteadiness being not very
energetic, 500 blocks were recorded for averaging the spectra and obtaining smooth
results.

2.1.1. Pressure fluctuations
Pressure fluctuations are investigated through high-frequency response pressure

transducers (Kulite series XCQ-093-15A, XCS-093-15D and XCS-093-5D) following
the work of Dupont et al. (2006). As displayed in figure 2, all the sensors were
located on the lower wall: one at the shock foot (x = 315 mm), one inside the
recirculating bubble on the bump (x = 335 mm), one on the reattachment point
(x= 395 mm) and two next to it, respectively at x= 390 mm and x= 400 mm.
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FIGURE 2. Sensors position on the bump for wall-pressure and skin-friction measurement.
(a) Kulite sensors: unsteady pressure; (b) hot-film: skin-friction measurements.
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FIGURE 3. (Colour online) Wall-pressure fluctuations on the centreline of the test section.
(a) Power spectral density; (b) premultiplied spectrum.

As shown in figure 3(a), the unsteadiness is broadband, without a single predominant
peak. All sensors display high power spectral density (PSD) in the low-frequency
range, regardless of their location. Then, depending on the distance from the
shock-foot, the spectra can present a medium-frequency bump, with a PSD one order
of magnitude lower than the one in the low-frequency zone. The high-frequency
content due to the turbulent structures in the boundary layer probably occurs at
frequencies higher than 50 kHz, not measured because of the bandwidth of the
sensors (around 20 kHz).

Figure 3(b) displays the weighted PSD, where the product between the PSD and the
frequency f is shown as a function of the frequency logarithm. This representation,
called premultiplied spectrum, gives access to the frequency content of the energy
fluctuations. The area below this curve corresponds to the total fluctuating energy. The
sensor at the shock foot reveals that most of the energy is in the low-frequency range,
whilst the one in the separated zone indicate that medium-frequency motions are the
most energetic.

The top horizontal axis of all figures presents the Strouhal number, obtained with a
characteristic length L= 35 mm, corresponding to the distance between the separation
point and the impingement location of the lambda shock on the wall, and a velocity of
U= 300 m s−1, corresponding to the flow speed above the recirculation bubble. This
scaling yields, for the sensor placed at the shock foot, a maximum f ·PSD around 0.04,
which corresponds to a frequency of 300 Hz.

The line corresponding to x = 335 mm in figure 3 illustrates that the spectrum
of a pressure transducer placed close to the shock and after separation exhibits the
low-frequency unsteadiness due to the shock, but also the medium-frequency due to
the mixing layer. This indicates that the sensor was in an intermediary zone midway
between the two phenomena. The last three sensors, placed close to the end of the
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separation bubble, display a very similar spectrum, indicating that pressure fluctuations
inside the recirculation zone propagate downstream without changing their frequency
content.

The most energetic perturbations in this zone are around 4000 Hz (StL = 0.5). The
scale in the premultiplied spectrum of figure 3(b) is arbitrary, but the whole spectrum
is known up to a multiplicative constant, which is the same for all frequencies:
the fact that the peak in the medium-frequency motions is more energetic than the
low-frequency one suggests that shock motions contribute less to the total amount of
unsteadiness. However, even if less energetic, low-frequency motions are present in the
whole interaction, as indicated by figure 3(a), where the low-frequency spectral density
is high for all the sensors. Thus, even if the weighted PSD in figure 3(b) displays a
peak in the low-frequency range only at the shock foot, one can find low-frequency
fluctuations also in the separated zone. On the contrary, the PSD distribution at the
separation point reveals that the shock foot is only affected by low-frequency motions,
with a maximum located at the zero-frequency. The frequency distribution is close to
a low-pass filter, with a cutoff frequency around f = 300–400 Hz, which corresponds
to the peak of the weighted PSD in figure 3(b).

2.1.2. Skin-friction fluctuations
The purpose of this section is to present frequency spectra of skin-friction

fluctuations. We used hot-film sensors, based on a thin metal film deposited on
an electrically insulating substrate. Three sensors were located after the end of the
bump (figure 2): one inside the recirculating bubble (x = 360 mm), one around the
end of the separated region (x= 390 mm) and one downstream of it (x= 420 mm).

The sensors (glue-on probe model 55-R47) consist of a 0.1× 0.9 mm nickel film
deposited on a 0.05 mm thick polyamide foil carrying a 0.5 µm quartz coating, and
were operated with a constant temperature circuit (model DISA 55M10). The signals
were amplified, digitised and processed as previously described. Figure 4 presents the
classic and weighted spectra: in all cases the spectrum displays a high level of PSD in
the low-frequency region, and a bump at medium-frequencies. In the weighted PSD,
the bump is represented by a broadband peak centred around StL = 0.03, at slightly
smaller frequency than in the wall-pressure fluctuations.

When a sensor is placed inside the recirculation zone and close to the shock
foot (solid line corresponding to x = 360 mm in figure 4) both low- and medium-
frequency motions are clearly visible: the premultiplied spectrum presents a bump
in the low-frequency range whose energy content is analogous to the one of the
medium-frequency bump. This low-frequency content is still visible when the sensor
is at the end of the recirculation zone (x = 390 mm), and disappears completely
for the hot-film sensor in the most downstream position (x = 420 mm). The peak
corresponding to f = 50 Hz identified in all curves of figure 4 is a consequence of
the commercial electric power distribution system and is not linked to any physical
phenomenon.

The frequency content of the low-frequency fluctuations seems however not the
same when analysed with hot-films or with unsteady pressure sensors: the weighted
PSD presents a maximum value at f = 70–100 Hz when computed with hot-films
signals, whilst the peak was around f = 300–400 Hz for the Kulite sensors. We do not
have a clear explanation of this discrepancy, except the fact that the two sensors have
different spatial integration because of their size (the hot-film surface area is greater
than those of a Kulite). Note however that if we compare hot-film and pressure curves
obtained at the same location (here at the end of the recirculation zone x= 390 mm),
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FIGURE 4. (Colour online) Skin-friction fluctuations on the centreline of the test section.
(a) Power spectral density; (b) premultiplied spectrum.

then the skin-friction and pressure spectra are close: the medium-frequency peak is
located at f = 4 kHz in the premultiplied pressure spectrum, while it is located at
f = 3 kHz in the skin-friction spectrum.

Despite the small difference in the peak location, both measurement techniques
confirm the presence of low-frequency motions, mostly located at the shock foot
but also in the separated region, and medium-frequency motions, localised after the
separation point and not limited to the recirculation zone. This observation compares
favourably with all the SWBLI studies discussed in the literature. By scaling
the frequency with appropriate length and velocity scales, we obtain satisfactory
agreement with results obtained in other configurations, such as compression ramps
(Dolling & Brusniak 1989; Wu & Martin 2008) or a shock impinging on a turbulent
boundary layer (Dupont et al. 2006).

2.2. High-speed Schlieren visualisation
Pressure and skin-friction measurements, although very reliable, are only at few
points and located at the wall. In order to have a global description of the unsteady
behaviour of the interaction, we consider high-speed Schlieren visualisation. If Kulite
and hot-film measurements are too local, Schlieren visualisation may suffer the
opposite problem; the image obtained corresponds to a spanwise integration of the
light beam, and may include three-dimensional effects due to the lateral boundary
layers on the wind-tunnel walls.

Schlieren visualisation is a technique based on light deflection by a refractive
index whose level is related to the flow density gradient. The deflected light beam is
compared to the undeflected one by blocking the undisturbed light with a knife edge.
A shadow pattern is then produced, representing the expansions and compressions in
the flow. The magnitude of the density gradient is proportional to the light intensity
measured by the camera sensor; a dark point on the image corresponds to negative
density gradient whilst a bright point implies the presence of a positive one.

A high speed camera (Vision Research Phantom V710) with a 7 Gpx s−1

throughput and 300 ns digital exposure is placed on the side of the wind tunnel,
and 60 000 images (464 × 360 pixels) are recorded at 35 kHz frame rate. The
magnification ratio is around 3.3 px mm−1, producing an image 140 mm wide
which spans the whole channel height. Both horizontal and vertical knife-edge
are considered: the light intensity is proportional, respectively, to the vertical and
horizontal components of the density gradient (figure 5).
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(a)  (b)

FIGURE 5. Horizontal and vertical density gradients obtained with the Schlieren apparatus.
(a) ∂ρ/∂x: vertically-oriented knife edge; (b) ∂ρ/∂y: horizontally-oriented knife edge.

Figure 5(a) presents the horizontal density gradient; the shock wave has a positive
gradient and is therefore white. The boundary layers are not visible, as they are not
identified by any gradient in the streamwise direction. In the instantaneous Schlieren
image, the mixing layer downstream the shock foot presents a succession of positive
and negative density gradients, due to the vortices shed from the separation point.
Here, small and medium scale structures are responsible for the high- and medium-
frequency unsteadiness. Figure 5(a) also indicates that the mixing layer is a source of
noise, generating acoustic waves under the form of almost vertical Mach lines which
perturb the shock.

Figure 5(b) has been obtained with a horizontal edge-oriented knife. The boundary
layers exhibit wall-normal density gradients due to the fact that the flow temperature
is warmest near the walls and that the wall-normal pressure gradient is zero in these
regions. Hence the picture is bright on the lower wall and dark on the upper one,
corresponding to positive and negative ∂ρ/∂y, respectively. The mixing layer on the
lower-wall is bright since it is generated from the attached lower boundary layer,
which was also bright. Across the shock wave, the density gradient is positive in
the flow direction. The bump curvature yields a vertical velocity component which is
negative, and thus the density gradient is negative.

Schlieren photography is now used to investigate the spatial structure of unsteadiness
at low- and medium-frequencies. For this, we perform a Fourier-mode decomposition
of the images and investigate the two-point correlations of the density gradient. The
camera was equipped with a 12-bit colour depth sensor: the light intensity measured
by each pixel is associated to a number between 0 and 4095. The available range
is too small to describe at the same time the shock density gradient and the small
variations in the mixing layer caused by the vortex shedding. For this reason, the
images often exhibit colour saturation. Examples can be found in figure 5(b) on the
shock (black region caused by the absence of light) or at the beginning of the mixing
layer (white region associated to too much light intensity). This problem can cause
signal truncation, adding high-frequency energy to the Fourier mode in the saturated
zone, or showing 100 % correlation because of the absence of texture in the images.

2.2.1. Fourier-mode decomposition
In image processing, the time resolved image sequence can be written as I(i, j, n)

where I is the light intensity of each pixel. In this study, i and j vary from 1 to
464 and 1 to 360, n is the snapshot number (from 1 to N = 60 000). The sampling
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FIGURE 6. (Colour online) Fourier mode at f = 300 Hz for the horizontal and vertical
density gradients. (a) Horizontal density gradient ∂ρ/∂x; (b) vertical density gradient
∂ρ/∂y.

frequency is 35 kHz. The time series describing the light intensity evolution at a given
pixel (i, j) can be written as Iij(n). Assuming a linear correspondence between light
intensity and density gradient, we compute the Fourier transform of Iij(n) using a FFT
algorithm with a Hanning window function and 60 blocks with 50 % overlap of 2048
images.

Because of the reduced amount of data, the spectrum has a resolution of f = 17 Hz
and the blocks are insufficient to converge the statistics of the lowest frequencies. The
computed frequency spectrum is noisy and may not be compared to the frequency
spectra presented in § 2.1, where we used 500 blocks. Yet, relying on the informations
obtained in the previous section, we consider in the following the spatial structures of
a low- and a medium-frequency Fourier mode, corresponding to the peaks displayed
in the premultiplied pressure spectrum of figure 3(b).

Figure 6 shows the spatial structure of the low-frequency Fourier mode at
f = 300 Hz. In figure 6(a) the fluctuations are located on the whole shock wave,
without small scale structures after the separation point. Figure 6(b), which presents
the vertical density gradient, shows that this Fourier mode has its maximum strength
at the shock foot (also in the upper wall), even though the mode is located on the
entire shock. The low-frequency mode is energetic also in the core of the mixing
layer, where the PIV investigation of Sartor et al. (2012) has indicated that the
turbulence production has its maximal value. The absence of energy inside the shock
is a consequence of the lack of light in the Schlieren images and should not be
interpreted as a stationary flow region.

In the upper left side of figure 6(a) and (b) two oblique lines reveal the presence of
a compression wave, generated at the sonic throat and propagating across the flow at
Mach angle α= sin−1(1/Ma). As it will be shown in the global stability analysis, those
compression waves play an important role in the flow dynamics since they indicate the
directions along which informations propagate in the supersonic zone.

Figure 7 displays the Fourier mode at f = 4000 Hz, located in the mixing layer
region downstream of the separation point. Figure 7(a) also indicates the presence of
small scale structures above the bump in the mixing layer (similar structures are also
visible near the upper wall). In the shock region, the energy distribution is similar
to the one in the low-frequency mode, but the energy levels are four times smaller
than in the case of figure 6. Although similar features have been observed in the DNS
simulations of Wu & Martin (2008), who documented the presence of small-amplitude
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FIGURE 7. (Colour online) Fourier mode at f = 4000 Hz for the horizontal and vertical
density gradients. (a) Horizontal density gradient ∂ρ/∂x; (b) vertical density gradient
∂ρ/∂y.

spanwise wrinkling on the shock, it is believed that in the present case the medium-
frequency energy comes from the truncated signal due to colour saturation.

The medium-frequency mode in figure 7(b) suggests that the most energetic
fluctuations are in the mixing layer, whilst the shock does not present any medium-
frequency unsteadiness. This result confirms that medium-frequency motions on the
shock are spurious, and only the mixing layer is affected by those motions.

Although less detailed in frequencies, the Fourier-mode decomposition confirms
the presence of two characteristic modes. Medium-frequency perturbations are mainly
located in the mixing layer. Using LES flow fields, Pirozzoli et al. (2010) performed a
Fourier analysis and found similar results in a shock-impinging configuration. We also
found that low-frequency perturbations are not only restricted to the shock foot, but
affect the whole shock wave and even the top of the recirculation bubble. The mixing
layer has therefore energetic contributions in both the low- and medium-frequency
Fourier modes. A similar result has recently been observed in a compression ramp
configuration (Grilli et al. 2012), where a dynamic mode decomposition (Schmid
2010) documented the presence of a low-frequency mode associated to the pulsation
of the separation bubble and accompanied by a forward–backward shock motion.

2.2.2. Two-point correlations
In this section, a set of N = 20 000 images is employed for analysing two-point

correlations, which can give insights on the coherent structures of the flow, regardless
of the frequency. As before, the light intensity of a given pixel at time n can be
written as Iij(n). If we consider another pixel on the image, with coordinates (k, l),
one can compute the correlation between the time series at point (k, l), indicated as
Ikl(n), and the time series at all other points Iij(n). When processing images where
the brightness varies from image to image due to lighting, it is recommended to first
subtract the mean and then normalise the results by dividing by the standard deviation
of each data sequence. The cross-correlation coefficient is then given by:

Ckl(i, j)= 1
N

N∑
n=1

[Iij(n)− Iij][Ikl(n)− Ikl]
σijσkl

, (2.1)

where Iij is the mean value of the light intensity and σij and σkl are the standard
deviations. The result of this operation is a set of 464× 360 fields which represent,
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FIGURE 8. (Colour online) Correlations when the reference point (+ symbol) is at the
shock foot. (a) Horizontal density gradient ∂ρ/∂x; (b) vertical density gradient ∂ρ/∂y.

for each interrogation point (k, l), the correlation between the chosen pixel and the
whole image. The approach proposed in this section consists in fixing an interrogation
point, for example at the shock foot or in the mixing layer, and investigating the zones
of the flow where the density gradients are correlated to that point. Contrary to the
correlation analyses based on wall-pressure measurements (Dolling & Erengil 1991;
Dupont et al. 2006) or on numerical simulation data (Larchevêque et al. 2010; Touber
& Sandham 2008), the correlations computed here are based on light intensity.

Figure 8 presents the correlation maps when the reference point is at the shock
foot. A strong correlation exists with the whole shock wave, suggesting that shock
movements are rigid-body displacements. The horizontally elongated correlated regions
observed in the mixing layer of figure 8(b) reveal that the shock movements are
linked to vertical displacements of the separated zone: due to the bump slope, shock
movements correspond to vertical displacements of the separation point, which induce
contractions and expansions of the recirculation bubble. This result has already been
observed by Kussoy et al. (1988) in flow past a flared cylinder.

We have also found that the boundary layer fluctuations are not correlated to the
shock or the mixing layer fluctuations, even if this observation is limited by the spatial
resolution of the Schlieren pictures. On the contrary, when considering a point in
the mixing layer, the spatial resolution of the Schlieren images is sufficiently fine to
identify vortices generated near the separation point, as in figure 9. For example, when
considering the horizontal density gradient, the correlation maps reveal the presence
of large scale structures which can be linked to vortex shedding.

The sketch in figure 10(a) helps understanding of the horizontal density gradient
distribution generated by three downstream travelling co-rotating vortical structures; on
the lower part of the image, the density gradient is represented for two realisations.
The correlation map highlights the region in the mixing layer with similar density
gradient distributions, due to the passage of vortical structures. The result is a positive
correlation on the reference point (red arrows) in the mixing layer, surrounded by two
negatively correlated regions upstream and downstream of this point (blue arrows).
A similar behaviour can be observed in figure 10(b) with the negatively correlated
regions above and below the correlation point. The distance between the positive and
negative correlation regions indicates the characteristic size of the shed vortices, which
evolve spatially as moving downstream.

When considering the vertical density gradient correlations (figure 9b), the relation
between the mixing layer movements and the shock displacements is even more
evident; close to the separation, the shock foot and the mixing layer are highly
correlated. In this region, the Fourier-mode decomposition showed high energy at low
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FIGURE 9. (Colour online) Correlations when the reference point (+ symbol) is in the
mixing layer. (a) Horizontal density gradient ∂ρ/∂x; (b) vertical density gradient ∂ρ/∂y.
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FIGURE 10. (Colour online) Density gradient distribution when vortical structures are shed
in the mixing layer. (a) Horizontal density gradient ∂ρ/∂x; (b) vertical density gradient
∂ρ/∂y.

frequencies. Considering reference points more downstream in the mixing layer, the
shock movements become less correlated, while vortical structures begin to appear.
These structures are generated by Kelvin–Helmholtz type instabilities linked to the
inflection point of the shear layer. Similar circular periodic patterns have also been
observed in a shock reflection configuration by Agostini et al. (2012) and associated
to medium-frequency unsteadiness using band-pass filtering.

3. Numerical approach
The experimental investigations have shown that the low- and medium-frequency

perturbations exhibit characteristic frequencies and spatial wavenumbers below those
of the small scale motions representative of turbulence. It seems therefore reasonable
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that the scale-decoupling assumption holds within such a flow. Hence, the dynamics
of the large scales might be captured by time-integration of RANS equations, while
the impact of small scale dynamics on the large ones is accounted for by a turbulence
model.

In this section, we consider a numerical model based on RANS equations closed
with a Spalart–Allamaras turbulence model. First (§ 3.1) we will march in time these
equations and observe that the flow converges to a steady-state solution. This indicates
that unforced RANS equations are not able to capture the low- and medium-frequency
perturbations. The asymptotic two-dimensional solution is then considered as a base
flow for linear stability analyses. Both global modes of the Jacobian (§ 3.2) and
singular modes of the Resolvent (§ 3.3) are computed.

3.1. Base flow
The simulations were performed using the finite volume solver elsA v3.3, developed
at ONERA and CERFACS (Cambier, Heib & Plot 2013). Numerical computations
were performed in parallel over up to 64 cores on ONERA’s high-performance
computer Stelvio, using 2.8 GHz Intel Xeon 5560 (Nehalem) processors. After spatial
discretisation, the governing equations can be recast in the general conservative form:

dw
dt
=R(w), (3.1)

where w ∈RN represents the set of conservative variables describing the flow at each
spatial location in the domain and R represents the discrete residual. Using a finite
volume method, the dimension of w corresponds to the number of cells in the mesh
times the number of variables. Note that all boundary conditions are included in the
discrete operator R.

The Spalart–Allmaras (S–A) turbulence model (Spalart & Allmaras 1992) has
been chosen because previous studies (Deck 2005; Crouch, Garbaruk & Magidov
2007; Sartor et al. 2015) proved its ability to correctly reproduce the challenging
buffet configuration. A second-order AUSM+(P) upwind scheme is employed for the
convective fluxes in the mass, momentum and energy conservation equations (Mary,
Sagaut & Deville 2000). Roe and Jameson schemes were not considered due to
difficulties to converge to a steady-state solution. The convective flux associated to
the turbulence equation is discretised with the first-order Roe scheme with Harten’s
correction (Harten & Hyman 1983), whilst a central-difference scheme is used for
the turbulent diffusive flux.

The boundary conditions have been chosen to match the experimental configuration
described in § 2; both upper and lower walls are considered as adiabatic walls
and the boundary layers start developing in the settling chamber. The outlet pressure
condition is adjusted to place the shock wave close to the position in the experimental
configuration (approximately p = 62 kPa at x = 0.65 m). The computational domain,
partly visible in figure 11, is a two-dimensional single-block representation of the
S8Ch wind tunnel, composed of 120 000 nodes; 300 in the vertical direction, and
400 in the streamwise direction. In the shock region, the average distance between
two mesh points is 0.45 mm. Considering the interaction length L as a characteristic
dimension, this corresponds to a resolution of ∆x/L= 0.013. Eighty cells have been
used to discretise the wall-normal gradients in the boundary layers, while the first
point is located at y+ = 0.6.

To assess the spatial convergence of the solutions, two other meshes are considered;
a coarser mesh, with ∆x/L = 0.020 in the interaction region, and a finer one,
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FIGURE 12. (Colour online) Comparison between the experimental results (pressure taps
and PIV measurements from Sartor et al. (2012)) and the base flow (RANS solution).
(a) Velocity field; (b) wall pressure.

with ∆x/L = 0.065. All grids converge to the same RANS solution in terms of
shock location, size of the recirculation bubble and separation-point position, but the
shock thickness increases with decreasing the cell size. As will be shown in the
next sections, this does not impact the results of the global-mode decomposition, but
slightly influences those of the singular-value.

3.1.1. Results
The resulting velocity field is displayed in figure 11, with a dashed-dotted sonic

line. On the upper wall, the shock pressure gradient induces separation of the turbulent
boundary layer, and a small separation bubble is formed.

Figure 12(a) shows a comparison between the experimental time-averaged PIV
measurements obtained by Sartor et al. (2012) and those of the RANS simulation. The
shock position compares favourably on the top, but in the numerical simulation the
shock foot is slightly downstream. Moreover, the PIV results indicate a thicker shock,
but this may come from the averaging of the shock unsteadiness in the experiments.
The average pressure on the wall is depicted in figure 12(b); a rise of static pressure
begins at x = 320 mm, corresponding to the shock foot. The recirculation bubble is
characterised by a small pressure plateau, and after the separated zone the pressure
reaches the value imposed at the downstream boundary.

Figure 13 presents three velocity profiles, taken upstream of the shock wave (x =
300 mm), in the interaction region (x = 340 mm) and downstream of the separated
zone (x= 380 mm). The PIV measurement and the RANS result are in fair agreement
outside the separated region, with a slight velocity deficit in the numerical simulation
(figure 13a,c). In figure 13(b), PIV measurements indicate similar velocities inside the
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FIGURE 13. Velocity profiles from the numerical investigation and the PIV measurement.
(a) Upstream of the shock; (b) in the interaction region; (c) downstream of the bubble.

recirculation zone and in the supersonic region, but a different distribution across the
shear layer. This discrepancy can be attributed to the different lambda shape of the
shock, probably due to three-dimensional effects in the wind tunnel.

Overall, RANS computations are in a fair agreement with the experimental
investigation. Note that the characteristic length and velocity scales used in the
following to obtain the Strouhal number are those of the experimental investigation.

Unsteady RANS simulations with a time step of 1t = 10−6 s (corresponding
to a maximum CFL number of 20) indicate a stationary solution. The velocity
field obtained is the same as the steady-state result obtained with a local time
stepping. This is not surprising since Knight & Degrez (1998) analysed the numerical
capabilities of RANS approaches and stated that turbulent interaction predictions are
correct only in terms of mean-pressure distribution: in this case, (unforced) RANS
computations fail to predict the intermittent separation stage and to capture the high
levels of unsteadiness.

As will be shown in the next section, inviscid phenomenon can have a strong
signature on the results of the stability analysis. To separate the effect of the
interaction with the boundary layers form the acoustic resonances, we considered a
configuration with an equivalent geometry, but with slip conditions on both upper and
lower walls. A new base flow is obtained, without any boundary layers and separated
regions, with a normal shock impinging on the bump. The outlet pressure was
adapted to locate the shock at approximately the same position as the configuration
with boundary layers. The absence of viscous effects allows for the investigation of
the role of the shock in the perturbation dynamics independently from those of the
separated region.

The flow is governed by (3.1). The unsteady RANS computations indicate that a
steady solution w0 ∈ RN exists, referred to as the base flow. This solution is defined
by the equation:

R(w0)= 0. (3.2)
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Since the governing system contains the Spalart–Allmaras equation, the base flow w0
takes into account the Reynolds stresses involved in the turbulence model. The vector
w0 thus represents

w0 = (ρ0, ρU0, ρV0, ρE0, ρν0)
T, (3.3)

where ρν is introduced by the turbulence model. The subscript 0 indicates that all
the variables refer to the steady-state solution of the RANS simulation. The stability
of the flow is probed by analysing the evolution of small amplitude perturbations,
superimposed on the base flow, which involve variations of the turbulent quantities.

3.2. Global modes
The equation governing small-amplitude perturbations is given by the first-order
linearization of the discretised equations (3.1):

dw′

dt
= Jw′. (3.4)

The Jacobian operator J ∈ RN×N corresponds to the linearization of the discrete
Navier–Stokes operator R around the base flow w0. The proposed formalism does
not assume homogeneity of the base flow in a given direction, and corresponds to
the BiGlobal linear-stability analysis as introduced by Theofilis (2003). The analysis
is two-dimensional, and we assume that the base flow and the fluctuations are
homogeneous in the third direction.

The stability of a base flow is determined by scrutinising the spectrum of the matrix
J. To this end, particular solutions of (3.4) are sought in the form of normal modes
w′ = ŵeλt, where λ= σ + iω describes the temporal behaviour (σ is the amplification
rate and ω the frequency) and ŵ ∈ CN the spatial structure. Since the governing
equations involve a turbulence model, the perturbation includes variations of the
turbulent quantities, and the turbulence model equation is also linearised. Hence (3.4)
may be recast into the following eigenvalue problem:

Jŵ= λŵ. (3.5)

If at least one of the eigenvalues λ exhibits a positive growth rate σ , the base flow
w0 is unstable. To compute the linearised operator, we follow a strategy based on
a finite difference method, introduced by Mettot et al. (2014a), where the Jacobian
coefficients are computed by repeated residual evaluations provided by the numerical
code. More details on the numerical strategy can be found in Mettot et al. (2014a),
Sartor et al. (2015) or Beneddine, Mettot & Sipp (2015), who successfully applied
this method to open-cavity flow, transonic buffet and under-expanded screeching jets.

3.2.1. Results
To ease comparison with the experimental investigation, the results will be discussed

using the dimensional frequency f (expressed in Hertz) and the Strouhal number StL
instead of the pulsation ω. The spectrum and the global modes, depicted in figures 14
and 15, are obtained by computing the five closest eigenvalues with respect to a given
shift. Among the eigenvalues, which are all damped since they display a negative real
part, one can recognise a group of modes in the lower part of the spectrum in the
range of Strouhal numbers corresponding to the low-frequency unsteadiness.

Figure 15 shows the real part of some of those modes. The first (figure 15a) is
located on the shock wave and represents a global movement of the shock structure.



Unsteadiness in transonic shock-wave/boundary-layer interactions 567

–1500 –1000 –500 0

0

1000

2000

3000

4000

5000

6000

7000

0

0.2

0.4

0.6

0.8

(a)(b)

(c)

f (
H

z)

FIGURE 14. (Colour online) Spectrum.

(a)

(b)

(c)

FIGURE 15. (Colour online) Stable global modes. (a) Real part of the stable mode at
f = 0 Hz; (b) real part of the stable mode at f = 130 Hz; (c) real part of the stable mode
at f = 2340 Hz.

Yet, since the mode is stationary, it does not carry any information about the unsteady
behaviour of the interaction. Similarly, the second one (figure 15b) is also located on
the shock, but with the addition of the slip line and a weak large scale streamwise
oscillation in the subsonic region. Such a structure could correspond to an acoustic
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wave that resonates with the test section, and which triggers solid-body movements
of the shock wave.

Considering higher Strouhal numbers, one can recognise that the eigenvalues in
figure 14 are grouped in periodic quasi-horizontal line, with some scattering when
the damping rate becomes strong. The spatial structure of the least damped mode
on one of those lines is presented in figure 15(c); the shock wave is still visible,
but the horizontal and vertical wavy structures suggest that the mode is probably
acoustic. Those structures propagate upstream preserving their shape while travelling
towards the shock wave. All the stable modes just discussed are probably not linked
to the unsteady dynamics of the SWBLI, but rather to some acoustic resonance of the
channel flow.

In this configuration, as for a generic flow in a duct, if the acoustic wavelength
has the same size as the device, the acoustic standing wave resonances may dominate
the flow (Koch 2005). The spatiotemporal structure of the mode actually reveals that
all the modes correspond to acoustic resonance modes linked to the channel height.
All the modes belonging to the same periodic quasi-horizontal line are characterised
by the same number of zeros in the vertical direction; one zero for the group
characterised by f ≈ 1200 Hz, two zeros for the group of eigenvalues such that
f ≈ 2400 Hz, etc. Regarding the size of the structures in the streamwise direction, we
have verified that the streamwise wavelength L is related to the frequency f and the
upstream travelling velocity of acoustic waves |u− a| through L= |u− a|/f , where u
is the local flow speed.

None of the analysed global modes in the medium-frequency range (more than 100
modes have been scrutinised) exhibit a spatial structure that can be linked to mixing
layer instabilities, as would have been expected from the experimental investigation.
We believe that such modes exist, but that they are even more damped. This suggests
that in some cases the global mode decomposition is not the most convenient approach
to explore medium-frequency perturbations in a transonic channel flow.

As previously introduced, a coarser and a finer mesh have been considered to
assess grid convergence. Figure 16(a) shows the superposition of the spectra obtained
with different meshes; nearly all the eigenvalues are converged, especially for low
frequencies. Some discrepancies appear at higher frequencies, consistent with the fact
that these modes are associated to small scale structures, and coarser meshes can
cause spatial filtering. However, the frequencies associated to those structures are
outside the range of interest of the study, so the reference grid can be considered
adapted for the purpose of the investigation. Figure 16(b) presents the comparison
between the eigenvalues of the reference case and those obtained when considering
a base flow with slip conditions (see § 3.1). The absence of boundary layers and
recirculation bubble barely influences the spectrum; the eigenvalues are still grouped
into quasi-horizontal lines, confirming that these modes represent acoustic resonances
and not the interaction dynamics. Low-frequency eigenvalues are slightly more
damped, and no high-frequency modes appear or disappear from the reference
spectrum.

3.3. Singular modes
If all the global modes are stable, the interaction behave as a noise amplifier. In this
case, the transient energy growth is intrinsically linked to the non-normality of the
Jacobian matrix (Trefethen et al. 1993; Schmid 2007) and an external driving term
is now required to sustain the perturbations. This term stands for the environmental
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FIGURE 16. Eigenvalue decomposition of the Jacobian matrix. (a) Grid convergence;
(b) effect of boundary layers.

disturbance, which is naturally present in any real flow. The stability analysis aims
at quantifying the input/output dynamics by identifying the pseudo-resonances of
the interaction. We therefore consider the response of the flow to a small-amplitude
forcing f ′:

dw
dt
=R(w)+ f ′, (3.6)

w is the superposition of the base flow w0 plus a small-amplitude response w′ and
is driven by the external forcing f ′. Considering a first-order Taylor expansion of the
residual, the response w′ is governed by the forced linearised Navier–Stokes equations.
We consider a harmonic forcing f ′(x, y, t) at frequency ω and a harmonic response
w′(x, y, t) in the form f ′ = f̂ (x, y)eiωt and w′ = ŵ(x, y)eiωt, with f̂ , ŵ∈CN . Simplifying
and re-arranging the equation for ŵ yields:

ŵ= Rf̂ , (3.7)

where R(ω) is the global resolvent matrix R = (iωI − J)−1 and I is the identity.
The resolvent matrix R(ω) is defined for any real forcing frequency ω since all

eigenvalues of J are strictly damped. The relation in (3.7) gives access, for a given
frequency, to the harmonic response of the system when forced with a harmonic
forcing of a given spatial form. We now introduce the gain G, function of the
external forcing f̂ and defined for every frequency, as the ratio between the energy
of the response and the energy of the forcing itself:

G(f̂ )= 〈ŵ, ŵ〉Qe

〈 f̂ , f̂ 〉Qf

, (3.8)

where 〈·, ·〉Qe and 〈·, ·〉Qf respectively refer to the scalar products that quantify the
strength of the response and of the forcing. Here we chose the kinetic energy of the
perturbation for the response ŵ and the energy of the momentum forcing for f̂ .
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FIGURE 17. Most energetic singular value of the global resolvent. (a) Gain function,
logarithmic scale; (b) normalised premultiplied optimal gain.

Among all the possible forcings, we are looking for the one that causes the strongest
gain G, called the optimal forcing. Inserting (3.7) into (3.8) yields, for each frequency
ω, an optimisation problem that can be solved through a singular-value decomposition
of the global resolvent R(ω), which may also be written as:

R†Rf̂ = λ2f̂ . (3.9)

where R† is the operator adjoint to R. The real eigenvalue λ2 is related to the
forcing f̂ , which we choose of unit norm 〈f̂ , f̂ 〉Qf = 1. The largest eigenvalue of
this eigenproblem is λ2

max, which corresponds to the optimal gain G. Once the
corresponding optimal forcing is computed, the associated optimal response ŵ can be
obtained solving (3.7) and verifies 〈ŵ, ŵ〉Qe =λ2

max. For more details and an application
of this approach the reader is referred to Sipp & Marquet (2013) and Sartor et al.
(2015).

3.3.1. Results
The singular values λ2 have been non-dimensionalised with the reference length,

velocity and density scales (L = 35 mm, U = 300 m s−1 and ρ = 0.73). Note that
the value one does not define a threshold between damping and amplification; the
role of the gain curve is to determine if there exist preferred frequencies in a flow
excited by broadband white noise forcing. The optimal gain λ2(ρU/L)2 has been
represented as a function of frequency in figure 17. We observe that the strongest
flow responses are obtained for low frequencies up to 50 Hz; then the gain decreases
rapidly and reaches a plateau for frequencies within 1–4 kHz. This curve strongly
resembles the experimental PSD curves obtained when processing pressure (figure 3a)
and skin-friction measurements (figure 4a). For example, we both recover the strong
flow response at low frequencies and the weaker plateau at medium frequencies.

The weighted gain fλ2 has been represented in figure 17(b) as a function of
frequency. This curve closely resembles the weighted PSD curves presented in
figures 3(b) and 4(b). It displays a peak near f = 50 Hz, indicating the frequency
where the energy content of the flow response is maximal. This peak occurs
approximately at the same frequency as the one obtained with the hot-film sensors
(figure 4b). Concerning the medium-frequency unsteadiness, the experimental
measurements predicted a peak in pressure and skin-friction unsteadiness around
f = 2–5 kHz (figures 3 and 4), in good agreement with the value of f = 3–4 kHz
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FIGURE 18. (Colour online) Real part of the optimal forcing and associated response at
f = 50 Hz. Sonic line (dash-dotted) and characteristics (solid) superimposed. (a) Optimal
forcing; (b) optimal response.

of figure 17(b). In spite of this, the reader should keep in mind that the results of
the experimental investigation are issued from local measurements, while the gain
function is a global quantity.

The optimal forcing obtained at the low frequency f = 50 Hz is shown in
figure 18(a); it is located mostly in the boundary layer on the divergent part of
the bump and is strongest at the shock foot. Starting from the top of the bump,
the optimal forcing forms an oblique pattern that bounces on the upper sonic line
and then hits the shock foot. To investigate the nature of this line we consider
the theory of characteristics (Délery 2010). The oblique part of the forcing in
figure 18(a) follows exactly the right characteristic line that impacts on the shock
foot, where the recirculation bubble begins; the separation point therefore has a
fundamental importance in the dynamics of the flow, and forcing at this position
optimally influences the low-frequency dynamics. As the information propagates
along the characteristic lines, the optimal forcing is energetic on the lines along
which information propagates and impacts the separation point. More details can be
found in Sartor et al. (2015), where a similar structure has been found in the case of
a transonic flow over aerofoils, and has been observed in the adjoint unstable global
mode associated to transonic buffet.

The optimal response associated to the low-frequency forcing is presented in
figure 18b: the mode is located mostly on the shock wave, with a spatial form
similar to what has been observed for the low-frequency Fourier mode of figure 6.
Part of the response is located in the core of the mixing layer, with a horizontal
structure of large wavelength. The presence of a negative value of the mode in the
mixing layer, associated to a positive value on the shock, implies that the contraction
of the bubble is related to a downstream motion of the reflected shock, whereas its
expansion is related to intense reverse flow and, consequently, upstream motion of the
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FIGURE 19. (Colour online) Real part of the optimal forcing and associated response at
f =4000 Hz. Sonic line (dash-dotted) and characteristics (solid) superimposed. (a) Optimal
forcing; (b) optimal response.

reflected shock. This observation is consistent with the model proposed by Piponniau
et al. (2009).

The medium-frequency optimal forcing at f = 4 kHz and its induced response are
shown in figure 19. The spatial structure of the forcing is now more elaborated. It
is still located both in the supersonic and subsonic regions, with strong values at the
shock foot and at the beginning of the mixing layer. Yet, it is not anymore located
along the characteristic lines. Similarly to the results of Marquet et al. (2008), we
observe forcing structures which lay against the shear, confirming that the Orr (Orr
1907) mechanism is at play here. The medium-frequency forcing induces a response
which is not localised on the shock-wave inside and along the mixing layer. Note that
no acoustic wave pattern can be seen in the channel, indicating that this mode couples
only weakly with acoustic waves. The present picture reminds the medium-frequency
Fourier mode presented in figure 7. Finally, we observe medium scale wavelength
structures due to Kelvin–Helmholtz type (Drazin & Reid 1980) instabilities, indicating
that the medium-frequency unsteadiness is associated to vortex shedding.

To describe those motions, a Strouhal number based on the local mixing layer
thickness δω(x), rather than on the interaction length L, is probably more significant.
This quantity can be evaluated using the PIV measurement or the RANS result, and
its value in a streamwise location corresponding to the centre of the separated zone
(x= 355 mm) is δω = 6 mm. The most appropriate velocity to compute the Strouhal
number for Kelvin–Helmholtz instability is the mixing layer average speed, given by
1U = (U1 − U2)/2 = 180 m s−1, where U1 and U2 are the flow velocities outside
the mixing layer. This scaling would yield Sδ = 0.13 for the medium-frequency
unsteadiness, instead of StL = 0.5 when using the interaction length and the reference
velocity.

Grid convergence is assessed in figure 20(a). It is shown that medium- and high-
frequency motions are well converged, while at low frequencies the gain is more
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FIGURE 20. Optimal gain as a function of frequency. (a) Grid convergence; (b) effect of
boundary layers.

energetic for a finer grid. This is not surprising since in this case the response of the
flow is located on the shock, while we know that a finer grid has a strong impact on
the representation of the shock wave (see § 3.1). We believe that even finer grids are
required to converge the optimal gain curve at low frequencies. Yet, the main features
presented here should remain unchanged.

Isolated peaks, located around f = 1200 Hz and its multiples, are visible in the
gain function. To investigate their nature, we consider again the wall-slip configuration
introduced in § 3.1. The new gain function (figure 20b) presents isolated peaks at the
above mentioned frequencies. The associated responses are shown to be similar to the
mode presented in figure 15(c). This indicates that these peaks are linked to acoustic
resonance phenomena. Also, these peaks reflect the presence of weakly damped global
modes in the spectrum shown in figure 16. Without boundary layers and recirculation
region, it is seen that the evolution of the optimal gain still reveals a higher gain at
low frequencies than at medium frequencies. Hence, even in this simplified case, the
shock should react preferentially to low-frequency motions.

4. Conclusions
The main purpose of this study was twofold: to describe experimentally the

unsteady dynamics of the transonic interaction between a strong shock and a turbulent
boundary layer developing over the Délery bump; and to address the problem of
unsteadiness in SWBLI employing stability analyses.

In the experimental investigation, wall-pressure and skin-friction fluctuations gave
access to a local description of the unsteadiness. Near the shock foot, the low
frequencies dominate the spectrum, while after the separation point medium-frequency
fluctuations are most energetic. The recirculation zone displays both low- and
medium-frequency unsteadiness. Similarly to other SWBLI, the fluctuations are
broadband and weak in amplitude. The Strouhal numbers representative of low-
and medium-frequency unsteadiness compare favourably with other configurations.
An innovative investigation using high-speed Schlieren photography allowed for
a more complete characterisation of the interaction: Fourier-mode decomposition
indicated where low- and medium-frequency unsteadiness are most energetic. The
results confirm the separation of temporal scales between the unsteadiness in the
shock and the mixing layer. Cross-correlation maps showed that shock motions
undergo rigid-body displacements accompanied by expansion and contraction of the
recirculation bubble. In the mixing layer region, the medium-frequency perturbations
are due to Kelvin–Helmholtz instabilities, which generate vortex shedding.
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The interaction has been investigated numerically. It has been shown that unsteady
RANS simulations converge toward a steady-state solution, which compares favourably
with the mean PIV and wall-pressure measurements. Global stability analyses have
then been conducted: the RANS equations were linearised around the base flow, and
the Jacobian matrix explicitly extracted. The eigenvalue decomposition indicates that
the flow is globally stable for two-dimensional perturbations, and the least stable
eigenvalues cannot be related to the unsteadiness. Pseudo-resonances of the flow have
then been identified by computing the singular values of the global resolvent. Such
an input/output approach aims at characterising the receptivity of the flow to external
forcings. It has been confirmed that low-frequency unsteadiness is due to a preferred
response of the flow to existing environmental noise at low frequencies. The optimal
forcings are concentrated both upstream and downstream of the shock, with a strong
sensitivity at the shock foot. In the supersonic region, low-frequency forcings are
also located along the right characteristic lines that impinge on the separation point.
Medium-frequency unsteadiness is linked to Kelvin–Helmholtz instabilities, which
exist regardless of the presence of the shock wave.

From a broader perspective, the considered two-dimensional interaction has potential
for transient growth. If this behaviour were typical of all SWBLI, such flows would
be better characterised by analysing the singular values and vectors of the global
resolvent, and not the eigenvalues of the Jacobian matrix. Regarding the origin of the
unsteadiness, it has been shown that both perturbations in the incoming flow and in
the recirculation bubble may trigger shock unsteadiness. If this behaviour is conserved
in three-dimensional cases, the source of low-frequency motions may not be unique.
The authors support the idea that the interaction responds as a dynamical system
which is affected by external or internal disturbances; if forced by an external agent,
the flow will respond. However, even in the absence of this forcing, low-frequency
oscillations can be caused by coupling between the dynamics of the separation bubble
and the shock.
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