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This review article is concerned with the design of linear reduced-order models and con-
trol laws for closed-loop control of instabilities in transitional flows. For oscillator flows,
such as open-cavity flows, we suggest the use of optimal control techniques with Galerkin
models based on unstable global modes and balanced modes. Particular attention has to
be paid to stability–robustness properties of the control law. Specifically, we show that
large delays and strong amplification between the control input and the estimation sensor
may be detrimental both to performance and robustness. For amplifier flows, such as
backward-facing step flow, the requirement to account for the upstream disturbance envi-
ronment rules out Galerkin models. In this case, an upstream sensor is introduced to
detect incoming perturbations, and identification methods are used to fit a model struc-
ture to available input–output data. Control laws, obtained by direct inversion of the
input–output relations, are found to be robust when applied to the large-scale numerical
simulation. All the concepts are presented in a step-by-step manner, and numerical codes
are provided for the interested reader. [DOI: 10.1115/1.4033345]

1 Introduction

Closed-loop control of fluid flow is concerned with the targeted
manipulation of inherent flow behavior to accomplish a prescribed
objective [1–6]. It uses information from the flow (provided by
sensors) to adapt to incoming perturbations and adjust to changing
flow conditions. Closed-loop control is particularly devised for
stabilizing hydrodynamic instabilities, such as Tollmien–
Schlichting waves developing in boundary-layer flow or the vor-
tex shedding mode in flow past a cylinder. It takes advantage of
the strength of the intrinsic instability mechanisms of the system
to manipulate the flow at minimal cost. In terms of applications, it
allows us to diminish drag of transport vehicles (for example, by
maintaining boundary layer flows in a laminar state), increase
safety margins (for example, by promoting large-scale instabilities
in the wake of transport aircraft to alleviate vortices), avoid struc-
tural fatigue (for example, by suppressing the Rossiter modes in
open cavity flows), or suppress noise sources (for example, by
mitigating the Kelvin–Helmholtz instabilities in jet flows).

Contrary to open-loop control, closed-loop control may in prin-
ciple adjust to different operating conditions as it takes advantage
of restricted knowledge of the current state through sensing of the
flow. In this article, we focus on in-time (reactive) closed-loop
control [7] which acts on the time-scales of the perturbations that
are targeted: we therefore leave aside optimized open-loop control
strategies (adaptive control), where measurements are solely used
to modify the control law parameters in order to adjust to slowly
varying operating conditions. Experimental implementations of
in-time closed-loop control are scarce in literature. Most achieve-
ments deal with nearly parallel flows such as channel or
boundary-layer flow [8–10], with open-cavity flows [11–17] or
with bluff-body or backward-facing step flow [18–22]. This
article focuses on model-based control, leaving aside model-
free control-design techniques, such as manual phase-gain
adjustments where the actuator signal is purely proportional to a
measurement signal with a time-delay (uðtÞ ¼ Kyðt� sÞ) [23–25],

proportional-integral-derivative controllers [23,26], adaptive fil-
ters [9,13,15,27–29], and attempts to find an optimal compensator
law by machine learning techniques [6,22].

An accurate model representing the flow dynamics from all the
inputs (actuators and upstream disturbances) to all the outputs
(sensors) is the corner-stone of the model-based in-time closed-
loop control. In the following, we will review techniques to obtain
linear (Sec. 1.1) and nonlinear models (Sec. 1.2). The design of a
control law, which transforms the measurement signal into
an actuator law, may be performed in many ways [30,31]. The pri-
mary design objective is performance—for example, minimizing
the velocity fluctuations in some region of the flow field. How-
ever, performance is often not the sole objective under considera-
tion, and it is sometimes more prudent to trade a reduction in
performance for an increase in robustness. Robustness is under-
stood as performance under a range of off-design conditions and
uncertainty. A severe lack of robustness may degrade or even
invalidate a control law. In the design process of a control law, in
principle both performance and robustness should be targeted
such that the resulting control law remains effective over a whole
range of operating conditions. The principal model-based control
design techniques that have been used in flow control are
reviewed in Sec. 1.3. The objective and outline of this article then
follow in Sec. 1.4.

1.1 Linear Models. Linear models may be obtained either by
discretization of the governing equations, by projection of these
equations onto a given basis, or by directly identifying the dynam-
ics between inputs (actuators) and outputs (sensors).

Discretizing the linearized Navier–Stokes equations straightfor-
wardly yields state-space models, with a number of degrees-of-freedom
proportional to the grid size. In two-dimensional configurations
that exhibit nearly parallel flows, perturbations may be Fourier-
transformed in the streamwise direction, which results in a
low-dimensional 1D problem, where the state consists in the flow
variables in the wall-normal direction [32–35]. For strongly
nonparallel flows, the streamwise direction needs to be discre-
tized: for example, in a synthetic wake governed by the
Ginzburg–Landau equations (whose coefficients may be chosen to
mimic cylinder flow [24,36]), a small-scale 1D model is obtained
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with the state-variables distributed along the streamwise direction.
If the full linearized Navier–Stokes equations are considered, very
large models with states covering the entire 3D domain are
obtained. One may take advantage of the physical mechanisms
involved in the dynamics to simplify and reduce the dimension of
the state. For example, steady streaks in pipe flow [37] may be
described by parabolic approximations of the steady linear
Navier–Stokes equations; this approach provides a linear model
where time is replaced by the streamwise coordinate and where
the state only involves the degrees-of-freedom at streamwise
sections.

The above-mentioned models, which are based on a spatial dis-
cretization of the linearized Navier–Stokes equations, involve a
large number of degrees-of-freedom, but not all are necessary for
feedback control. For example, given an actuator and a sensor,
states that are downstream of the sensor or upstream of the actua-
tor are not necessary since they are not observable by the sensor
or not controllable by the actuator. Model reduction methods have
been introduced to drastically reduce the number of states and
focus on the observable and controllable states or the most rele-
vant states in the input–output transfer function.

Petrov–Galerkin projection methods of the linearized
Navier–Stokes equations onto specific bases have so far been con-
sidered. For example, the most controllable modes (eigenvectors
of the controllability Gramian) or the most observable and con-
trollable modes (eigenvectors of the product of the controllability
and observability Gramians, see Refs. [38–42]) provide models
that preserve stability and lead, in the latter case, to approxima-
tions with an upper-bound error expressed in the H1 infinity-
norm (this upper-bound is actually very conservative). If the flows
are globally unstable, the stable subspace may be reduced using
controllable/observable modes while the unstable subspace may
explicitly be accounted for by direct/adjoint global modes [43,44].
Model reduction procedures based on the H2 -norm [45,46] have
also been developed and are generally preferred because they
yield a smaller size for the reduced-order models, since they only
keep the most relevant energetic states. Once the basis has been
determined, the subsequent projection step of the linearized
Navier–Stokes equations onto the basis may be avoided by the use
of identification methods, where the coefficients of a linear model
from the inputs to the modes’ coefficients may be obtained by fit-
ting the model to available input–output data. For example, the
eigensystem realization algorithm (ERA) [47,48] in the case
where an impulse can be released from the input location or sub-
space identification methods [49,50] for the more general case
may readily be used for this purpose.

Closed-loop control methods do actually not require that
the state in the model represents physical structures, such as
controllable/observable modes. Only the input–output dynamics
from the actuator to the sensor is important. Considering solely
actuator–sensor data, identification methods may again be used to
determine the coefficients of the underlying linear model [51].
Different techniques are at hand. Wiener filters, which consider
the input autocorrelations and the cross-correlation between inputs
and outputs [8], require long records of input–output data in order
to converge the second-order statistics. More efficient techniques
consider raw input–output data in the time-domain. The ERA
method [47] is advantageous in numerical studies [52,53] when a
clean impulse can be released at the input location. For the more
general case, autoregressive (AR)-exogeneous, autoregressive-
moving-average-exogeneous (ARMAX), or AR-Markov linear
models may be fitted to broadband input–output signals [54–56].
The observer-Kalman filter identification method (OKID, see
Refs. [57,58]) is an optimized algorithm, requiring rather few data
to converge and is robust to the presence of external noise. Alter-
natively, subspace identification methods may also be used and
require in principle fewer parameters to tune [10,18,19,49,59]. In
the case of an unstable dynamics, the system first needs to be
stabilized (with an available controller) and the controller and
observer dynamics may be identified with the observer-controller

identification method [57,60,61]. Identification methods in the fre-
quency domain have also been developed. For this, broadband
input–output data may be Fourier-transformed or the input signal
can be chosen as a monotone excitation [61]. The latter choice is
of particular interest [62] since it enables us to account for weak
nonlinearities by the describing functions methodology, which
considers the amplitude of the response only at the forcing fre-
quency, leaving aside the response on the harmonics [63]. High-
order rational fits [61,62] or Loewner approximations [64] are
then used to obtain the models.

In complex configurations, the physics of the particular flow
under consideration may lead to simplified linear physical models.
In the case of an open cavity flow [14,61,65,66], the full dynamics
may, for example, be decomposed into different subcomponents,
each one governed by simple analytical expressions.

Techniques allowing us to combine a series of linear models
parameterized by an external control parameter (upstream veloc-
ity, angle of attack, etc.) into a single parameterized linear model
are important in view of designing a closed-loop control law
which is robust against variations in the considered parameters
[67].

1.2 Nonlinear Models. Nonlinear state-space models may be
obtained from the spatial discretization of the nonlinear
Navier–Stokes equations. This leads to large-scale models, where
the state involves degrees-of-freedom distributed over the entire
spatial domain of interest [68–71] or over streamwise sections in
the case of the parabolized Navier–Stokes equations [72].

A reduction of the size of these models may again be achieved
by projecting the nonlinear Navier–Stokes equations onto a given
basis. The most straightforward choice is the basis consisting of
proper-orthogonal-decomposition (POD) modes [17,73–76],
which replace the controllable modes (eigenvalues of the controll-
ability Gramian) that have been introduced in the linear frame-
work. Yet, the lack of an underlying mathematical foundation
makes this undertaking more difficult, and models need to be sta-
bilized (calibrated) due to the truncation of the POD basis
[73,77–80]. Once the POD basis has been determined, the ill-
conditioned projection step may be avoided by using identification
methods: a transient set of velocity fields may be used to deter-
mine the unknown coefficients of the nonlinear model either by
least-squares [81] or by more systematic direct-adjoint (4D-VAR)
techniques [82]. A firmer mathematical framework for extracting
nonlinear reduced-order models has recently appeared in the form
of the POD-discrete-extrapolation-interpolation-method (DEIM)
technique [83], which is based on additional POD bases for the
representation of nonlinear terms. First applications to large-scale
fluid problems are encouraging [84,85].

Nonlinear models capturing solely the dynamics between actua-
tors and sensors (without progressing through the state variables)
may also be obtained by fitting nonlinear-autoregressive exogene-
ous models to input–output data in the time-domain [86].

1.3 Control Design Techniques. Control design methods
depend on the nature (linear or nonlinear) and size of the underly-
ing fluid model (discretized Navier–Stokes equations or reduced-
order models).

Model-based control design methods for small-scale systems
are presented in standard textbooks [31,87]. Performance is com-
monly the primary objective that has been considered in fluid
mechanics. In nearly parallel flows, both pole-placement techni-
ques [32] and optimal H2-targeting the standard deviation of
some sensor measurement have first been considered for models
based on a discretization of the 1D linearized Navier–Stokes
equations [1,33–35,88]. For more complex configurations,
reduced-order models are first determined before pole-placement
techniques [11], optimal H2-control [11,43,44,89,90], or system
inversion [8,55,56] can be employed. Robust H1-control (closely
related to noncooperative game theory) has previously been
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applied to account for the non-normality of the linearized
Navier–Stokes equations [1,33,91]. In the frequency domain,
loop-shaping techniques may also be considered to tune perform-
ance by either optimizing the sensitivity transfer function
(inverted M circles on a Nichols chart) [92] or by using H1-loop-
shaping techniques [93] to target an objective loop transfer
function; in fluid mechanics, such techniques have been used by
several groups [12,25,53,62,94].

Accounting for uncertainty is a crucial point in model-based
flow control. Reduced-order models are inherently approximate,
and the effect of uncertainty on the stability and performance of
the closed-loop system needs to be carefully assessed. To this end,
determining gain and phase margins (PM) [90] or evaluating the
infinity norm of sensitivity functions [53] are useful quantitative
measures of stability robustness. Targeting both performance and
stability robustness may be achieved with the loop-transfer-
recovery (LTR) technique, which consists of artificially increasing
actuator noise to render the estimation process faster. LTR has
first been applied in flow control to account for Reynolds number
variations [34,35]. Limitations of this technique have been pointed
out and discussed quite early [95]: the existence of right-half
plane zeros may limit the speed of the estimation process, so that
one cannot decouple the dynamics of the observer from the
dynamics of the controller. This was clearly observed in
backward-facing step flow [90], where robustness margins are first
improved as the fictitious noise is increased, before they deterio-
rate again for still higher noise levels.

Robust control design techniques have been introduced [96–99]
to directly target robustness and therefore minimize the effect of
model uncertainty or badly known coefficients. Considering the
small-gain-theorem [97], it is found that stability robustness is
directly related to the H1-norm of the closed-loop system
between actuator noise and actuator signal (input-multiplicative
(IM) perturbations). Minimizing this quantity therefore yields
compensators that are maximally robust in terms of stability. Such
techniques have been considered in experimental flow control
studies [18,19]. In the frequency domain, loop-shaping techniques
may be considered to also tune robustness by either optimizing
the complementary sensitivity function (M circles on a Nichols
chart) [12,53,92,94] or by using H1-loop-shaping techniques
[25,93]. It has previously been acknowledged that nonlinearity
can cause a lack of robustness [76]. Robust linear control design
methods (although not specifically designed for that purpose)
have been used to improve the robustness to finite-amplitude per-
turbations [36,88,100]. Along this line, various authors promote
nonlinear control [76,101] as a key to overcoming this difficulty.

In large-scale systems, flow control can be viewed as an optimi-
zation problem and tackled by direct-adjoint techniques based on
the full nonlinear Navier–Stokes equations [30]. It is not possible
to implement a controller based on such methods in an experi-
ment, due to the time it takes to perform the direct-adjoint itera-
tions. Nonetheless, it is interesting to perform such control to
understand what closed-loop control can achieve at best and also
optimize a control setup (for example, where to optimally place
actuators and/or sensors). Several studies have been undertaken
along this line, based on either classical optimal control
[37,69–72] or on more complex robust control (noncooperative
game theory) [37,68,72,102–105].

1.4 Objective and Outline of This Article. From a physical
point of view, we have to distinguish two flow categories accord-
ing to their behavior as transition is approached [106]: oscillator
flows, such as the flow past a cylinder at Re ¼ 47� 150; are char-
acterized by a well-defined peak in the frequency spectrum, which
is rather insensitive to upstream perturbations; amplifier flows, on
the other hand, such as a boundary-layer flow subject to
Tollmien–Schlichting waves, exhibit a broadband frequency spec-
trum, which is a reflection of the upstream perturbation environ-
ment. Such distinct flow behaviors may straightforwardly be

linked to distinct properties of the linear stability operator: oscilla-
tor flows are characterized by globally unstable operators with the
frequency peak of the flow close to the frequency of the unstable
global mode; amplifier flows correspond to globally stable opera-
tors with the non-normality of the operator [107] accounting for
the potential of spatial amplification in the streamwise direction.

The distinction in behavior between oscillator and amplifier
flows also causes difficulties of a different nature for building
reduced-order models capturing all the inputs and outputs. In the
case of oscillator flows, modeling the upstream disturbance envi-
ronment poses less of an issue since the dynamics is rather inde-
pendent of it. Models obtained by Galerkin projections are
therefore well suited, and a combination of unstable global modes
and balanced modes accounting solely for the actuator input
[40,43,44] may be chosen as the projection basis. In the case of
amplifier flows, where modeling the influence of upstream distur-
bances becomes crucial, Galerkin models are inappropriate due to
their difficulty in obtaining an accurate representation of the
upstream disturbance environment. A second approach is there-
fore introduced that identifies the input–output kernels [54,55]
rather than deriving them from the governing equations. This
approach is not model-free, since we still have to pose the struc-
ture of the input–output kernels. Yet, it relies less on an accurate
description of the upstream disturbances: rather, the disturbance
model is replaced or marginalized by processing information from
an upstream sensor, which approximates the influence of upstream
disturbances.

Note that the size of accurate reduced-order models is deter-
mined by both spatial and temporal features; both large delays
between inputs and outputs and high-Reynolds number flows
require an increased order of the models. In the presence of time
delays, which is the case if the actuator and sensor are not co-
located, the model order is generally governed by these time
delays.

In this review, we introduce a framework for the design and
assessment of control configurations. Two generic cases (oscilla-
tor and amplifier flows) will be considered, and the various con-
cepts and techniques to build reduced-order models and to design
controllers will be presented. Although the two cases seem differ-
ent and appear to require different approaches, we will also
observe a great deal of commonalities; most importantly, we will
demonstrate the flexibility of the presented framework and make a
particular effort at physical interpretations wherever possible.
Special emphasis will be devoted to the robustness issue. Here,
we consider the robustness of a control design as an a posteriori
diagnostics; it is in turn used to motivate procedures to ameliorate
robustness at a certain expense to performance. Nonetheless, an
explicit promotion of robustness in the cost functional is beyond
the scope of this review.

The outline of this article is as follows: After presenting the
mathematical setup of the flow-control problem (Sec. 2), we suc-
cessively deal with the case of oscillator flow (Sec. 3) and ampli-
fier flow control (Sec. 4). A final section (Sec. 5) is devoted to an
outlook of the field.

2 Mathematical Setup of the Flow Control Problem

The mathematical description of a flow control problem con-
sists principally of the equations governing the motion of fluid
flow under the influence of external forcing around which a com-
pensator is designed that takes limited information from the flow
field and feeds back a control strategy. The specifics of this con-
trol strategy are a central component of the design process and
depend on the overall cost objective, but must in general also
respect robustness and performance requirements.

Mathematically, we can state a system of equations in the form

_x ¼ fðx; u;wÞ (1a)

y ¼ fyðx; gÞ (1b)
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z ¼ fzðxÞ (1c)

The first equation (1a) represents an initial-value problem for the
state vector x, which fully describes the evolution of the fluid flow
in time. This generally nonlinear equation also contains a control
variable u, modeling the influence of outside forces on the flow
development, as well as a noise term w accounting for commonly
unknown sources of uncertainty and stochasticity, such as free-
stream disturbances, acoustic noise source, and wall roughness
distributions. Of course, the initial-value problem is also parame-
terized by governing parameters, in our case mainly by the Reyn-
olds number Re. The second equation (1b) extracts information
from the full flow field, usually with the help of a sensor or other
measuring device. This measurement y is described by the (gener-
ally nonlinear) function fy which contains both the sensor location
and the type of signal (pressure, shear stress, temperature, etc.).
An additional stochastic term g models measurement noise. The
third equation (1c) resembles the second, as it also provides infor-
mation about the full flow field x via the function fz. In the latter
case, however, the signal z is not used to feed information about
the flow to the compensator, rather it is used to define the control
objective: once the compensator is attached to the system and the
composite system is operating in closed-loop mode, the signal z is
required to follow a prescribed behavior.

The three equations above are then supplemented by a
compensator which establishes a link between the estimation
measurement y and the control signal u such that a user-specified
cost-objective (based on the second measurement, the performance
measurement z) is reached. As is customary in flow control studies,
a block diagram illustrates the interplay between fluid system and
compensator in the closed-loop mode (see Fig. 1): the fluid system
(referred to as plant) is driven by two inputs (the control signal u
and external disturbances w) and produces two outputs (the mea-
surement y and the cost objective signal z). The measurement y and
control signal u are linked by a compensator whose task is to
manipulate the closed-loop system such that the cost objective
based on the performance signal z is optimally reached.

We focus in this article on the stabilization of equilibrium
points x0 existing in transitional flows. These are defined as
steady-state solutions of the governing equations

fðx0; u ¼ 0;w ¼ 0Þ ¼ 0 (2)

The control objectives in this article are concerned with the main-
tenance of the flow near some equilibrium point which involves
the suppression of instabilities (in the globally unstable case) or
the reduction of perturbation variance (in the globally stable
case). Mathematically, the focus on flow in the neighborhood of
an equilibrium point allows the linearization of the governing
equations. In addition, we will assume a discretization of the spa-
tial coordinates introducing matrices in lieu of linear operators
and state vectors in lieu of state variables. We obtain

_x ¼ Axþ Buuþ Bww (3a)

y ¼ Cyxþ g (3b)

z ¼ Czx (3c)

where the system matrix A is given as A ¼ @f=@xjx0
and analo-

gously for the control matrix Bu; the measurement matrix Cy, and
the objective matrix Cz: We assume the disturbance source w and
sensor noise g to carry over as additive sources of random noise,
which is in general the case when both w and g display weak
amplitudes. The matrix Bw models the manner in which plant
noise w forces the plant. In a slight abuse of notation, x; y, and z
in these equations in fact correspond, respectively, to the per-
turbed quantities x� x0; y� y0, and z� z0:

The sketch of the closed-loop system (Fig. 1) suggests the im-
portance and advantage of an input–output description of a linear
system. This is accomplished by defining a transfer function, a
concept that will be utilized in model reduction and system identi-
fication of linear open-loop systems and design and performance
analysis of closed-loop systems. The transfer functions are derived
from Eqs. (3a) to (3c) via Laplace transforms. For example, the
transfer function Tyu from the input signal u to the output mea-
surement y for the (linearized) plant is given as

TyuðsÞ ¼ CyðsI� AÞ�1
Bu (4)

with s as the Laplace variable. For purely imaginary arguments
s ¼ ix, it describes the relative amplification or suppression of
harmonic input signals (of frequency x) as they pass through the
linear system. The transfer function can thus be interpreted as the
filter function of the linear plant. The transfer function Tyu from
the input signal u to the estimation measurement y characterizes
the strength of the feedback and will be particularly important for
robustness issues. The transfer functions Tzu and Tzw involving the
performance signal z are important for performance and Tyw for
detection of upstream disturbances.

Before proceeding with the definition and design of closed-loop
flow control problems, we need to analyze the dynamics of the
flow to be manipulated, in order to identify the key mechanism
which drives the unsteadiness. This crucially depends on the sta-
bility behavior of the unforced (uncontrolled) system. Two cases
can be distinguished: (i) fluid flows that are globally unstable and
are thus dominated by an oscillatory instability and (ii) fluid flows
that are globally stable [106]. Fluid systems of the former case,
referred to as oscillators, are rather insensitive to external noise
sources, whereas fluid systems of the latter case, known as ampli-
fiers, react sensitively and distinctly to exogenous stochastic dis-
turbances. Our control objective for oscillator flows is the
suppression of the inherent instabilities, while for amplifier flows
it is the reduction of noise amplification (measured, e.g., by the
signal variance) throughout the system. The design steps for each
type of system are rather distinct, and this article is presenting
the principal steps for the effective and robust control design for
either case. We will showcase the control design and performance
evaluation on two generic flow configurations: the flow over an
open cavity, which for sufficiently large Reynolds number acts as
an oscillator [108], and the flow over a backward-facing step,
which falls into the noise-amplifier category [109]. The two con-
figurations are sketched in Fig. 2, together with the actuator/sensor
setup which will be discussed in more detail below. We thus pro-
ceed with designing a flow control strategy for flow over an open
cavity, outlining the procedural steps while paying particular
attention to questions of performance, closed-loop stability, and
robustness.

3 Control of Oscillators: Flow Over an Open Square

Cavity

The open-square cavity configuration is fully described in Sipp
and Lebedev [108]. We use the mesh referenced D1 and the

Fig. 1 Block diagram of a typical feedback control setup,
including plant, compensator, external disturbance sources
ðw ;gÞ; control signal u, measurement signal y, and objective
output z

020801-4 / Vol. 68, MARCH 2016 Transactions of the ASME

Downloaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 05/03/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



identical boundary conditions. The configuration is sketched in
Fig. 2(a), with the flow entering the domain from the left. The
boundary layer developing on the lower wall detaches at the left
edge of the cavity and forms a shear layer, which separates the
recirculation motion inside the cavity from the external flow. All
the quantities are nondimensionalized by the cavity length and the
upstream velocity; the Reynolds number is based on these same
quantities. The actuator consists of a volume forcing, added to the
cross-stream velocity equation and located near the upstream
edge, while the sensor extracts shear-stress information close to
the downstream edge. The exact actuator and sensor definitions
are given in Barbagallo et al. [110].

The flow becomes globally unstable once a critical Reynolds
number of Rec¼ 4140 is surpassed [108]; beyond this Reynolds
number (based on the inflow freestream velocity and cavity
depth), the flow acts as an oscillator, as the shear layer spanning
the cavity exhibits instabilities due to pressure feedback between
the downstream and upstream cavity edge. We will consider the
flow at four supercritical Reynolds numbers, Re¼ 5250, 6000,
7000, and 7500. A global stability analysis shows two (for
Re¼ 5250), three (for Re ¼ 6000 and 7000), or four (for
Re¼ 7500) eigenvalues, together with their symmetric counter-
parts. The eigenvalues, for positive frequencies, are displayed in
Fig. 3(a). The least stable global mode for Re¼ 7500 is shown in
Fig. 3(b), visualized by the streamwise velocity component. The
instability of the shear layer spanning the open cavity is clearly
visible, together with a characteristic wavelength in the stream-
wise direction and a monotonic growth between the upstream and
downstream cavity edge. The corresponding adjoint global mode,
i.e., the principal global mode of the adjoint problem based on the
conjugate transpose system matrix A�, is shown in Fig. 3(c). This
adjoint mode contains sensitivity information for the associated
direct mode; not surprisingly, the adjoint mode is spatially com-
pact near the upstream cavity edge, since this area displays the
maximum sensitivity for exciting the corresponding direct global
mode.

Fig. 2 Sketch of flow over an open cavity (a) and a backward-facing step (b)—two generic
flow configurations representing an oscillator and noise-amplifier flow, respectively. The actu-
ator (u), flow sensor (y), and performance sensor (z) are marked by colored symbols for each
configuration. External upstream disturbance sources are indicated by w in the case of an
amplifier flow. (a) Feedback configuration and (b) feed-forward configuration.

Fig. 3 (a) Eigenvalues for flow over an open cavity for four dif-
ferent Reynolds numbers, displayed in the complex frequency
(x)–growth-rate (r) plane. (b) Principal global modes for flow
over an open square cavity at Re 5 7500; visualized by contours
of streamwise velocity. (c) Corresponding adjoint global mode.

Setting up the configuration [108]?
Linux commands (all codes are provided as Supplemental material, which is
available under the “Supplemental Data” tab on the ASME Digital Collection):

1. cd Cavity/BF
2. FreeFemþþ newton.edp # compute base-flow
3. cd ../Actuator
4. FreeFemþþ actuator.edp # generate volume force representing

actuator
5. cd ../Sensor
6. FreeFemþþ sensor.edp # generate vector representing sensor

Comments. The base-flow x0 is a steady solution of the incompressible
Navier–Stokes equations:

fðx0Þ ¼
�u0 � ru0 �rp0 þ �Du0

r � u0

� �
(5)

where ðu0;p0Þ designate the velocity and pressure components of the base
flow. We use finite-elements to spatially discretize these equations

(FreeFemþþ). The discretization is first-order, if Arnold–Brezzi–Fortin
MINI elements [111] are used or second-order with Taylor-Hood
elements.

A Newton method may be used to find zeros of this nonlinear equation
(code Cavity/BF/newton.edp). We therefore iteratively solve the equation
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dx0 ¼ �A�1½fðx0Þ� (6)

and set xnew
0 ¼ x0 þ dx0. The matrix A acts on the velocity–pressure com-

ponents dx ¼ ðdu; dpÞ� of a perturbation around the current base flow
x0 ¼ ðu0; p0Þ. It is obtained by spatially discretizing the linearized
Navier–Stokes operator around ðu0; p0Þ

A ¼ �ðÞ � ru0 � u0 � rðÞ þ �DðÞ �rðÞ
r � ðÞ 0

� �
(7)

The inverse in Eq. (6) may be computed using a sparse, direct LU solver
(e.g., MUMPS [112]).

How to determine unstable direct and adjoint eigenvalues [108]?
Linux commands:

1. cd ../Eigs
2. FreeFemþþ-nw eigen.edp # Compute unstable direct global modes
3. FreeFemþþ-nw eigenadj.edp # Compute unstable adjoint global

modes
4. FreeFemþþ plotUvvpc.edp # plot least-damped adjoint global mode

Comments. In order to determine the eigenvalues ofA close to a given com-
plex shift s, we compute the eigenvalues with largest magnitude of
ðA� sIÞ�1

. For this, we repeatedly apply this operator to a given vector
(power method), where the inverse operations are again carried out by a
direct solver. Convergence may be improved by using a Krylov subspace and
restarting techniques (e.g., Arnoldi methods [113]). The direct operator A
(code Cavity/Eigs/eigen.edp) has been defined in Eq. (7), while the operator
A� can be obtained either by a conjugate transpose ofA (code Cavity/Eigs/
eigenadj.edp) or by discretization of the continuous adjoint operator

A� ¼ �ðÞ � ru�0 þ u0 � rðÞ þ �DðÞ rðÞ
r � ðÞ 0

� �
(8)

How to perform a direct numerical simulation (DNS) of the incompressible
Navier–Stokes equations?
Linux commands:

1. cd ../DNS
2. FreeFemþþ-nw init.edp # generate initial condition
3. FreeFemþþ-nw dns.edp # launch DNS solver

Comments. After spatial discretization, the Navier–Stokes equations may
be written in the following perturbation form:

du

dt
þ u � ru0 þ u0 � ruþrp� �Du ¼ �u � ru (9a)

r � u ¼ 0 (9b)

where ðu; pÞ denote the velocity and pressure components of a perturbation
around the base flow x0. These equations may be time-discretized using a
second-order semi implicit backward-finite-difference scheme. In the case
of weak-amplitude perturbations (term u � ru is weak), the code is uncon-
ditionally stable. Here, we reproduce (for simplicity) the first-order scheme

1

Dt
þ ðÞ � ru0 þ u0 � rðÞ � �DðÞ rðÞ

r � ðÞ 0

0
@

1
A unþ1

pnþ1

 !

¼
un

Dt
� un � run

0

0
@

1
A (10)

This results in a large-scale linear system for ðunþ1pnþ1Þ�, which has to be
inverted at each time-step (code Cavity/DNS/dns.edp). Supplemental material
is available under the “Supplemental Data” tab on the ASME Digital Collec-
tion. The inversion is again performed using the direct LU-solver. Note that
Dirichlet-boundary conditions can straightforwardly be enforced at this stage.

3.1 Model Reduction for Unstable Systems. Standard tech-
niques of control design for the closed-loop setup shown in Fig. 1
result in a compensator that contains as many degrees-of-freedom

as contained in the plant. This is a consequence of the estimator
component (Kalman filter) of the compensator which reconstructs
an approximate state vector from the measurements y supplied by
the plant. A controller then uses this estimated state to determine
the optimal control strategy u. It should be self-evident that for a
control signal to be effective, it has to be available to the plant
before the fluid system evolves over the next time step; in other
words, the compensator has to react to changes in measurements on
a faster time-scale than the characteristic time-scale of the plant. For
a real-time capability of the compensator in experiments, it has to
operate with few degrees-of-freedom. The strategy is then to reduce
the plant from a high-dimensional system to an equivalent low-
dimensional system, followed by the standard design of a reduced-
order compensator based on the low-dimensional system. The term
“equivalent” needs to be further specified: referring back to Fig. 1, it
appears critical to match the input–output relations (or transfer func-
tions) of the full and reduced system during the model-reduction
process. In the present case-study, the high-dimensional transfer-
function Tyu has been represented in Fig. 4 by a solid black line. We
now attempt to find a reduced-order model, indicated by an over-bar
ð�Þ, with transfer functions, e.g., Tyu, that are close to the respective
transfer functions of the full system, e.g., Tyu, where closeness is
measured in the infinity-norm.

Technically, the model reduction process can be described by
a Galerkin projection, where we express the state vector x 2 RN

in a given basis V 2 C
N�k according to x � Vx; where x 2 C

k

denotes the expansion coefficients. It is understood that k � N:
To complete the projection, a second basis W 2 C

N�k is
necessary which is bi-orthogonal to V; such that W�V ¼ I with
I 2 C

k�k
as the identity matrix. A system with k degrees-of-freedom

for the coefficient vector x can then be derived, resulting in

_x ¼ Ax þ Buuþ Bww (11a)

y ¼ Cyx þ g (11b)

z ¼ Czx (11c)

with A ¼W�AV as the reduced system matrix, and similarly
expressions for Bu; Bw; Cy, and Cz: What remains to be deter-
mined is the basis V: The perturbation dynamics for flow over a

Fig. 4 Modulus of transfer functions for different composi-
tions of the Galerkin bases for flow over an open cavity at
Re 5 7500. The bases are composed of eight global modes (8
GM) and a varying number of balanced (bPOD) modes.
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cavity at supercritical Reynolds numbers (Re> 4140) evolves in
an unstable and stable subspace. Both subspaces have to be prop-
erly represented during the model-reduction process or the Galer-
kin projection. V and W are therefore compound of an unstable
(Vu and Wu) part and a stable (Vs and Ws) part. For the unstable
subspace, we choose the unstable direct and adjoint global modes
for our expansion basis ðVu;WuÞ: For the stable subspace, we
refer back to the previous statement that the input–output dynam-
ics ðu;wÞ ! ðy; zÞ have to be captured by the selected basis vec-
tors. For this reason, we choose a set of balanced modes for
ðVs;WsÞ: Balanced modes are characterized by structures that are
equally observable and controllable and are thus particularly apt
at spanning the dynamics between actuator and sensors. The bal-
anced modes can be easily computed by a snapshot-based tech-
nique introduced by Willcox and Peraire [39] and Rowley [40].
Since this technique relies on a stable system, the snapshots have
to be projected onto the stable subspace. This can be easily
accomplished using the adjoint global modes corresponding to
unstable modes.

Due to the presence of global instabilities, which dominate the
fluid behavior, we choose a simple configuration with no external
disturbance influences. However, we do include two uncorrelated
sources of noise: the measurement noise g and the noise intro-
duced into the system together with the control signal u (from
which it follows that Bw ¼ Bu). These noise sources are related to
our output and input devices. We will denote the latter noise
source by w and adjust the earlier block diagram according to
Fig. 5. The principal balanced mode between u ¼ w and y¼ z (we
have chosen Bw ¼ Bu and Cz ¼ Cy) and its adjoint are displayed in
Fig. 6; they show a representation of the perturbation dynamics
between the actuator and sensor. The composite model-reduction
step for an unstable fluid system is sketched in Fig. 7. The bases con-
tain unstable global modes (in red) in Vu and their adjoints in Wu;
augmented by balanced modes (in green) in Vs and their adjoints in
Ws: The Galerkin projection yields a substantially reduced system
matrix A: the unstable part consists of a diagonal submatrix contain-
ing the unstable eigenvalues, the stable part is a dense submatrix of
small dimension. The transfer functions associated with this reduced-
order system may be obtained straightforwardly, e.g.,

TyuðsÞ ¼ CyðsI � AÞ�1
Bu (12)

In order to validate the model-reduction process, we determine
the transfer functions for different dimensionalities k of the Galer-
kin bases V and W: For a Reynolds number of Re ¼ 7500; the
bases consist of eight unstable global modes (four complex conju-
gate pairs) augmented by a varying number of balanced modes
(bPOD modes), see Fig. 4. The representation of only the unstable
subspace (8 GMþ 0 bPOD) captures the largest peak of the full
transfer function, but fails to match at other frequencies. For
increasing numbers of included balanced modes, the transfer func-
tion of the reduced system rapidly converges toward the transfer
function of the full system. Once 17 balanced modes have been
incorporated into V and W, the transfer functions of the full and

reduced system are indistinguishable within plotting accuracy. In
this latter case, the 25-dimensional system accurately reproduces
the input–output behavior of the full high-dimensional system.

Fig. 5 Block diagram of a typical feedback control setup for
oscillator flows, including plant, compensator, external noise
sources ðw ;gÞ; control signal u, measurement signal y, and
objective output z

Fig. 7 Sketch of model reduction procedure (Galerkin projec-
tion) for the system matrix. Unstable global modes are indi-
cated in red (direct modes in Vu and adjoint modes in Wu), and
balanced modes are indicated in green (direct modes in Vs and
adjoint modes in Ws). The reduced system matrix A consists of
a diagonal submatrix containing the unstable eigenvalues (red
symbols) and a dense submatrix (dark blue) describing the
reduced stable subspace dynamics.

Fig. 6 (a) Principal balanced mode and (b) associated adjoint
balanced mode, visualized by contours of the streamwise
velocity component. The actuator and sensor locations are
indicated by black symbols.

How to reduce the stable subspace [40,43]?
Linux commands:

1. cd ../ROM
2. FreeFemþþ-nw direct.edp # solution of the linearized Navier–Stokes

equations with an impulse in the control signal u(t)
3. FreeFemþþ-nw adjoint.edp # solution of the adjoint linearized

Navier–Stokes equations with an impulse in the measurement signal
y(t)

4. FreeFemþþ-nw gramian.edp # build and save the cross-Gramian to
disk

5. MATLAB -nodesktop -nosplash< bpod.m # compute balanced modes
6. FreeFemþþ-nw buildredmat.edp # compute reduced matrices and

vectors

Comments. We perform one direct (code Cavity/ROM/direct.edp) and one
adjoint (code Cavity/ROM/adjoint.edp) simulation (supplemental material
is available under the “Supplemental Data” tab on the ASME Digital
Collection):

Applied Mechanics Reviews MARCH 2016, Vol. 68 / 020801-7

Downloaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 05/03/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



_x ¼ Ax; xð0Þ ¼ Bs
u (13a)

y_¼ A�y; yð0Þ ¼ Cs;�
y (13b)

where Bs
u ¼ ðI� VuW

�
uÞBu and Cs;�

y ¼ ðI�WuV
�
uÞC

�
y designate the con-

trol matrix Bu and estimation measurement matrix Cy projected onto the
stable subspace of A and A�. These codes are based on the spatial and tem-
poral discretization techniques for the DNS code, presented above. The
first-order (in time) version of the direct code iteratively solves (matrix
inversions are performed with a direct LU solver)

1

Dt
þ ðÞ � ru0 þ u0 � rðÞ � �DðÞ rðÞ

r � ðÞ 0

0
@

1
A unþ1

pnþ1

 !
¼

un

Dt
0

0
@

1
A

(14)

while the adjoint code either solves for the continuous adjoint equations in
time

1

Dt
þ ðÞ � ru�0 � u0 � rðÞ � �DðÞ rðÞ

r � ðÞ 0

0
@

1
A unþ1

pnþ1

 !

¼
un

Dt
0

0
@

1
A (15)

or considers the transconjugate of the matrix used in the direct solver
(code Cavity/ROM/adjoint.edp). Supplemental material is available under
the “Supplemental Data” tab on the ASME Digital Collection.
Considering a series of M snapshots ðxðiDtÞ; i ¼ 1::MÞ; ðyðiDtÞ; i ¼ 1::MÞ
of these two simulations, we may approximate the controllability and
observability Gramians [114] as

P ¼
ð1

0

exp ðAtÞBs
uB

s;�
u expðA�tÞdt

�
XN

i¼1

xðiDtÞxðiDtÞ�di ¼ XX� (16a)

Q ¼
ð1

0

exp ðA�tÞCs;�
y Cs

y expðAtÞdt

�
XN

i¼1

yðiDtÞyðiDtÞ�di ¼ YY� (16b)

where di refers to quadrature coefficients. A fourth-order Simpson method
is commonly used to approximate the integral. We then explicitly form the
cross-Gramian Y�X (code Cavity/ROM/gramian.edp) and perform its sin-
gular value decomposition (code Cavity/ROM/bpod.m) (supplemental ma-
terial is available under the “Supplemental Data” tab on the ASME Digital
Collection)

Y�X ¼ URT� (17)

where U�U ¼ I and T�T ¼ I. R is a diagonal matrix with positive entries,
the Hankel singular values. The bases Vs and Ws are then obtained by
retaining only the largest Hankel values in this decomposition and by
computing

Vs ¼ XTR�1=2; Ws ¼ YUR�1=2 (18)

Finally, the reduced model ðA;Bu;CyÞ can be obtained by Galerkin pro-
jection (code Cavity/ROM/buildredmat.edp). Supplemental material is
available under the “Supplemental Data” tab on the ASME Digital
Collection.

3.2 Control Design With Optimal Control. Once the full-
scale model has been reduced, we can design a compensator.
Combining the two disturbance/noise sources w and g, introduced

above, into a composite vector n ¼ ðg wÞ�, we can slightly recast
the governing equations and state

_x ¼ Ax þ Buuþ ð0 BuÞn (19a)

y ¼ Cyx þ ð1 0Þn (19b)

z ¼ Czx

‘u

� �
(19c)

In addition to a rearrangement of the exogenous noise terms, we
have also modified the objective signal by including a fraction of
the control signal u. The cost functional or control objective is
based on the expected value of this augmented objective signal z

hz�zi ¼ hx�C�zCzx þ ‘2u2i (20)

By extending the previous objective signal by the weighted con-
trol signal ‘u, we can regulate the amount of control energy
expended by the compensator. For small values of ‘2; we expend
control efforts rather generously, while for large values of ‘2; any
control effort is heavily penalized and thus expended rather parsi-
moniously. The limit of ‘2 !1 is known as the small-gain limit
(SGL).

It is apparent from Fig. 5 that the plant produces output (y)
from input (u), while the compensator furnishes input (u) from
processing the output (y). The task of designing a compensator
then lies in the construction of a linear relationship from y to u,
represented, for example, by its transfer function Kuy, such that
the closed-loop transfer-function from the noise signal n to the
objective signal z

T
cl

zn ¼
1

1� KuyTyu

TzuKuy Tzu

‘Kuy ‘KuyTyu

 !
(21)

obtained by combining in parallel the open-loop transfer function

Tyu and the compensator, Kuy, minimizes a yet to be specified con-

trol objective. Inspection of expression T
cl

zn shows that the poles
of the closed-loop system correspond to the zeros of

1� KuyðsÞTyuðsÞ. Hence, for the closed-loop system to be stable,
the compensator is designed to place these zeros into the stable left
half-plane. We also note that the poles of the plant and the compen-

sator automatically cancel in T
cl

zn. For this reason, the poles of a
closed-loop system are unconnected to those of either the plant or
the compensator, and a closed-loop system may be stable, even
though the plant or the compensator exhibits unstable modes.

The control objective may be precisely defined by introducing

the normalized disturbance inputs g0 and w0, with g ¼
ffiffiffiffi
G
p

g0 and

w ¼
ffiffiffiffiffi
W
p

w0, where G ¼ hgg�i and W ¼ hww�i, respectively,
denote the two governing noise covariances: for the sensor noise
and for the controller-added noise. Linear-quadratic-Gaussian
(LQG)-control stabilizes the compensated system and minimizes
(among all possible compensators) the two-norm of the following

closed-loop transfer-function T
cl

zn0 from n0 to z:

_x ¼ Ax þ Buuþ ð0
ffiffiffiffiffi
W
p

BuÞn0 (22a)

y ¼ Cyx þ ð
ffiffiffiffi
G
p

0Þn0 (22b)

z ¼ Czx

‘u

� �
(22c)

Hence, in the presence of disturbance inputs g and w with cova-
riances G and W, an LQG-controller minimizes the expected value
of hz�zi, which is equal to the (squared) two-norm of the closed-
loop transfer function T

cl

zn0 to be minimized.
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The compensator with a transfer function Kuy can be written in
state-space form according to

_̂x ¼ Jx̂ þ Ly (23a)

u ¼ Kx̂ (23b)

where x̂ denotes the estimated coefficient vector—expressed in
the same basis V and approximating x—and L and K are the Kal-
man and control gains, respectively. L corresponds to the weight
factor multiplying any measurement mismatch to accomplish an
accurate and reactive estimate of the flow state, while K represents
the mapping of the estimated state to the control law. The transfer
function associated with the above compensator system is given
by

KuyðsÞ ¼ KðsI� JÞ�1
L (24)

The control and Kalman gains K and L are determined from two
algebraic matrix Riccati equations [87]. The parameters governing
these gains appear in the transfer-function (22), whose two-norm
is to be minimized: (i) the noise/disturbance covariances G and W,
for which only the ratio G/W is significant and (ii) the parameter
‘2 measuring the cost of any control effort. Once K and L are
determined, the system matrix J is straightforwardly obtained by
J ¼ A � LCy þ BuK: Note that in the SGL (‘2 !1 and
G=W !1), the resulting compensator leads to a reflection of the
unstable poles about the ðr ¼ 0Þ axis.

The performance of the resulting compensator may be assessed
by analyzing the four components of the closed-loop transfer
function (21). Considering the output u rather than ‘u, we are
led to

T
cl

zg T
cl

zw

T
cl

ug T
cl

uw

0
@

1
A ¼ 1 0

0 ‘�1

� �
T

cl

zn (25)

The two-norms of these four transfer functions are given in Table 1
for the SGL-case (third line). The transfer functions resulting
from the actuator noise w may be compared to those obtained for
a full-state controller (FSC) in which the plant-state is assumed to
be known, i.e., u ¼ Kx. These norms are reported in the second
line of the table. It is seen that the estimator component, which is
required in the case of a partial-state-controller, is responsible for
a considerable loss of performance, both for the expected value of
z (increased by a factor of 3.4) and for the expected value of u
(increased by a factor of 3.9). We also show in Fig. 8 the two

transfer functions related to the sensor noise g, namely, T
cl

zg and

T
cl

ug. Physically, they describe the resulting power spectral density

of the performance measurement signal z and of the control signal
u, in the presence of white measurement noise g only.

Table 1 Performance and robustness measures for the FSC obtained with an LQR, with a partial-state controller (PSC) designed
with LQG control and with an H‘ IM controller at Re 5 7500. The SGL refers to ð‘25‘ and G=W5‘Þ, while the MG case is related to
ð‘252041 and G=W 51587Þ. The IM results have been obtained with ðWy=Wd 51022Þ. The gain GM6 and phase PM margins are given
in decibels and degrees, respectively.

kTcl

zwk2 kTcl

ugk2 kTcl

uwk2 ¼ kT
cl

zgk2 GMþ GM� PM q

FSC LQR/SGL 727 2.89 1 �6.02 60.00 0.500
FSC LQR/MG 95 4.05 1 �9.94 60.00 0.609
PSC LQG/SGL 2454 0.050 11.26 0.16 �0.26 1.16 0.019
PSC LQG/MG 1636 0.072 8.67 1.17 �1.31 7.83 0.137
PSC IM ðc ¼ 1Þ 1687 3.07 8.44 1.35 �1.20 8.12 0.129
PSC IM ðc ¼ 5:91Þ 2334 32.4 9.93 1.41 �1.65 9.99 0.173
PSC IM ðc ¼ 5:37Þ 3612 105 14.08 1.49 �1.79 10.70 0.186

Fig. 8 Modulus of the closed-loop transfer function between
sensor noise g and objective signal z (blue curve) and between
sensor noise g and control signal u (red curve) for open-cavity
flow at Re 5 7500 with ðl2 5 ‘ and G=W 5 ‘Þ (SGL).

How to design an LQG controller and launch a DNS with this controller
[43,87]?
Linux commands:

1. cd ../Reg
2. MATLAB -nodesktop -nosplash< h2.m # compute controller
3. cd ../DNSCONTROL
4. FreeFemþþ-nw init.edp # generate initial condition for the DNS

solver
5. FreeFemþþ-nw dnscontrol.edp # launch DNS with controller

designed in../Reg

Comments. The optimization problem for the control gain yields the fol-
lowing algebraic matrix Riccati equation for an auxiliary variable R:

A
�
Rþ RA � RBu‘

�2B
�
uRþ C

�
zCz ¼ 0 (26)

from which the control gain K follows as:

K ¼ �‘�2B
�
uR (27)

Analogously, the optimization problem for the Kalman gain involves an
auxiliary variable S, which is the solution of an algebraic matrix Riccati
equation of the form

ASþ SA
� � SC

�
yG
�1CySþ BwWB

�
w ¼ 0 (28)
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from which the Kalman gain L follows as

L ¼ SC
�
yG
�1 (29)

3.3 Closing the Loop With the Large-Scale System: The
Robustness Issue. It has to be kept in mind that the compensator
is strictly designed for the model-reduced (low-dimensional) fluid
system (11), and the stabilization of the plant can only be
expected for the reduced-order model. Nonetheless, the reduced-
order compensator is applied to the full plant and expected to pro-
duce comparable results (see Fig. 9 for a sketch).

In the case of the compensated full plant, the transfer function
of the closed-loop system

Tcl
zn ¼

1

1� KuyTyu

TzuKuy Tzu

‘Kuy ‘KuyTyu

� �
(30)

establishing a link between the disturbance input n and the objec-

tive signal z is similar to the reduced version, T
cl

zn (see Eq. (21)),

except that the reduced open-loop transfer functions (Tyu, etc.) are
replaced by the equivalent ones for the full plant (Tyu, etc.). The
reduced and full-plant open-loop transfer functions are generally
close to each other (see Sec. 3.1) but never exactly equal. In the

case of a minor mismatch, the two-norm of Tcl
zn0 will be slightly

different from the two-norm of T
cl

zn0, indicating that the expected
value of z will slightly differ. In the case of a more severe
mismatch, the full-plant closed-loop system may even become
unstable, with a zero of 1� KuyTyu appearing in the unstable half-
plane. It is therefore mandatory to evaluate the performances of
the reduced-order compensator when applied to the full-plant sys-
tem. For the present case, results are shown in Fig. 10; both the
time-traces of the objective signal z and the control signal u are
displayed. After four convective time units, representative of
twice the time of travel across the cavity, the objective signal z is
successfully damped, confirming that the global instability of the
flow at this Reynolds number has been suppressed. Two convec-
tive time units are necessary for the estimator to produce accurate
and reliable approximations of the flow field from shear measure-
ments y, while two other time units pass before the effect of the
control signal u is felt at the downstream sensor location of z.
After these four time units, the closed-loop compensator is fully

operative and successful in eliminating the instability and mini-
mizing the objective signal. In summary, the compensator—
designed for a reduced-order model of the full system in the
SGL—has been applied to the full system and has proven success-
ful in suppressing the inherent flow instabilities at a Reynolds
number of Re¼ 7500. We will next take a closer look at this per-
formance and determine the limiting margins of our design before
instabilities in the closed-loop system render the compensator
ineffective. Two cases will be considered for an analysis of our
closed-loop dynamics in off-design operation: (i) a shift in Reyn-
olds number and (ii) the excitation of nonlinear effects.

3.4 Robustness to a Shift in Reynolds Number. In a first
experiment to determine the margins of stability for the closed-

Fig. 9 Block diagram illustrating the compensator design process (a) and the application of
the reduced-order compensator to the full plant (b). The performance and robustness of the
design are evaluated for the configuration on the right.

Fig. 10 Objective sensor signal z (a) and control signal u (b)
for compensated flow over an open cavity at Re 5 7500 in the
SGL. The simulation has been initialized with the most unstable
global mode, whose amplitude has been chosen sufficiently
small such that the entire simulation remains in the linear
regime. No disturbance/noise sources w and g have been
applied.
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loop system, we apply the compensator, designed for stabilizing
the flow at a Reynolds number of Re¼ 7500, to flow over the
same cavity at a Reynolds number of Re¼ 7000. As before, the
SGL has been invoked which results in a parsimonious control
effort to achieve the control objective. The objective signal z and
the control signal u are given in Fig. 11. It is clear that the com-
pensator could not stabilize the flow at Re¼ 7000, as evidenced
by the rapidly diverging control signal u and the unsettled objec-
tive signal z. It appears that the Re¼ 7500 compensator does not
possess sufficient robustness to negotiate this rather small change
in Reynolds number.

We will take a closer look at robustness issues and introduce
generic perturbations DðsÞ to the reduced transfer function TyuðsÞ;
such that

TyuðsÞ ¼ ½1þ DðsÞ�TyuðsÞ (31)

A sketch of the perturbed closed-loop system is given in Fig. 12.
We will follow a classical path and track the unstable poles of the
closed-loop transfer function given in Eq. (30)—which is equiva-
lent to tracing the unstable zeros of the expression 1� KuyTyu: By
design, we know that all zeros of 1� KuyTyu are located in the sta-
ble half-plane. The smallest perturbation DðsÞ to the reduced
transfer function Tyu that yields a marginal zero in this expression
provides a measure of stability margin for the closed-loop system.

First, to simplify the analysis, we will consider modifications to
the open-loop transfer function Tyu in the form of a multiplicative
complex factor 1þ DðsÞ ¼ g. We therefore introduce a modified
transfer function Tyu according to

Tyu ¼ gTyu g 2 C (32)

and assess the movement of the zeros of 1� gKuyTyu as g is var-
ied. Further simplifications are put forth: (i) a purely real and posi-
tive change in g ¼ a; i.e., a 2 Rþ and (ii) a change in the phase
of g of the form g ¼ expði/Þ: The special case g¼ 1 recovers the
stable configuration (by design) of the small-gain compensated,
closed-loop system. By varying g, we probe the stability margins
of the closed-loop system with respect to structured changes in the

system to be controlled [87]. Physically, the first case g 2 Rþ

models an estimation error in the instability’s amplification rate,
while the second case g ¼ expði/Þ represents an estimation error
in the instability’s convection speed. In the former case, two mar-
gins arise: one for a minimum underestimation of the instability’s
amplification rate, denoted by a� < 1; and one for a maximum
overestimation, represented by aþ > 1: Traditionally, these two
gain margin (GM) values are expressed in decibels (dB) and
abbreviated as GMþ ¼ 20 log10aþ and GM� ¼ 20 log10a�: In the
latter case, the minimum positive angle / (denoted /þ) yielding
closed-loop instability corresponds to the PM and is given in
degrees.

A more general way to assess robustness is to consider a com-
pletely generic perturbation D and determine the perturbation D of
smallest norm (here the infinity-norm) that yields closed-loop
instability. Considering the actuator noise input wd and control
signal output zd¼ u of the unperturbed closed-loop system, the
small-gain-theorem [87] demonstrates that the perturbed closed-
loop system (with Tyu, Kuy, and D all connected as shown in
Fig. 12) is stable if and only if

jD ixð Þj 	 1����Tcl
zdwd

ixð Þ
����
; 8x (33)

where

Tcl
zdwd

sð Þ ¼
Kuy sð ÞTyu sð Þ

1� Kuy sð ÞTyu sð Þ
(34)

is the transfer function of the unperturbed closed-loop system
from the input wd to the output zd. The latter expression is also
known from the literature as the complementary sensitivity func-
tion [94]. This result implies that the system becomes unstable if
there exists a frequency where the product of the perturbation
amplitude jDj and the closed-loop transfer function amplitude

jTcl
zdwd
j is larger than 1. From this, a new global robustness mea-

sure may be defined: considering the quantity q such that

q ¼ 1

kTcl
zdwd

sð Þk1
(35)

the small-gain theorem states that the closed-loop system is stable
if and only if kDk1 	 q: We recall the definition of the infinity-
norm: kTk1 
 supxjTðixÞj.

The small-gain theorem also provides us with a method to bet-
ter analyze the frequencies where a perturbation D may most

Fig. 12 Closed-loop perturbed system. The closed-loop sys-
tem is composed of the actual cavity flow Tyu and the controller
Kuy. The actual transfer function Tyu is slightly different from
the reduced transfer function Tyu by a multiplicative factor 11D.
The perturbation D displays one input (the control signal zd 5 u)
and one output (the actuator noise wd). We have also indicated
an additional input to the closed-loop system, wy, which is
required for well-posedness of theH‘ design framework.

Fig. 11 Objective sensor signal z (a) and control signal u (b)
for compensated flow over an open cavity applying a compen-
sator designed for Re 5 7500 in the SGL to a flow at a Reynolds
number of Re 5 7000. The initial condition consists of the most
unstable global mode, with a sufficiently low amplitude for the
simulation to remain in the linear regime.
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easily render the closed-loop system unstable. Introducing the
amplitude a and phase / satisfying Tyu ¼ aei/Tyu, closed-loop
stability requires that

max 0; 1� 1

jTcl
zdwd

ixð Þj

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

a� xð Þ

	 a 	 1þ 1

jTcl
zdwd

ixð Þj|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
aþ xð Þ

(36)

j/j 	 arccos 1� 1

2jTcl
zdwd

ixð Þj2

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

/þ xð Þ

(37)

The margins aþðxÞ; a�ðxÞ, and /þðxÞ provide gain and PM
which depend on the frequency, in contrast to the previously intro-
duced margins aþ, a�, and /þ. They provide additional insight
into the critical frequencies where the perturbation D might most
easily destabilize the closed-loop system.

Analysis of the robustness margins GMþ;GM�; PM; and q
for our above SGL-case at Re¼ 7500 reveals exceedingly small
margins. These numbers, which are reported in Table 1 (third line,
labeled “PSC LQG/SGL”), show that only a minute error of less
than 2% is tolerable in the estimation of the transfer function,
before an eigenvalue of the closed-loop system re-enters the
unstable half-plane and renders the compensator ineffective.
Recalling the earlier example, it appears that a simple change in
the Reynolds number from the design value of Re¼ 7500 to
Re¼ 7000 has been sufficient to exceed these margins. In
Fig. 13(a), we have plotted the magnitude of the transfer function
Tyu for Re¼ 7500, and the upper aþðxÞ and lower a�ðxÞ GM are
obtained with the SGL-compensator. For stability of the closed-
loop system, the perturbed transfer function (e.g., arising from a
change in the Reynolds number from Re¼ 7500 to Re¼ 7000)
must entirely fall within the upper and lower bounds displayed in
the figure. We observe that the transfer function for Re¼ 7000
(red line) exceeds the tight bounds near x � 16:9. This provides
graphical confirmation that even a small change in the transfer
function can result in closed-loop instabilities, as observed in
Fig. 11.

3.5 Robustness Analysis and Improvements. The stability
margins depend on the parameters ‘2 and G/W which determine
the control gain and Kalman gain. Taking the SGL, ‘2 !1 and
G=W !1; resulted in the expenditure of only a minimal control
effort (only the unstable structures have nonzero, but small gains)
and the minimal adjustment of the estimator by measurement mis-
match (case of very noisy sensors). In this limit, the compensator
displays weak robustness, which itself has not been explicitly
enforced. In an effort to increase the stability margins, we relax
the SGL in the design of the Kalman filter and apply a loop-
shaping technique known as LTR.

FSC (linear-quadratic regulators (LQR)) do not suffer from
such small robustness margins; by analyzing the appearance of
marginal zeros of the loop transfer-function 1� gKTxu as a func-
tion of g, it may be shown [87] that they exhibit at least
GMþ ¼ 1, GM�¼�6 dB, a PM of 60deg, and q ¼ 0:5. The
actual GM of the FSC in the SGL case have been computed and
reported in Table 1 (line 1, labeled “FSC LQR/SGL”), where it is
seen that we precisely recover these theoretical values. It is the
estimator component of the LQG-compensator that is responsible
for the loss of robustness. LTP attempts to alter the estimator in
the LQG-design to more closely resemble an LQR-setup and thus
recover the favorable robustness properties of FSC. This can be
accomplished by overwhelming the control signal u, which enters
the estimator, by an additional and fictitious control noise w. The
estimator will then rely far more on the measurement than on the
corrupted plant dynamics. This additional noise will produce a
larger Kalman gain L and thus a faster estimator whose intrinsic

dynamics becomes less prominent. If we obtain an ultrafast esti-
mator, the estimated state x̂ will be equal to the actual state x, so
that the control signal u ¼ Kx̂ is equal to the full-state control sig-
nal u ¼ Kx. In other words, by increasing the fictitious control
noise input we approach the LQR compensator. Suffice it to men-
tion that the fictitious control noise is merely added during the
design procedure of the Kalman gain, i.e., in the algebraic Riccati
equation. The new-found Kalman gain L then replaces the original
gain.

Adding control noise to the estimator in an effort to approach
the LQR-limit yields the sought-after increase in robustness and
GM, but at the expense of compensator performance. There is a
monotonic increase in the cost functional with increasing spectral
density of the fictitious noise in the design process. This trade-off
therefore requires a user-supplied compromise between perform-
ance and robustness.

Figure 14 displays the GM6 (in dB) and PM (in degrees) as a
function of the noise covariance ratio G/W and the cost of control
‘2 for a compensator designed at Re¼ 7500. The SGL is located

Fig. 13 Modulus of the open-loop transfer function Tyu (solid
black line), including GM a1ðxÞ and a2ðxÞ (dashed lines), for
flow over an open cavity at Re 5 7500 stabilized by (a) an
SGL-compensator and (b) an MG-compensator. Note that the
open-loop transfer function for Re 5 7000, included in red, is
contained within the bounds over the entire frequency range
only for the MG-compensator.
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in the upper right corner, showing small margins in all the three
cases as observed previously. For finite and moderate values of
these two parameters, a noticeable increase in all the three
margins—and therefore a noticeable increase in robustness—can
be observed. Notice, however, that the desirable robustness prop-
erties of the full-state LQR controller have not been reached. This
issue will be discussed below in Sec. 3.9.

Returning to our example of controlling the plant at Re¼ 7000
with a compensator designed for Re¼ 7500 we also include in
Fig. 14 isocontours of the principal eigenvalue of the closed-loop
Re¼ 7500/7000 system. This eigenvalue corresponds to the least-
damped zero of 1� KuyjRe¼7500

G=W;‘2 TyujRe¼7000: The gray margin con-
tours represent robustness, while the eigenvalue isocontours are
concerned with the stability of the compensated system. We can
deduce from these figures that, while the closed-loop Re¼ 7500/
7000 system could not be stabilized in the SGL (recall Fig. 11),
the improved GM for more modest values of G/W and ‘2 lead to
the stabilization of the closed-loop system by an off-design com-
pensator. This can also be confirmed by considering the compen-
sator obtained for the parameter values of G=W ¼ 1587 and
‘2 ¼ 2041 (the white symbol in Fig. 14). We observe vastly
improved gain and PM, which are reported in Table 1 (line 4,
labeled “PSC LQG/MG”). The open-loop transfer function Tyu for
Re¼ 7500, including the upper and lower bounds aþðxÞ and
a�ðxÞ, is presented in Fig. 13(b). We see that the open-loop trans-
fer function for Re¼ 7000 (red line) is now fully contained within
the bounds over the entire frequency range. Ultimate confirmation
comes from plotting the objective signal z and the control signal u
for the case of combining a flow at Re¼ 7000 with the above
LTR-compensator designed for Re¼ 7500. The results are shown
in Fig. 15. In accordance with our conclusions from Fig. 13(b),
the LTR-compensator succeeds in stabilizing the unstable
Re¼ 7000 flow, even though it has been designed for a flow at
Re¼ 7500. This can be attributed to the improved robustness
properties of the LTR-compensator. The performance, however, is
suboptimal which is reflected in the slower relaxation to a stable
state in Fig. 15.

In summary, loop-shaping techniques have been effective in
significantly increasing the gain and PM associated with the SGL.
This has been accomplished by an artificially increased control-
noise input during the design process which pushed the SGL-
compensator gradually toward a full-state (LQR) configuration. It
was thus possible, though less efficient, to stabilize the cavity flow
at Re¼ 7000, even with a compensator designed for an operating
Reynolds number of Re¼ 7500.

3.6 Control Design Targeting Stability Robustness. In this
section, we design a controller KuyðsÞ which aims at maximizing

the robustness measure q ¼ kTcl
zdwd
k�1
1 , while keeping the closed-

loop system stable. To this end, we try to minimize the1� norm
of the closed-loop transfer function Tcl

zdwd
. We consider the

reduced model governing the flow field with two outputs, y and
zd; and three inputs, namely, the control signal u, the input wd of
amplitude Wd corrupting the actuator signal, and the input wy of
amplitude Wy contaminating the measurement signal y. Introduc-
ing the normalized inputs w0d and w0y, such that wd ¼ Wdw0d and
wy ¼ Wyw0y, the governing equations read

_x ¼ Ax þ Buuþ ð0 Bu

ffiffiffiffiffiffiffi
Wd

p
Þn0 (38a)

y ¼ Cyx þ ð
ffiffiffiffiffiffi
Wy

p
0Þn0 (38b)

zd ¼ u (38c)

with n0 ¼ ðw0y w0dÞ
�
. The H1 -control theory provides tools to

minimize kTcl
zdn0k1. The optimal controller is obtained by an itera-

tive procedure, where a design parameter c is progressively
decreased. The following upper bound holds for all the values of

Fig. 14 Contours of gain margins GM1 (a) and GM2 (b) and PM (c) in the log10ðG=W Þ2log10ð‘2Þ plane for flow
over an open cavity at Re 5 7500. Dark contours indicate good robustness properties. The white contour levels
represent the least stable eigenvalue of the flow-field at Re 5 7000 coupled to a compensator designed at
Re 5 7500. The white bullet point indicates the coordinates ðG=W 5 15872‘2 5 2041Þ corresponding to the LTR
calculations.

Fig. 15 Time signal of objective measurement z (a) and control
u (b) for cavity flow at Re 5 7000 stabilized by an LTR-
compensator designed for Re 5 7500
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c: kTcl
zdn0k1 	 c. A stopping criterion then provides the smallest

possible parameter c ¼ cmin, which can be shown to correspond to

kTcl
zdn0k1. To recover the previously introduced robustness objec-

tive kTcl
zdwd
k1, we consider amplitudes Wy of the input wy that are

small compared to the amplitudes Wd of the input wd: if

Wy=Wd � 1, we obtain kTcl
zdn0k1 � kTcl

zdwd
k1.

In Table 1, we show in lines 5, 6, and 7, labeled “PSC IM,” the
performance and robustness measures are obtained for
c ¼ 1; c ¼ 5:91, and c ¼ cmin ¼ 5:37 at a Reynolds number of
Re¼ 7500. We see that the various robustness margins are all
increased with respect to the previous controllers, but that the per-
formance criteria further deteriorate. We verified (not shown here)
that the linearized numerical simulations with these new control-
lers also manage to stabilize the base flow at Re¼ 7000.

For the rest of the paper, we will disregard these controllers and
instead focus our attention on LTR controllers (the main conclu-
sions were overall identical for the LTR medium-gain (MG)-con-
troller and theH1 -controllers targeting stability robustness).

How to design a robust controller within theH1-control framework [87]?
Linux commands:

1. cd ../Reg
2. MATLAB -nodesktop -nosplash< hinf-im-10percent.m # compute

controller
3. cd ../DNSCONTROL
4. FreeFemþþ-nw init.edp # generate initial condition for DNS solver
5. FreeFemþþ-nw dnscontrol.edp # launch DNS with controller

designed in ../Reg

Comments. The procedure consists of finding the smallest value of c > 0,
such that

A
�
Rþ RA � ð1� c�2ÞRBuB

�
uR ¼ 0 (39a)

ASþ SA
� � ðWy=WdÞ�1

SC
�
yCySþ BuB

�
u ¼ 0 (39b)

and such that all eigenvalues of RS fall below c2 in modulus. The control-
ler may then be computed as follows:

K ¼ �B�uR (40a)

L ¼ ðI� c�2SRÞ�1
SC

�
yðWy=WdÞ�1

(40b)

J ¼ A þ ð1� c�2ÞBuK� LCy (40c)

TheH1-control framework ensures that kTcl
zd n0k1 < c and that

kTcl
zd n0k1 ¼ c ¼ cmin when the eigenvalue criterion is reached.

3.7 Robustness to Nonlinearities. In a second robustness
study, we subject the open cavity flow to increasing amplitudes of
the initial condition, thus triggering nonlinear effects. For suffi-
ciently large amplitudes, the linear instabilities will eventually sat-
urate into a limit-cycle behavior, characterized by a robust
periodic flow pattern. Our first experiment contrasts the control
performance of the SGL-compensator with a compensator robusti-
fied using LTR for increasing amplitudes of the initial condition
at Re¼ 7500. The results are shown in Fig. 16. For rather low
amplitudes, both the SGL- and LTR-compensators are able to
render the closed-loop system stable. Due to the reduced gain and
PM, however, the SGL-compensator fails rather quickly in stabi-
lizing the system for slightly larger initial amplitudes; the more
robust LTR-compensator, on the other hand, is still effective at
these amplitudes. Once the amplitudes exceed a critical threshold,
however, the LTR-compensator fails as well, and an unstable
closed-loop system results.

Nonlinear effects, and the associated limit-cycle behavior, are
more prominent for higher Reynolds number. Once the critical

Reynolds number Rec¼ 4140 is surpassed, global linear instabil-
ities arise which will be counterbalanced by a saturating effect
from the nonlinear terms of the governing equations. This balance
leads to a characteristic limit-cycle behavior; the amplitude A of
the limit-cycle can be estimated as A �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re� Rec

p
: It is interest-

ing to assess the ability of the compensator, designed for the linear
regime, to restabilize the flow once it has gone into a limit-cycle
behavior. This is, again, a robustness issue: we are applying a
compensator to a system in an off-design arrangement.

It was confirmed (not shown here) that an FSC manages to
restabilize a limit-cycle behavior up to Re ¼ 7500: In the case of
partial-state control, it was not possible to find parameters
ð‘2;G=WÞ for which the compensators successfully restabilize the
limit-cycles for Re � 7000: A more favorable configuration is
obtained by considering a lower Reynolds number: in this case,
the instability is weaker and the amplitude of the limit-cycle is
smaller. For Re ¼ 6000; we display the objective measurement z
and the corresponding control signal u for both an SGL-
compensator and an LTR-compensator. In both cases, control is
applied after the fluid system settles into a limit-cycle behavior
(see Figs. 17(a) and 17(c)), and in both cases the control efforts
succeed in suppressing the saturated limit-cycle and return the
flow to the steady base flow. In the case of the SGL-compensator,
we observe a slow but steady decay of the objective signal z, once
the control is applied. In contrast, the LTR-compensator, which
has been designed for G=W ¼ 250 and ‘2 ¼ 200 resulting in
GMþ¼ 2.57 dB, GM�¼�3.19 dB, and PM ¼ 17:9deg; shows a
significantly more rapid return to the steady base flow which is
accomplished with a shorter, but markedly larger control input u
(see Figs. 17(b) and 17(d)).

3.8 Effect of Reynolds Number and Estimation Sensor
Location on Robustness Margins. In the absence of an estima-
tor, when full-state information control is applied, the GM are far
larger allowing for optimal performance without restrictive
robustness constraints. We recall that an FSC manages to restabi-
lize a flow in a limit-cycle for Reynolds numbers up to Re¼ 7500.
Introducing an estimator thus has to be considered as the weak
link in the closed-loop system, responsible for the loss of robust-
ness and forcing us into a compromise between performance and

Fig. 16 Temporal evolution of the perturbation kinetic energy
for increasing amplitudes of the initial condition, contrasting
the performance of SGL-compensation and robustified LTR-
compensation ðG=W 5 15872‘2 5 2041Þ, for cavity flow at
Re 5 7500
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robustness which can ameliorate the control problem, but (as we
have seen) ultimately not solve it.

There are two main parameters that have a strong impact on the
GM: the Reynolds number and the location of the estimation sen-
sor. Indeed, it seems intuitive that in order to provide an effective
and robust control, an accurate estimated state x̂ is required to be
passed on to the optimal controller; it is equally intuitive that this
estimation becomes increasingly difficult as the perturbation
growth between input and output becomes more pronounced and
as the distance, and therefore the delay, between input and output
increases. For example, in the case where no delay exists between
input and output, the effect of the control input u is immediately
felt by the estimation sensor y, so that only minute discrepancies
between the expected and the actual values of the sensor signal y
(due to inaccuracies in the model between the dynamics from u to
y) are detected and used to correct the estimated state. In the case
of a delay between u and y, errors between the expected and the
actual value of y will be seen after some delay and will therefore
be much stronger (especially in the case of a strong amplification
between u and y). Hence, the readjustment of the estimated state
toward the actual state will be more violent and may fail: the com-
pensator is less robust as a consequence.

The effect of the Reynolds number on the impulse responses
and on the GM is analyzed first. Figures 18(a)–18(d) presents the
impulse responses for Re¼ 7500, 7000, 6000, and 5250: it shows
a constant delay between actuator and sensor, but a rapidly
decreasing amplitude due to a decrease in the growth rate of the
most unstable mode. The GM� (representative for the other two
margins) for varying Reynolds numbers are shown in
Figs. 19(a)–19(d) as gray contours in the log10ðG=WÞ � log10ð‘2Þ
plane; the gray map is constant across the subplots to allow direct
comparison. While we recognize the typical loss of robustness in
the small-gain (G=W !1 and ‘2 !1) and large-gain
(G=W ! 0 and ‘2 ! 0) limit, we also observe a definite deterio-
ration of the GM for increasing Reynolds number, making it pro-
gressively difficult to achieve a stable closed-loop system. While
for Re¼ 5250, a GM of �6 dB is feasible, for Re¼ 7500 only
about �1.5 dB is attainable. For slightly supercritical Reynolds
numbers (and weak amplification between u and y), the favorable
stability margins of the full-state LQR controller may thus be
recovered.

Next, we will investigate the effect of the estimation sensor
location on the GM. For this, we vary the actuator–sensor distance

by moving the estimation sensor y (located initially near the
downstream edge of the cavity) toward the actuator. When the
measurements are performed in the bulk of the flow, the signal y
extracts the cross-stream velocity component of the perturbation
rather than the shear stress. We choose a Reynolds number of
Re¼ 7000 and consider a sensor located at xs ¼ 0:75; xs ¼ 0:5,
xs ¼ 0:25, and xs ¼ 0:15. We recall that in this coordinate system,
the actuator is located near x ¼ �0:1: The impulse responses for
the different sensor locations shown in Figs. 18(e)–18(h) reflect
the fact that information from the actuator reaches the sensor ear-
lier (and also, as a consequence, had less time/distance to grow to
larger amplitudes). As for the robustness properties, we focus
again on the GM� in the log10ðG=WÞ � log10ð‘2Þ plane. The
results are shown in Figs. 19(e)–19(h). The color contours are the
same across all subplots, which allows direct comparison. We
observe a clear improvement of the GM as the estimation sensor
is moved progressively toward the actuator location, thus facilitat-
ing a more accurate estimate of the flow state from the measure-
ments that, in turn, is used by the actuator. A gain margin of
GM���2 dB can be tripled to GM���6 dB by simply displac-
ing the original sensor from xs ¼ 0:75 to xs ¼ 0:15: We note that
(even in the case of high Reynolds numbers and strong amplifica-
tion between u and y) one may recover the favorable robustness
margins of the full-state LQR controller when the estimation sen-
sor is moved toward the actuator, i.e., when reducing the delay
between u and y.

We have seen that for increasing amplification between u and y,
the GM decline precipitously in the case of large delays between
u and y (estimation sensor located at the downstream edge). The
same trend is observed for increasing delays between u and y in
the case of strong amplification between u and y. Hence, the com-
bination of amplification (high Reynolds numbers) and delay
(downstream estimation sensor) between inputs and outputs is
strongly detrimental to the robustness of the compensator. We
will next relate the delays between u and y to unstable zeros of the
open-loop transfer function Tyu.

3.9 Zeros of the Open-Loop Transfer Function Tyu and
Delays. For the present open-cavity configuration, we now
address the existence and significance of unstable zeros in the
plant dynamics. The zeros of the open-loop transfer function Tyu

are displayed for different Reynolds numbers in Fig. 18(e) and for

Fig. 17 Objective measurement z 5 y ((a) and (c)) and associated control signal u ((b) and (d)) for control of an
open cavity flow at Re 5 6000. (a) and (b) SGL-compensator ðl2 5 ‘ and G=W 5 ‘Þ. (c) and (d) LTR-compensator
with ðl2 5 200 and G=W 5 250Þ.
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different locations of the estimation sensor in Fig. 18(j). In
Fig. 18(e), we observe a significant number of zeros in the unsta-
ble half-plane, independent of the Reynolds number. It reflects the
fact that the delay between u and y is constant and large. A differ-
ent picture emerges from Fig. 18(j). For a Reynolds number of
Re¼ 7000, four different locations of the downstream sensor have
been evaluated. While the case of xs ¼ 0:75 shows an appreciable
number of zeros in the unstable half-plane, moving the sensor
closer to the actuator markedly reduces this number. The number
of unstable zeros is therefore closely correlated to the delay
between the actuator input u and the estimation sensor y. The
number of unstable zeros in the plant dynamics is the appropriate
quantity to focus on in order to understand the potential failure of
the LTR-procedure as the actuator noise is increased (G=W � 1).
We recall that the actuator noise is increased in the LTR-
procedure to obtain an ultrafast estimator. Kwakernaak and Sivan
[115] have shown that an ultrafast estimator may only be obtained
if the transfer function Tyu has no unstable (right-half-plane) ze-
ros. In actuality, such an ultrafast estimator (if it exists) involves
the inverse of the plant dynamics Tyu: The zeros of Tyu appear as
poles in the closed-loop system; for the closed-loop system to be

stable, it is therefore required that no unstable zeros exist in Tyu:
Hence, the occurrence of unstable zeros in the plant dynamics lim-
its the speed of the Kalman filter as G/W is decreased: Kwaker-
naak and Sivan [115] have shown that in such a case, the
estimation error reaches a constant nonzero value. This constant
nonzero estimation error implies that the resulting control signal
u ¼ Kx̂ differs from the full-state control u ¼ Kx: This explains
the potential failure of LTR to achieve the favorable robustness
properties of the FSC as G/W is decreased. Note that the same
argument of existence of unstable zeros in the open-loop transfer
function also explains why the performance of an FSC may not
achieve perfect (ultrafast) control in the large-gain limit [32].

3.10 Conclusion. We conclude this section by summarizing
that closed-loop feedback control of open-cavity flow (and, in
general, of oscillator flows) in the SGL can suffer from very small
gain and PM that only allow minute deviations from design-
conditions before closed-loop stability is lost. Small robustness
margins are in particular obtained when strong amplification and
large delays exist between the actuator input u and the estimation

Fig. 18 Impulse responses between u and y. (a)–(d) for different Reynolds numbers, the
shear-stress sensor being located at xs 5 1:05: (f)–(i) For different locations of the estimation
sensor (the Reynolds number being equal to Re 5 7000). Zeros of the open-loop transfer func-
tion Tyu. (e) For different Reynolds numbers, the shear-stress sensor being located at
xs 5 1:05: (j) For different locations of the estimation sensor (the Reynolds number being equal
to Re 5 7000).
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sensor y. By artificially increasing the control noise input, we can
increase the Kalman gain and force the estimator to react algebrai-
cally to the measurement; consequently, we approach a full-state
control configuration and benefit from its increased gain and PM.
The procedure, known as LTP, shows marked improvements in
robustness at the expense of suboptimal performance. Nonethe-
less, LTP reaches its limits when zeros of the open-loop transfer
function exist in the unstable right half-plane. In this case, it is not
possible to obtain an ultrafast estimator and the favorable proper-
ties of full-state control are lost. We showed that the existence
of unstable zeros is linked to the delay between the control input
u and the estimation sensor y. Finally, we considered the
H1-control framework that allows us to directly target stability
robustness: it was found that the gain and PM could be increased
even further compared to LTR results. Such a robustness strategy
is effective when designing a single controller that can stabilize
base flows over a finite range of Reynolds numbers. Yet, it
appears that targeting stability robustness is not sufficient to stabi-
lize the flow field, exhibiting a limit-cycle, far from criticality.

In this above control setup, only one actuator and one sensor
have been used, resulting in a single-input-single-output system.
Considering a perhaps more realistic configuration with multiple
actuators and/or multiple sensors, minor modifications have to be
considered at all steps of the control design process; no conceptu-
ally different procedure has to be introduced. Model reduction for
the stable subspace by balanced truncation is accomplished by an
impulse response analysis of the direct problem from each actua-
tor and of the adjoint problem from each sensor. These responses
are gathered into a cross-Gramian matrix that is block-Hankel in
nature and where each element consists of a ni � no matrix (with
ni and no as the number of inputs and outputs, respectively). Once
the reduction bases have been identified, the control design pro-
ceeds as outline above. The multiple input–multiple output
(MIMO)-nature of the control setup yields only minor modifica-
tions in matrix size (for Bu and Cy) for the Riccati equations. As a
further consequence, transfer functions between all the combina-
tions of input and output signals have to be considered and
assessed according to the criteria and procedures above.

In particular for three-dimensional flows that are dominated by
spanwise-varying instabilities and perturbations, a spanwise distri-
bution of actuators and sensors may be called for to detect three-
dimensional structures and to counteract them by actuators.

Related to the choice of the number of actuators/sensors is the
decision of where to place them. Performance and robustness
measures critically depend on Bu and Cy which govern the type
and location of the various input and output elements. For oscilla-
tor flows, a perturbation analysis with respect to Bu and Cy would
have to be performed and used in an optimization scheme to itera-
tively determine the optimal (as defined by the user) placement of
actuators and sensors. This approach has been taken by Chen and
Rowley [116] for a simplified flow model based on the complex
Ginzburg–Landau equation. As a substitute for this approach,
actuators and sensors are often placed based on state-space prop-
erties alone. For the suppression of instabilities in oscillator flows,
sensors are placed where the most unstable global mode shows a
maximum, assuring an effective sensor signal even in the presence
of additive sensor noise. In contrast, the actuator is placed in a
region of maximal sensitivity of the instability. In this manner, we
promote the notion that a minimal amount of actuation may show
great effect on the instability. In other words, actuation is intro-
duced at a location where the instability originates rather than
where it has matured to larger amplitudes and would thus require
increased control efforts to influence.

4 Control of Noise Amplifiers: Flow Over a

Backward-Facing Step

The (low-dimensional) transfer function for the plant and com-
pensator featured prominently in the analysis and design of flow
control components for oscillator flows. Nevertheless, a state-
space formulation is often the most common representation of the
governing equations, involving the state-vector x of the plant or
its estimated equivalent x̂; as well as the system matrices
A;Bu;Cy;z or their model-reduced analogs.

An alternative approach involves the reformulation of the state-
space representation into an input–output system, which abandons
the explicit tracking of the state vectors in favor of a direct and
explicit mapping between actuator and sensor. This approach is
particularly appealing for globally stable flows, known as noise
amplifiers, and Sec. 4.1 will introduce and expound the associated
techniques. We will use our second generic flow configuration,
flow over a backward-facing step (see Fig. 2(b)), as a model prob-
lem to illustrate this alternative procedure. The backward-facing
step configuration is fully described in Herv�e et al. [55]; in this

Fig. 19 Gain margin GM2 in the log10ðG=W Þ2log10ð‘2Þ plane. (a)–(d) For different Reynolds numbers, the shear-stress sensor
being located at xs 5 1:05: (e)–(h) For different locations xs of the estimation sensor y: (e) xs 5 0:75, (f) xs 5 0:5; (g) xs 5 0:25, and
(h) xs 5 0:15: The actuator is located at x 5 20:1, and the Reynolds number is equal to Re 5 7000.

Applied Mechanics Reviews MARCH 2016, Vol. 68 / 020801-17

Downloaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 05/03/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



article, we employ the same mesh and boundary conditions. A
Poiseuille inflow velocity profile is prescribed on the left bound-
ary of the computational domain. The flow detaches at the step
edge and forms a shear layer, which separates the recirculation
motion inside the bubble from the external flow. All the quantities
are nondimensionalized by the step height and the incoming cen-
terline velocity; the Reynolds number is based on these quantities.
The disturbance source Bw and actuator Bu both consist of volume
forcings acting on the cross-stream velocity equation, while the
estimation sensor Cy and performance sensor Cz both extract
shear–stress information from the flow. The exact definitions of
these inputs/outputs are given in Herv�e et al. [55].

4.1 Formulation as an Input–Output System. We start by
stating the formal solution of the governing equations (3a)–(3c)
according to

zðtÞ ¼
ðt

0

Cz exp½ðt� sÞA�BuuðsÞ ds

þ
ðt

0

Cz exp½ðt� sÞA�BwwðsÞ dsþ gzðtÞ (41)

The expression for the measurement signal z is in the form of
two memory integrals, for the control input u and the plant noise
w, and an additive sensor noise gzðtÞ linked to the performance
sensor z. The kernels for these memory integrals, i.e., Cz exp½ðt�
sÞA�Bu for the control input and Cz exp½ðt� sÞA�Bw for the plant
noise input, can formally be computed from the system, control,
measurement, and plant noise matrices. This approach has been
taken in Sec. 3, yielding algebraic matrix equations (such as the
Lyapunov equation) that involve these matrices. The quality of
the final compensator crucially depends on how accurately these
matrices describe the system dynamics (A), the action of the con-
troller (Bu), the response of the sensor (Cz), and the influence of
external disturbance sources (Bw). In particular, the effectiveness
of the compensator relies on a faithful modeling of the plant noise
w via Bw: For oscillator flows, where a strong instability prevails
over noise-induced dynamics, the latter modeling problem is less
of an issue. For globally stable noise amplifiers, on the other hand,
the plant noise w features more prominently in the design process
and often becomes the deciding factor between success or failure
of the compensated system. The difficulty of obtaining informa-
tion about the disturbance environment leads us to abandon the
concept of a matrix-based approach (for example, it is impossible
in an experiment to obtain any information about the forcing Bw).

We therefore propose an alternative that extracts the kernels in
Eq. (41) by observing how the system reacts to a user-specified
forcing. We thus recast Eq. (41) into

zðtÞ ¼
ðt

0

hzuðt� sÞuðsÞ dsþ
ðt

0

hzwðt� sÞwðsÞ dsþ gzðtÞ (42)

and assume the two kernel functions hzu and hzw as unknown func-
tions. It is interesting to note that the functions hzu and hzw can be
thought of as the response of the measurement z to an impulsive
forcing of the actuator, i.e., uðtÞ ¼ dðtÞ; or an impulsive forcing
by noise, i.e., wðtÞ ¼ dðtÞ; in the absence of measurement noise.
The Fourier transform (in time) of these impulse responses will
produce the corresponding transfer functions Tzu and Tzw:

Anticipating the use of measured input and output data, we con-
vert to a time-discrete version of Eq. (42)

zn þ
Xna

i¼1

aizn�i ¼
Xnb

j¼0

bjun�j þ
Xn0c
k¼0

c0kwn�k þ R0n (43)

The performance sensor measurement is given by zn ¼ zðnDtSÞ
and equivalently for the other time-dependent variables, with DtS
as the sampling time. The choice of the sampling time is crucial

and will be fully discussed in Sec. 4.2.1. The right-hand side of
Eq. (43) can be interpreted as the discrete equivalent of the mem-
ory integrals in Eq. (42); the time history of the exogenous inputs
uj and wk contributes to the measurement signal zn: The coeffi-
cients fbjg and fc0kg, weighing the time history for each signal,
are assumed unknown. An additional dependence on the history
of z has been included in the form of an AR term, also with
unknown coefficients faig: We have truncated all the series
faig; fbjg, and fc0kg to na, nb, and n0c terms. The AR term allows
to decrease the total number of unknown coefficients na þ nb þ n0c
[55]. Yet, this term is not mandatory and may be set removed
(na¼ 0). The residual term R0 contains measurement noise linked
to the performance sensor z (note that the AR term in the model
may change the color of this noise) and truncation errors.

In physical experiments, information about the disturbance
environment wn is very difficult to come by. For this reason, we
replace the disturbance signal wn by an additional sensor that
measures the incoming disturbance environment. This measure-
ment is important for the way in which the actuator reacts to
incoming disturbances: the additional sensor is thus placed
upstream of the actuator and acts as a proxy for the incoming
(noisy) disturbance signal w. By denoting the upstream sensor sig-
nal by yn; we obtain the model

zn þ
Xna

i¼1

aizn�i ¼
Xnb

j¼0

bjun�j þ
Xnc

k¼0

ckyn�k þ R00n (44)

where nc þ 1 coefficients ck have been introduced to account for
the estimation sensor y. The modified residual vector R00 contains
the terms involved in R0 and additional terms. Indeed, measure-
ment noise in y generates process noise in Eq. (44) and the part of
upstream disturbances w which is not observed by y impacts the
downstream sensor z as colored (i.e., time-correlated) noise, since
noise gets modified according to the transfer functions of the sys-
tem as it travels from the upstream location of w to the down-
stream sensor location z. Hence, there are many reasons for R00n to
be colored noise. This crucial observation has to be explicitly rec-
ognized in our current model (44), if we hope to describe the
input–output behavior in a physically accurate manner. We there-
fore replace the residual signal R00 by a moving average (MA) sig-
nal according to

R00n ! Rn þ
Xnd

p¼1

dpRn�p (45)

which, for dp 6¼ 0; p ¼ 1; :::; nd; establishes a correlation between
successive instants and thus gives color to the noisy signal R00:
Our final model describing the relation between inputs u and y
and output z is then given as

zn þ
Xna

i¼1

aizn�i ¼
Xnb

j¼0

bjun�j|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ð1Þ

þ
Xnc

k¼0

ckyn�k|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ð2Þ

þ
Xnd

p¼1

dpRn�p|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ð4Þ

þRn

(46)

which is referred to as an ARMAX input.
A sketch of the control configuration is shown in Fig. 20,

together with the paths of information transfer in the flow. The
influence of the control u on z is labeled by Eq. (1), while the
influence of the upstream measurement signal y on z is indi-
cated in Eq. (2). Even though the y-signal will capture most of
the incoming disturbance (given by path (3) in Fig. 20), it is
conceivable that part of the environmental disturbance w will
not be detected by the y-sensor upstream, will pass through
the fluid system, and impact the measurement z further down-
stream (see path (4) in Fig. 20) as colored noise. This last
pathway is accounted for by the MA part of our ARMAX-
model (46).
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Setting up the configuration and obtaining learning and validation data
sets [55]?
Linux commands:

1. cd Step/BF
2. FreeFemþþ newton.edp # compute base-flow
3. cd ../DNSLEARN
4. MATLAB -nodesktop -nosplash< signalgen.m # generate random bi-

nary signal
5. FreeFemþþ-nw dns.edp # launch DNS with previous signal as con-

trol input

Even though the model is capable of capturing the principal dis-
turbance dynamics of flow over a backward-facing step in form of
an input–output relation, we will make one more adjustment to
facilitate the identification of the unknown coefficients faig; fbjg,
and fckg: This adjustment takes advantage of the fact that there is
a delay between the inputs at u and y and the resulting output at z;
in other words, any response in z must have been caused by a
time-delayed input. We thus postulate

zn þ
Xna

i¼1

aizn�i ¼
Xnb

j¼Dj

bjun�j þ
Xnc

k¼Dk

ckyn�kþ
Xnd

p¼1

dpRn�p þ Rn

(47)

with Dj and Dk denoting the number of time-steps DtS for a signal
at u or y to first impact the sensor z. The values for Dj and Dk can
readily be estimated by a simple time-delay argument based on
the base-flow convection speed. The improved formulation
(47) avoids the identification of zero-valued coefficients which
would result from formulation (46), in other words, we enforce
b0::Dj�1 ¼ 0 and c0::Dk�1 ¼ 0:

4.2 System Identification. With the overall structure of the
model selected, we force the model by user-specified time-
sequences for the input signal u while observing, in the presence
of upstream disturbances w, the time-synchronous output signals y
and z. For example, we have shown with red solid lines in
Figs. 21(a)–21(c) typical y, u, and z signals that have been meas-
ured (y,z) or imposed (u) in our simulation. These data sequences
are then used to determine all the coefficients of the selected
model structure.

In this section, we will first analyze (Sec. 4.2.1) the spectrum of
the various signals and introduce a low-pass filter to focus the
learning procedure on the active frequencies contained in the sys-
tem dynamics and therefore increase the sampling time DtS of the
model and reduce the number of unknown coefficients
na þ nb þ nc � Dj� Dk þ 2. We will also justify in this section
the choice of the control signal u(t) in terms of its amplitude and
frequency range. The required complexity of the ARMAX model
(reflected in the coefficients na; nb; nc;Dj; and Dk) will then be
discussed (Sec. 4.2.2) and determined by analyzing the autocorre-
lation function of the signal z and the cross-correlation functions

between (u, y) and z. From there, considering a first portion of
the simulation dataset (y, u, z) (which will be referred to as the
learning dataset in what follows), we can determine (see
Sec. 4.2.3) the set of coefficients fag; fbg; fcg, and fdg by com-
mon least-squares techniques, i.e., the set of coefficients is
adjusted to minimize the L2-error between the true measurement z
and the predicted signal given by Eq. (47). After the coefficients
have been determined, a second part of the dataset (which will be
referred to as the validation data set), different from the learning
data set, will be used to assess the generality and fidelity of the
identified ARMAX-model.

4.2.1 Sampling Time/Low-Pass Filtering/Learning and Validation
Datasets. The spectrum of the clean (noise-free) sensor signal z (in
the absence of control, u¼ 0) is shown with a solid red line in
Fig. 22(a). Frequencies in z are nearly zero above a threshold fre-
quency, x > xc ¼ 2. In the following, we will therefore focus on
the range of frequencies 0 	 x 	 xc and introduce a low-pass fil-
ter given by the transfer function

T sð Þ ¼
x2

c

s2 þ 2fxcsþ x2
c

(48)

with f ¼ 0:8 (note that Tð0Þ ¼ 1 and TðixcÞ ¼ 1=ð2ifÞ). This fil-
ter can be recast into a discrete-in-time state-space form based on
the acquisition time of the simulation (in our case, the time step of
the DNS, DtDNS ¼ 2� 10�3)

gnþ1

hnþ1

� �
¼ 1:994 �0:994

1 0

� �
gn

hn

� �
þ 0:00391zn (49)

zf
n ¼ ð 0:00205 0:00204 Þ gn

hn

� �
(50)

Fig. 21 Learning data set consisting of the recorded measure-
ments from the upstream estimation sensor y (a), input signal u
(b), and downstream performance sensor z (c). The validation
of the model is shown in (d) where the predicted output (solid
black line), for a forcing different from the learning set and for a
different disturbance environment, is compared to the true signal
(red symbols) from the full system. The sensor measurements y
and z and the actuator signal u were considered noise-free.

Fig. 20 Sketch indicating the transfer of information to be
modeled by the ARMAX structure. Transfer of information (1)
from the control u to the performance sensor z, (2) from the
upstream sensor y to the performance sensor z, (3) the observ-
able part of the disturbance environment w measured by y, and
(4) the part of w, unobservable by y but impacting the perform-
ance sensor z.
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Here, zn is the raw signal, while zf
n denotes the filtered signal. This

state-space form of the filter involves two internal states: g and h.
Within the range of frequencies 0 	 x 	 xc, this online filter
does not modify the amplitude of the signal but introduces a
(inconsequential) time-delay of Dtd ¼ dargðTðxÞÞ=dx � �0:8.
This is confirmed in Fig. 22(a) where the filtered spectrum of z is
seen to correspond to the unfiltered one (compare the red-dotted
line with the red solid line). In the time domain, shown in
Fig. 21(c), we observe that the filtered signal (black solid line)
corresponds to the unfiltered signal (red solid line) up to a right-
shift (without change of shape) with a time delay of Dtd .

The spectrum of the sensor measurement y is shown with a
black solid line in Fig. 22(a). Its peak in frequency occurs at
x � 5, well above xc. Hence, a substantial range of frequencies
that are detected by the estimation sensor y is damped by the sys-
tem as the fluctuations propagate toward the performance sensor
z. By applying the low-pass filter given above, the spectrum of the
y signal (black-dotted line) is significantly reduced for frequencies
above xc but unaltered for the lower frequencies (those active at
the z-location).

The input signal u has to be chosen sufficiently rich in frequen-
cies over the range 0 	 x 	 xc such that all the relevant temporal
scales are excited and the pertinent frequency range of the associ-
ated transfer function is represented. Also, with a view toward
implementation in an experiment, it should be realizable in a con-
crete, physical setting. A particular signal form that has yielded
encouraging results in a variety of system identification tasks is
the random binary signal, representing square waves of random
duration or duty cycles. This signal form excites a very broad
range of frequencies and is readily feasible in an experiment—
thus satisfies our requirements for an efficient identification pro-
cess. In what follows, we choose a signal u that covers the fre-
quency range 0 	 x 	 5, i.e., all relevant frequencies in z. The
amplitude of the signal u was chosen such that the variance of the
filtered z-signal (in the presence of upstream disturbances w and
control u) is doubled compared to the unforced case (u¼ 0). This
criterion was met in our case by choosing values for the square
waves equal to u ¼ 60:0054. The unfiltered (red line) and filtered
(black line) signals are shown in the time-domain in Fig. 21(b).
We note that damping the frequencies above xc ¼ 2 strongly
modifies the signal. As before, we observe a characteristic time-
delay between the two signals. The spectra of the unfiltered and
filtered u signals are shown, using blue solid and dotted lines, in
Fig. 22(a).

The sampling time DtS has to be chosen judiciously. On the one
hand, it should be sufficiently small to ensure no energy at the

Nyquist-frequency xS ¼ p=DtS in all the filtered signals. On the
other hand, it should be as large as possible to reduce the number
of samples, avoid redundancies in the signal and facilitate the
identification process. Here, we chose DtS ¼ 0:1, which yields a
Nyquist frequency of xS ¼ 31:4, i.e., an order of magnitude
higher than the cut-off frequency xc ¼ 2.

4.2.2 Determination of Parameters na, nb, nc, Dj, and Dk in
ARMAX Model. A robust and effective model should accurately
predict the output signal z, even though the input signal and/or dis-
turbance environment has not been part of the identification pro-
cess (learning dataset). Balancing the model’s complexity and the
size of the learning samples is a nontrivial task. Learning data sets
that are short compared to the model’s complexity will yield small
errors during the identification process, but will result in rather
large errors when validated on a distinct validation data set. This
phenomenon is referred to as over-learning which has to be
avoided; instead, a balance between the errors from the learning
and testing data set has to be attempted [117].

To determine the required complexity of the model, we have to
specify the number of coefficients to identify in the respective
summations in Eq. (47) and therefore determine the values of the
coefficients na; nb; nc; nd;Dj, and Dk. The coefficient na quantifies
the degree of memory in the measurement signal z. It can straight-
forwardly be related to the autocorrelation length of the signal z,
which may be deduced from inspection of the autocorrelation
function CðkÞ ¼ hznzn�ki of the measurement signal z. The auto-
correlation function CðkÞ=Cð0Þ is presented in Fig. 22(b) with a
red-solid line: the correlation time of the signal z is t � 2, which
translates to na¼ 20.

The coefficients Dj; Dk, nb, and nc may be determined from the
cross-correlation functions hunzn�ki and hynzn�ki: These cross-
correlation functions represented in Fig. 22(b) by black and blue
lines are related to the impulse responses from u and y to z. Hence,
the delays Dj and Dk may readily be estimated from these curves.
Here, we chose Dj ¼ Dk ¼ 101, which corresponds to a delay of
about ten time-units. In the case where no AR part is chosen
(na¼ 0), the sequences fbjg and fckg represent the impulse
responses from u and y to z. In this case, nbDtS and ncDtS should
roughly correspond to the cross-correlation lengths shown in Fig.
22(b). In the case na¼ 0, we chose nb ¼ nc ¼ 400, which corre-
sponds to a time of about 40 time-units for the impulse responses
to vanish. In the case na 6¼ 0, nb and nc will be smaller: for
na¼ 20, we chose nb ¼ nc ¼ 160. Finally, the coefficient nd meas-
uring the amount of memory in the noise, that directly impacts z,
must be determined empirically. The number of terms depends on

Fig. 22 (a) Spectrum magnitude of clean signal z (red) and clean signal y (black) in simula-
tion without control u 5 0. The blue lines relate to the chosen u-signals. The solid lines cor-
respond to the raw signals and the dotted lines to the filtered ones. The vertical solid line
refers to xc 5 2, the dashed-line to xS, and the dashed–dotted line to xDNS. (b) Autocorrela-
tion function of the z-signal (red) and cross-correlation functions of the u (black) and y
(blue) signals with the z-signal in simulation with control u.
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the presence or absence of noise in y, z, or u, the color of these
noise components, the presence or absence of disturbance sources
that are not visible by y, etc.

4.2.3 Determination of ai, bj, and ck in the ARMAX Model
and Subsequent Model Validation. We consider the filtered sig-
nals y, u, and z of the learning dataset shown with black lines in
Figs. 21(a)–21(c). These signals have been sampled at DtS ¼ 0:1
over the time-range 50 	 t 	 750. We then chose na¼ 0,
ðDj ¼ 101; nb ¼ 400Þ; ðDk ¼ 101; nc ¼ 400Þ, and nd¼ 0 for the
model structure, and the coefficient sets fag; fbg; fcg; fdg have
been obtained by least-squares techniques (armax function in
MATLAB). In a subsequent step, the identified model is validated by
subjecting it to a forcing signal u and disturbance environment w
that have not been part of the learning data set during the identifi-
cation phase. In particular, we compare the predicted model out-
put zp for the downstream sensor to the true filtered output zt

from the direct numerical simulation over 750 	 t 	 1000;
this comparison is shown in Fig. 21(d), and we may quantity
the quality of the model by evaluating the relative error
ERRv ¼ jjzp � ztjj2=jjztjj2 ¼ 0:007. After an initial transient
period—approximately given by the travel time of a perturbation
from the sensor y or actuator u to the downstream sensor z—the
model-predicted and true measurement signals coincide, indicat-
ing that the identified model is capable of predicting the perform-
ance measure z from the two input signals y and u. The identified
impulse responses hzu and hzy are represented in Fig. 23(a) with a
solid black and a solid red line. We observe a time-delay of
around 12 time-units between (u, y) and z.

For sake of completeness, we have given in Tables 2 and 3, the
model-error ERRv with one (y) or two (y, u) inputs for different
values of the model structure coefficients. We have also assessed
the influence of noise which may corrupt the measurement sensors
y and z and the effect of the filtering procedure.

4.3 Control Design by Disturbance Rejection. After the
coefficients of the ARMAX model have been determined and the
performance and accuracy of the model have been verified, a com-
pensator can be designed. The predictive nature of the model, i.e.,
given the incoming signal y, the response in z can be computed,
suggests a control design based on disturbance rejection ideas.
The underlying principle of this concept centers around the design
of a control signal u, such that its response in z destructively inter-
feres with the response in z induced by the incoming perturbation
(measured by y). Mathematically, the signal z from the down-
stream sensor contains two sources: the user-defined control u and
the measured upstream sensor y, which, in terms of transfer func-
tions, can be written as z ¼ Tzyyþ Tzuu: The goal then is to mini-
mize the signal z, for which we put forward the objective z ¼ 0:
The control law then follows immediately as u ¼ �T�1

zu Tzyy:
given the upstream sensor measurements y, this latter expression

for u accomplishes a vanishing downstream signal z. The inver-
sion of the control-to-sensor transfer function Tzu requires special
care, as it is conceivable (and often the case) that the transfer
function is small or zero for certain frequencies. For these fre-
quencies, the inversion would fail or yield undesirable large con-
trol gains. This ill-conditioning can be avoided, however, by
applying a pseudo-inversion instead of an exact inversion. This

Fig. 23 Impulse responses (a) from u to z in open-loop (black
solid line), from y to z in open-loop (red solid-line) and from y to
z in closed-loop (dashed-red line). The impulse response of the
control law from y to u is shown in (b).

Table 2 Model performance ERRv with one (y) output for differ-
ent model structure coefficients. A noise level of 25% means
that the standard deviation of the added filtered white noise is
equal to 0.25 times the standard deviation of the filtered noise-
free signal. ERRv 5jjzp2zt jj2=jjzt jj2 is evaluated on filtered
noise-free data sets.

Inputs
Noise
y (%)

Noise
z (%) Filtering na ðDj; nbÞ ðDk; ncÞ nd ERRvð%Þ

Effect of noise on y and z with na¼ 0
y 0 0 Y 0 (101, 400) 0 1
y 25 0 Y 0 (101, 400) 0 17
y 50 0 Y 0 (101, 400) 0 39
y 0 25 Y 0 (101, 400) 0 7
y 0 50 Y 0 (101, 400) 0 14

Effect of noise on y and z with na¼ 20
y 0 0 Y 20 (101, 160) 0 15
y 25 0 Y 20 (101, 160) 0 24
y 0 25 Y 20 (101, 160) 0 61

Effect of nd with noise-free sensors and na ¼ 20
y 0 0 Y 20 (101, 160) 0 15
y 0 0 Y 20 (101, 160) 5 7
y 0 0 Y 20 (101, 160) 10 1

Effect of nd with noisy y and noise-free z and na ¼ 20
y 25 0 Y 20 (101, 160) 0 24
y 25 0 Y 20 (101, 160) 5 19
y 25 0 Y 20 (101, 160) 10 21

Effect of nd with noise-free y and noisy z and na ¼ 20
y 0 25 Y 20 (101, 160) 0 61
y 0 25 Y 20 (101, 160) 5 55
y 0 25 Y 20 (101, 160) 10 42
y 0 25 Y 20 (101, 160) 15 24
y 0 25 Y 20 (101, 160) 20 20
y 0 25 Y 20 (101, 160) 25 15
y 0 25 Y 20 (101, 160) 30 14

Effect of filtering
y 0 0 N 0 (101, 400) 0 33
y 25 0 N 0 (101, 400) 0 91
y 0 25 N 0 (101, 400) 0 52
y 0 0 N 20 (101, 400) 0 40
y 25 0 N 20 (101, 400) 0 87
y 0 25 N 20 (101, 400) 0 100

Table 3 Model performance ERRv with two (u, y) outputs for
different model structure coefficients. A noise level of 25%
means that the standard deviation of the added filtered white
noise is equal to 0.25 times the standard deviation of the filtered
noise-free signal. ERRv 5jjzp2zt jj2=jjzt jj2 is evaluated on filtered
noise-free data sets.

Inputs
Noise
y (%)

Noise
z (%) Filtering na ðDj; nbÞ ðDk; ncÞ nd ERRvð%Þ

Effect of noise with na¼ 0
(y,u) 0 0 Y 0 (101, 400) (101, 400) 0 1
(y,u) 25 0 Y 0 (101, 400) (101, 400) 0 24
(y,u) 0 25 Y 0 (101, 400) (101, 400) 0 8
Effect of noise with na¼ 20
(y,u) 0 0 Y 20 (101, 160) (101, 160) 1 5
(y,u) 25 0 Y 20 (101, 160) (101, 160) 1 25
(y,u) 0 25 Y 20 (101, 160) (101, 160) 25 8
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regularization step allows us to specify a lower threshold below
which no control action is taken and consequently yields an effec-
tive control strategy.

Alternatively, the control strategy can also be designed in the
time-domain rather than the frequency-domain. It is the fact that u
is located downstream of y (in principle Dj < Dk), which ensures
that the resulting control law is well-defined and stable: un may
indeed explicitly be expressed as a function of past values of uj<n

and past values of yk<n. A more tunable control law may be
obtained by considering a regularized inversion of a state-space
formulation expressing the fact that the z signal should be minimal
over a specified time-horizon. The impulse response of the result-
ing control law is displayed in Fig. 23(b). In a closed-loop config-
uration, this control law manages to nearly suppress the
amplification phenomena between y and z, as shown by the red-
dashed line in Fig. 23(a).

How to obtain a controller by pseudo-inversion and launch a DNS with
this controller [55]?
Linux commands:

1. cd ../Reg
2. MATLAB -nodesktop -nosplash<modelinv.m # design controller by

pseudo-inversion of the system
3. cd ../DNSCONTROL
4. FreeFemþþ-nw dns.edp # launch DNS with control law determined

above

Comments. For an arbitrary discrete-time control horizon T, the output mea-
surement vector ZT that results from a combination of a future control vector
Uf , a past control vector Up, and a past measurement vector Yp reads

zn

znþ1

�
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1
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Yp (51)

The sequences hu
i and hy

i are the Markov parameters of the impulse
responses from u and y to z

zn ¼
X
i¼0

hu
i un�i þ

X
i¼0

hy
i yn�i (52)

These parameters may straightforwardly be obtained once the ARMAX
model has been identified (code Step/Reg/modelinv.m). Supplemental ma-
terial is available under the “Supplemental Data” tab on the ASME Digital
Collection. By minimizing jjZT jj2, the compensator is finally obtained via

Uf ¼ ð�Hþu GuÞUp þ ð�Hþu GyÞYp (53a)

un ¼ ð 1 0… 0 ÞUf (53b)

where Hþu refers to the Moore–Penrose pseudo-inverse.

4.4 Control Performance. After the compensator, given by
the control law u ¼ �T�1

zu Tzyy; has been designed, we can now
apply it to the direct numerical simulations and address perform-
ance issues associated with the application of a reduced-order
compensator to a high-dimensional flow configuration. To this
end, the control law from y to u is recast in a state-space form and
resampled at the acquisition rate (in our case, with the time-step
of the simulation DtDNS ¼ 2� 10�3) using bilinear interpolation.
The spectra, in magnitude and phase, of the original (red line) and
resampled (black line) control are depicted in Figs. 24(a) and
24(b). The raw signal y is directly fed into the controller without
filtering, which avoids time-delays. Note that all the high frequen-
cies in the signal y (x > xc) are efficiently damped by the con-
troller, since the controller acts as a low-pass filter (see
Fig. 24(a)). The resulting control signal u is applied to the numeri-
cal simulations and the response z at the downstream sensor is
recorded. For an effective control effort, we should expect a no-
ticeable reduction in the downstream measurement signal z, when
compared to the uncontrolled (u¼ 0) case, since such a reduction
has been the explicit objective of the control design.

The control is switched on at time t¼ 1000. The control law u
and the performance signal z are presented as a function of time in
Figs. 25(a) and 25(b). We observe a significant reduction in the
amplitude of the performance sensor: we find that the standard
deviation of the z-signal is 0.0017 without control and 0.00018
with applied control. This should be compared to the values
obtained from the reduced-order models, where we expect 0.0016
without control and 0.00012 with applied control. This shows that
the designed control laws are sufficiently robust to account for the
discrepancies between the modeled transfer functions and the
actual ones (those in the numerical simulation). The performance
in the DNS when updating the control law every DtS ¼ 0:1 (while
keeping the acquisition time of the control law fixed at DtDNS) is
0.00022, which is just slightly above the optimal value of
0.00018. When the acquisition time of the control law is set to
DtS ¼ 0:1, the performance is worse and equal to 0.0012, better
than the uncontrolled performance (0.0017) but far worse than the
previous controlled simulations. It seems also interesting to quan-
tify the reduction of total perturbation energy of the fluid system
to assess whether our control efforts reach beyond the strict limits
of the control objective. Even though some reduction of local
perturbation energy may be anticipated in the vicinity of the
downstream sensor, its specific amount and spatial extent are
flow-dependent and need to be evaluated for each case. The
results from the uncontrolled and controlled simulations are dis-
played in Fig. 25(c). We observe a remarkable reduction of the
total perturbation energy, with approximately 2 orders of magni-
tude between the uncontrolled and controlled case. This reduction
concerns the perturbation energy integrated over the entire com-
putational domain.

The transfer function Tyu is approximately zero since the actua-
tor u is located downstream of the estimation sensor y. For this
reason, the closed loop cannot become unstable (see Sec. 3.3).
Hence, there is no necessity to address stability-robustness issues
here; only performance-robustness issues are of concern and have
briefly been discussed in the last paragraph. Note that Belson
et al. [53] argued that feedback configurations in such convective
flows could nonetheless have better performance-robustness prop-
erties than the present feed-forward setup in the case where new
noise sources appear after control design.

4.5 Conclusion. We have presented an effective way to
account for the unknown upstream disturbance w which drives the
dynamics of amplifier flows. For this, we introduced an upstream
sensor y which is in charge of estimating the incoming perturba-
tions. The reduced-order model has therefore two inputs, the
upstream measurement y and actuator law u, and one output, the
downstream measurement z. Once the model-structure has been
chosen by inspection of the autocorrelation function of z and
the cross-correlation functions between (y, u) and z, the model
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coefficients are obtained by fitting the model to measured
input–output data. The control law may then straightforwardly be
obtained by inversion of the transfer-function between u and z. The
obtained control law is effective both when applied on the reduced-
order model (for which it was devised) and when applied to the
large-scale simulation (with only a small loss in performance).

Owing to the missing or negligible feedback from the down-
stream actuator to the upstream sensor, control setups for feed-
forward configurations are less prone to robustness issues; in fact,
stability-robustness is guaranteed in this case, while performance-
robustness has to be assessed from case to case. This feature has
also been observed for the flow over the backward-facing step: a
remarkable level of performance-robustness has been found, as
the disturbance levels have been increased far beyond the condi-
tions used in the system-identification step. Disturbances that are
not seen by the upstream sensor y [55], or measurement noise cor-
rupting (y, z), and actuator noise u shows up as colored noise in
the reduced-order model. Such noise may be accounted for by the
moving-average part in this model. The same type of robustness
to Reynolds number changes, however, has been less pronounced;

this can be associated with the fact that even moderate variations
in the Reynolds number can imply substantial changes in the lin-
ear flow behavior, as illustrated in Fig. 13 comparing transfer
functions for two relatively close Reynolds numbers. As men-
tioned above, a feedback configuration, as proposed in Ref. [53],
may produce superior results.

Adaptive control is an alternative robustification approach:
rather than operating the controller with optimal, but fixed coeffi-
cients, adaptive controllers adjust the coefficients according to a
fed-back downstream performance signal. Promising results have
been obtained using this technique (see Ref. [29]); quantitative
robustness measures or performance bounds, however, are diffi-
cult to come by. For our specific application to flow over a
backward-facing step, adaptation (or re-acquisition of the
ARMAX model coefficients) was unnecessary due to the good
robustness properties of the underlying ARMAX filter. In other
flow situations, where this is not the case, adaptation may provide
an effective and elegant solution.

5 Outlook

Application of the presented techniques in experimental situa-
tions is possible, and different strategies may be followed.

In the case of oscillator flows, choosing a reduced-order model
obtained by Galerkin projection stipulates that the numerical sim-
ulation be as close as possible to the experimental situation. To
guarantee the success of the compensator (designed using a large-
scale numerical simulation) in the experiment, a robust control
law is mandatory. Decoupling the dynamics between the estimator
and the controller by pushing the gains generally improves the
robustness of the compensator. Yet, the presence of unstable zeros
in the open-loop transfer function (due to delays) may lead to fail-
ure. The use of H1-control then allowed us to design a controller
with even better stability robustness properties, by minimizing the
infinity-norm of the closed-loop system between actuator noise
and control signal. We have seen in this article that increasing
stability–robustness characteristics may easily extend the
operating-range (in terms of Reynolds number, for example) of a
control law. However, coping with nonlinearities, which are trig-
gered, if the control is switched on while the system is in a limit-
cycle, seems to be far more difficult. To overcome this difficulty,
nonlinear models accounting for finite-amplitude perturbations
about a fixed-point may be required. Encouraging results in this
direction have recently been obtained using (and extending) the
POD-DEIM technique [83,84], which produces nonlinear
reduced-order models based on distinct bases that represent the

Fig. 24 Magnitude (a) and phase (b) of the control law between y and u. The red line refers
to the (original) control law obtained for the sampling time DtS 5 0:1, while the black line
corresponds to the resampled law (bilinear transform) at the DNS time step
DtDNS 5 231023. The vertical solid line refers to xc 5 2, the dashed line to xS, and the
dashed–dotted line to xDNS. Note that the controller is also used to filter the high frequen-
cies present in the y signal, which justifies that the control law must be resampled with
respect to the acquisition time DtDNS.

Fig. 25 (a) Control signal u(t) versus time. (b) Performance
sensor z(t). (c) Global perturbation energy E(t). In all the plots,
the black (respectively, red) line represents the uncontrolled
(respectively, controlled) case.
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unstable linear processes as well as the saturating nonlinear terms.
Another research direction concentrates on avoiding a large-scale
numerical model by solely using input–output data and system
identification techniques. If a controller that manages to stabilize
the unstable system is available (this is a strong requirement, and
the objective in this case is simply to design a better controller
that is, for example, more efficient or more robust), it is possible
to identify the unstable open-loop transfer function directly in the
experiment [60]. If this approach fails, it is also possible, in princi-
ple, to identity nonlinear polynomial models such as nonlinear
autoregressive exogenous (NLARX) models or neural nets [117].
Yet, first attempts in this direction have shown that such models
are extremely sensitive.

In the case of amplifier flows, the presented strategy to obtain
reduced-order models only relies on input–output data, and the
resulting control laws appear robust. Experimental applications of
similar strategies have already been attempted [9,21]. Difficulties
remain for handling perturbations which are three-dimensional (in
principle, arrays of sensors and actuators aligned in the spanwise
direction should solve this problem, but the dimensions of the
model structures become increasingly important) or of finite
amplitude in the case when the upstream disturbance environment
is not sufficiently weak. The latter point in fact requires us to con-
sider nonlinear models for the identification process, such as
NLARX models. Finally, introducing performance-robustness in
the objective functional would be of great help and the method of
choice to extend the range of operating conditions. Alternative
strategies such as adaptive control may also be attempted in this
respect [29].

Applications of flow control methodology to experiments are
dominated by a data-based approach using system-identification
techniques (see, e.g., Refs. [8,10]). A range of methods, such as
ERA, OKID, or subspace identification techniques, have been
applied, and nonlinear generalizations and extensions of system
identification have been explored as well [82]. The use of data-
based techniques to describe prestabilized systems [60,61] or
systems in limit-cycle behavior [4] has shown encouraging and
robust results; less success has been achieved by model-based
Galerkin projections [17] applied to experimental situations. The
concept of a dynamical observer has been explored as a data-
driven methodology to identify and control a flow [50]; this
single-input multiple-output (consisting of the POD-coefficients
of a reduced-order model) technique has yielded promising results
and is currently being implemented in an experimental setting.

Nomenclature

A ¼ system matrix
B ¼ control matrix
C ¼ measurement matrix
g ¼ measurement noise
G ¼ measurement noise covariance

GMþ ¼ positive gain margin
GM� ¼ negative gain margin

J ¼ estimator system matrix
K ¼ control gain
‘ ¼ control cost parameter
L ¼ Kalman gain

Txy ¼ transfer function from y to x
w ¼ plant noise/control noise
W ¼ control noise covariance
x ¼ state vector
y ¼ estimation sensor
z ¼ performance sensor

Overbars denote model-reduced quantities. Hats indicate
estimated quantities.
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