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Nonlinear model reduction for large-scale flows is an essential component in many 
fluid applications such as flow control, optimization, parameter space exploration and 
statistical analysis. In this article, we generalize the POD–DEIM method, introduced 
by Chaturantabut & Sorensen [1], to address nonlocal nonlinearities in the equations 
without loss of performance or efficiency. The nonlinear terms are represented by nested 
DEIM-approximations using multiple expansion bases based on the Proper Orthogonal 
Decomposition. These extensions are imperative, for example, for applications of the 
POD–DEIM method to large-scale compressible flows. The efficient implementation of the 
presented model-reduction technique follows our earlier work [2] on linearized and adjoint 
analyses and takes advantage of the modular structure of our compressible flow solver. The 
efficacy of the nonlinear model-reduction technique is demonstrated to the flow around an 
airfoil and its acoustic footprint. We could obtain an accurate and robust low-dimensional 
model that captures the main features of the full flow.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Over the past decades, advances in high-performance computing have enabled numerical simulations of increasingly 
complex fluid flows. At present, typical supercomputers are capable of handling large-scale flow simulations with numbers 
of degrees of freedom that range from millions to billions of flow variables. While these simulations present invaluable phys-
ical insight into fluid processes and unprecedented opportunities for the analysis and design of fluid devices, the large-scale 
nature of the flow makes optimization, design and control prohibitively expensive and often beyond the reach of standard 
algorithms.

For many applications in computational fluid dynamics, simulations often represent multi-query systems where multiple 
evaluations of the governing equations are necessary to predict the future evolution of the flow fields, to iterate on an 
optimal control strategy, to scan a region of parameter space, or to gather statistical information about an output quantity 
in a Monte-Carlo fashion, among many other inquiries. In these applications, the full evaluation of the high-dimensional 
system would be far too slow and inefficient; for example, in model-predictive control applications, the optimal control 
strategy has to be determined and has to arrive in real time for the actuator to act.
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A common strategy to reduce the evaluation cost in the above studies consists in replacing the full dynamical system by 
a reduced-order model, i.e., a lower-dimensional dynamical system that captures the dynamics of the full system [3,4]. Con-
sequently, the flow response, or other output quantities, can be computed at a fraction of the computational cost [5–9]. In 
the past, a great deal of research efforts have been devoted at devising reduced-order modeling strategies for fluid systems 
that exhibit linear dynamics, such as amplifier-type flows. For this case, well-known techniques exist that preserve the prin-
cipal dynamic features or a specific input–output behavior. In contrast, for the case of fluid systems that are characterized 
by nonlinear behavior, such as oscillator-type flows settled in self-sustained, saturated limit cycles, the procedural steps for 
constructing reduced-order models are far less trivial and require further investigation.

A customary technique for the design of reduced-order models consists of projecting the original (full) dynamical system 
onto a basis generated by the Proper Orthogonal Decomposition (POD) of carefully selected flow field sequences. Even 
though this approach is successful in reducing the size of the dynamical system and achieves significant savings in the 
evaluation of linear terms, the cost of evaluating the nonlinear terms is equivalent to that of the full system.

Recently, Chaturantabut and Sorensen (2010) [1], addressed this issue and proposed a novel model-order reduction strat-
egy for nonlinear dynamical systems, named POD–DEIM, that aims at further reducing the evaluation costs of the nonlinear 
terms in POD-based reduced-order models. This technique considers two different POD-based vector bases: the first basis 
provides a low-rank approximation of the state vector dynamics, while the second POD-basis furnishes a low-rank ap-
proximation of the dynamics governed by the nonlinear terms in the dynamical system. A link between the two bases is 
established by an interpolation algorithm, the Discrete Empirical Interpolation Method (DEIM), and the evaluation of the 
nonlinear terms in the reduced-order model is reduced to a small number of interpolation points. These latter interpola-
tion points are judiciously selected using a greedy algorithm that subsequently minimizes the representation error of the 
nonlinear terms. In principle, the cost of approximating the nonlinear terms, even if evaluated only at a few grid points, 
may require calculations involving the original (high-dimensional) flow field. However, by introducing certain assumptions 
regarding the structure of the nonlinear terms, the authors show that the computational costs can be further reduced. The 
resulting dynamical system is finally projected onto the first POD-basis, yielding a fully-reduced dynamical system. The 
reader interested in error estimates for POD–DEIM reduced-order models is referred to [10,11].

The POD–DEIM technique has been demonstrated on a number of ordinary and partial differential equations [1,12], 
including applications in fluid dynamics where it has shown great potential for nonlinear reduced-order modeling. However, 
the computational savings strongly depend on the structure of the nonlinear terms in the governing equations and in the 
choice of the spatio-temporal discretization schemes. More specifically, it is sought that the evaluation of the nonlinear 
terms at the interpolation points depends only on a limited number of neighboring grid points. This limitation restricts 
the application of the POD–DEIM algorithm to flow solvers that have spatial schemes with narrow stencils, i.e., low-order 
schemes.

Unfortunately, common high-order numerical flow solvers feature spatial discretization schemes that have wide stencils, 
such as, e.g., pseudo-spectral and spectral methods, and the computational savings are thus compromised. For this reason, 
an effective implementation of POD–DEIM for compressible flow solvers is not straightforward. Similar shortcomings are 
encountered in the context of the evaluation of the Jacobian operator and its adjoint from numerical flow solvers: if the 
stencil width is small, the resulting operators are sparse and can be stored explicitly. In contrast, if the stencil width is 
large (as in high-order numerical solvers), the resulting operators are dense and explicit storage typically exceeds available 
memory resources.

In [2] an efficient procedure for evaluating matrix–vector products involving the Jacobian and its adjoint has been pre-
sented. In this study, the authors show that even though the Jacobian is dense, an efficient procedure for matrix–vector 
evaluations can be derived by isolating the nonlinearities in component-wise functions. In the present work, we use the 
ideas put forward in [2] to derive an efficient procedure for the construction of reduced-order models using POD–DEIM in 
compressible flow solvers that overcomes the limitations mentioned above.

The paper is organized as follows. In section 2 we give a brief overview of the POD–DEIM technique as introduced 
in [1] and demonstrate its main features on the nonlinear Ginzburg–Landau equation. Then, in section 3, we propose an 
extension to the DEIM algorithm that efficiently takes into account more complicated forms of nonlinearities, as encountered 
in the inviscid terms of the compressible Euler equations. The application to the viscous, compressible Navier–Stokes case is 
considered in section 4. These extensions are demonstrated in section 5 when we apply model reduction to the compressible 
flow around an airfoil. Conclusions and a summary of our results are given in section 6.

2. Model-order reduction by the POD–DEIM method

2.1. Model-order reduction by projection methods

As a starting point we take a coupled system of nonlinear ordinary differential equations of the form

dv = F(v), (1)

dt
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that typically arises from the spatial discretization of evolution equations in continuous space. We denote by v the composite 
vector containing the field evolution with m entries and by F(v) the spatially-discretized right-hand-side of the governing 
equations.

In the context of reduced-order modeling, it is appropriate to consider constant, linear and nonlinear terms in F(v)

separately. For this reason, we may equivalently write the right-hand side F(v) as f + Av + F′(v), where f is a constant 
column vector with m rows, A is a m × m matrix capturing the linear dynamics, and F′(v) is a nonlinear function of v that 
by construction can be written as

F′(v) = F(v) − Av − f. (2)

Hence,

dv

dt
= f + Av + F′(v). (3)

Projection techniques for model-order reduction typically seek to approximate the state vector v by an element in a 
low-rank vector subspace determined by a m × k matrix V whose column vectors form a basis for the subspace. In what 
follows, the basis V is obtained from the k leading modes, with k � m, of the proper orthogonal decomposition (POD) of 
the temporal evolution of v, and we denote by {v}n

i=1 the set of snapshots from where the vector basis V is obtained. The 
state vector v is then approximated in this basis by Vṽ, where ṽ is a column vector with k entries, and the governing 
equations are projected onto the basis V using the inner product given by 〈v,u〉 = v†u. Since the vector columns of V are 
mutually orthonormal, the relation V†V = I holds. Note that the developments presented hereinafter can be easily extended 
to different choices of inner products. Hence,

dṽ

dt
= f̃ + Ãṽ + V†F′(Vṽ), (4)

where we have introduced f̃ = V†f, and Ã = V†AV. We also note that V†F′(Vṽ) = V†
(
F(Vṽ) − AVṽ − f

)
.

Even though the dimension of the dynamical system has been reduced to k, and the cost of evaluating the linear terms 
on the right-hand side, i.e., Ãṽ, has been reduced to O(k2) operations, the cost of evaluating the nonlinear terms V†F′(Vṽ)

has not been reduced yet.

2.2. Discrete Empirical Interpolation Method

The aim of the Discrete Empirical Interpolation Method [1] (DEIM) is to reduce the operation count in the evaluation of 
nonlinearities — the evaluation of the nonlinear terms in equation (4) still requires O(m) operations.

To this end, the reduced-order model derived in equation (4) is supplemented with an additional basis, denoted by U, 
for the specific low-order representation of the nonlinear terms. This basis is generated from the leading l modes of the 
proper orthogonal decomposition of the sequence of nonlinear snapshots given by

{
F′(v(ti))

}n
i=1. Hence

F′(v) ≈ F′(Vṽ) ≈ Uc̃. (5)

The above system of equations is overdetermined, and a suitable procedure to obtain the coefficients c̃ must be introduced. 
As suggested in [1], one option is to enforce the above relation at l components of Fi(Vṽ). In what follows, we will denote 
this set of components by a vector pi , where i ∈ {1, . . . , l}, and introduce a matrix P ∈ R

m×l whose columns are the unit 
vectors epi in R

m such that, when P† is multiplied to a column vector, it selects the pi elements of this vector. The vector p
and the matrix P are thus referred to as interpolation points and row-selector matrix, respectively. We shall later summarize 
the procedure that selects the interpolation points and the row-selector matrix.

Multiplying equation (5) from the left by P†, the coefficient vector c̃ is obtained by inverting the matrix (P†U), which is 
now a square l × l matrix and it can be shown to be non-singular (see below). Hence,

c̃ =
(

P†U
)−1

P†F′(Vṽ), (6)

and the reduced-order model reads now

dṽ

dt
= V†AVṽ + (V†U)

(
P†U

)−1
P†F(Vṽ). (7)

The operation count has not been reduced yet: the evaluation of P†F(Vṽ)—representing the contribution of the nonlinearities 
at the interpolation points—still requires O(m) operations. Nevertheless, by introducing the assumption that F′(v) is a 
component-wise function, i.e., the i-th component F′

i(v) only depends on the i-th component of the state vector vi , we can 
write P†F′(Vṽ) = F′(P†Vṽ), reducing thus the cost of evaluation. (In section 3 this restriction will be relaxed.) Finally, the 
nonlinear reduced-order model reads
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dṽ

dt
= V†AVṽ + (V†U)

(
P†U

)−1
F′(P†Vṽ), (8)

or, using a more compact notation,

dṽ

dt
= f̃ + Ãṽ + ŨF′(V̂ṽ), (9)

where

Ũ = (V†U)
(

P†U
)−1

, (10)

V̂ = P†V, (11)

and as before, f̃ = V†f and Ã = V†AV. At this point, it only remains to provide an algorithm to select the indices of the l
interpolation points p and, consequently, the row-selector matrix P. To this end, the procedure given in [1] and reproduced 
in Algorithm 1 is followed: given a basis U, a greedy algorithm successively chooses the maximum of the absolute value of 
the current residual approximation to the nonlinear basis. In particular, it is shown [1, Lemma 3.2] that the row-selector ma-
trix P obtained following this procedure always lead to matrices (P†U), equation (10), that are non-singular. The interested 
reader is referred to [1] for further details.

Algorithm 1 DEIM algorithm (adapted from [1]).
1: function DEIM(U)

Require: rank(U) = l
2: p, P ← 0l , 0m×l

3: p1 ← arg max |U(:,1)|
4: P(p1, 1) ← 1
5: for j ← 2, l do

6: c̃ ← (
P(:, : j − 1)†U(:, : j − 1)

)−1 (
P(:, : j − 1)†U(:, j)

)
7: r̂ ← U(:, j) − U(:, : j − 1)c̃
8: p j ← arg max |r̂|
9: P(p j , j) ← 1

10: end for
11: end function

2.3. Demonstration on the nonlinear Ginzburg–Landau equation

To demonstrate the design of reduced-order models using the above POD–DEIM algorithm, we consider the nonlinear 
Ginzburg–Landau equation and construct an associated reduced-order model. A range of alternative techniques for reducing 
this equation have been reported in Ilak et al. (2010) [13]. The nonlinear Ginzburg–Landau equation reads

∂φ

∂t
+ ν

∂φ

∂x
= γ

∂2φ

∂x2
+ μφ − a |φ|2 φ, (12)

defined for (t, x) ∈ [0, t f ] × [x0, x f ], and supplemented by the boundary conditions

φ(x0, t) = 0 and
∂φ

∂x
(x f , t) = 0. (13)

The parameters ν , γ , μ and a are taken as

ν = U + 2icu , γ = 1 + icd , μ = (μ0 − c2
u) + μ2

x2

2
, (14)

and, following the study of Ilak et al. (2010) [13], we select the governing parameters in the above equation as U = 2, 
cu = 0.2, μ0 = 0.41, μ2 = 0.01, cd = −1, and a = 0.1.

The computational domain covers the x-axis from x0 = −50 to x f = 50, discretized in 512 equispaced mesh points. 
Equation (12) is then reformulated into the form given in equation (1) by setting f = 0, Aφ = −ν∂xφ + γ ∂xxφ + μφ

and F′(φ) = −a|φ|2φ, and it is propagated in time. Note that with these definitions, F′(φ) is a component-wise function.
The nonlinear Ginzburg–Landau equation with the parameters selected above exhibits a saturated limit cycle, as visual-

ized in Fig. 1 by the amplitude φ. From a given initial condition, the equation has been evolved over T = 200 time units, 
and snapshots have been gathered every � = 0.8 time units, resulting in a sequence of n = 250 snapshots. Two POD bases 
are then computed using the snapshot method: a first POD basis V from the snapshot sequence {v(ti)}n

i=1, and a second 
POD basis U from the nonlinear snapshots

{
F′(v(ti))

}n
i=1. In Fig. 2(a), we display, for each basis, the energy percentage that 

is neglected by considering the first k modes, i.e.
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Fig. 1. Limit cycle in the nonlinear complex Ginzburg–Landau equation showing the real (thin line) and imaginary parts (dashed line) and magnitude (thick 
line) of the initial condition (red curves) and the long-time behavior (black curves). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 2. (a) Energy percentage of the modes neglected for bases V and U (see text for details), (b) leading modes (first four) of the snapshot basis V and 
(c) leading modes (first four) of the nonlinear snapshot basis U together with the corresponding interpolation points. In (c), the red dots indicate the 
incremental choice of the interpolation points using Algorithm 1, while blue dots indicate the previously chosen interpolation points. The thick, thin and 
dashed lines represent, respectively, the magnitude, the real part and the imaginary part of each vector basis. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Comparison between the original system and the reduced-order model for the nonlinear Ginzburg–Landau equations showing the real part of the 
amplitude at x ≈ 8.5.

ε(k) = 1 −
∑n

i=k+1 σ 2
i∑n

i=1 σ 2
i

, (15)

where σi denotes the i-th singular value associated with each vector basis. We show in Figs. 2(b)–(c) the spatial structures 
of the bases V and U, respectively. In the case of the nonlinear basis U, we also indicate the location of the interpolation 
points obtained by the DEIM-algorithm (Algorithm 1). In Fig. 3, we compare the temporal evolution of the original system 
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and reduced-order model for k = 6 and k = 12 modes; we display the amplitude φ at x ≈ 8.5. It is worth mentioning that, in 
this case, the same number of modes has been considered for the bases V and U. While differences are certainly noticeable 
for k = 6, an excellent match between the full and the reduced system is achieved for k = 12, in terms of capturing the 
transient behavior as well as the amplitude of the oscillations, frequency and phase in the long-time regime. It can easily 
be verified (not shown here) that, as the number of modes is increased, the relative error between the reduced and original 
system decreases, until it reaches about 10−6, where it ultimately saturates.

3. Application to the Euler equations

Advancing to more complex governing equations, we discuss in this section the application of the Discrete Empirical 
Interpolation Method to the compressible Euler equations. Even though only the two-dimensional case is considered, the 
extension to the three-dimensional counterpart is straightforward.

We consider the Euler equations for an ideal gas written in terms of pressure p, entropy s and velocity u in nondi-
mensional form. The reference values for the non-dimensional flow variables are given by a reference state, i.e. pres-
sure p∞ , velocity U∞ and density ρ∞; on the other hand, the entropy s, spatial coordinates x and time t have been 
non-dimensionalized by the gas constant r, a characteristic length L and characteristic time L/U∞ , respectively. These equa-
tions read

∂ p

∂t
+ u · ∇p = −γ p∇ · u, (16a)

∂u

∂t
+ u · ∇u = − 1

γ M2

1

ρ
∇p, (16b)

∂s

∂t
+ u · ∇s = 0, (16c)

where M stands for the Mach number, ρ for the density, and γ is the heat capacity ratio. This system of equations is 
augmented by the non-dimensional equation for the entropy s = (γ − 1) log(p/ργ ). Once equations (16) are discretized in 
space and suitable boundary conditions are specified, we arrive at a system of ordinary differential equations of the form

dv

dt
= F(v), (17)

where v is the composite column vector containing the state variables at every grid point. More explicitly, we write

v =

⎡
⎢⎢⎢⎢⎢⎢⎣

v1
...

vi
...

vp

⎤
⎥⎥⎥⎥⎥⎥⎦

, (18)

where p is the number of grid points, and vi refers to the vector containing the state variables at the i-th grid point, i.e., 
vi = [

p s uT
]T

i , i ∈ {1, . . . , p}. The number of state variables per grid point is q = 2 + d where d = 2 in two-dimensions 
and d = 3 in three dimensions. Consequently, the length of the vector v is m = pq. In the following, our aim is to rewrite 
equation (17) in a convenient form for the application of the Discrete Empirical Interpolation Method.

3.1. Split between linear and nonlinear terms

In order to apply the reduced-order modeling approach given in section 2, equation (17) must be recast to explicitly 
separate linear and nonlinear terms. We start by decomposing the state vector v into a reference state v̄, known beforehand, 
plus a disturbance v′ . In the remaining of the paper, we will consider reference states v̄ that are independent of time. 
Depending on the application, the field v̄ can be a time-averaged flow field or a steady solution of the governing equations. 
The Euler equations in semi-discretized form, equation (17), then read

dv′

dt
= F(v̄ + v′). (19)

The nonlinear function F(v̄ + v′) is now rewritten to extract explicitly its first two Taylor-expansion terms about v̄. We have

F(v̄ + v′) = F(v̄) + A(v̄)v′ + . . . , (20)

where A(v̄) is the Jacobian matrix of the function F(v) evaluated at the reference state v̄, i.e.,

A(v̄) = ∂F

∂v

∣∣∣∣
v̄

. (21)

Higher-order terms are recast into a nonlinear function F′(v̄; v′) as defined in equation (2).
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To further develop this idea, we illustrate the split between linear and nonlinear terms by the contribution of the 
advection terms −u · ∇u, which appear isolated in equation (16), to the right-hand side nonlinear function F(v), constant 
term F(v̄), linear operator A(v̄) and nonlinear terms F′(v̄; ̄v). We obtain

F(v̄ + v′) = −(ū + u′) · ∇(ū + u′), (22)

A(v̄)v′ = −(ū · ∇u′ + u′ · ∇ū), (23)

F(v̄) = −ū · ∇ū, (24)

and

F′(v̄;v′) = −(ū + u′) · ∇(ū + u′) + ū · ∇ū + ū · ∇u′ + u′ · ∇ū

= −u′ · ∇u′.
(25)

In the next section, the contribution of the advection terms will be used to illustrate a modular approach to the DEIM 
approximation of the nonlinear terms.

At this point, the governing equations are recast into the form given in equation (3). By approximating the disturbances 
into the previously computed POD basis V and projecting the governing equations onto this basis we arrive at an equation 
of the form given in equation (4). In what follows, we focus on the low-rank representation of V†F′(v̄; Vv′).

3.2. Approximation of non-component-wise nonlinear terms

The approximation for the nonlinear term given by the Discrete Empirical Interpolation Method reads

V†F′(v̄;Vṽ) ≈ ŨP†F′(v̄;Vṽ)

= Ũ
[

P†F(v̄ + Vṽ) − Âṽ − f̂
]

,
(26)

where Â = P†A(v̄)V, f̂ = P†F(v̄), and, as before, Ũ = (V†U)(P†U)−1. Note that since v′
i is a vector field with q components, 

the row-selector matrix selects the corresponding state variable at the given grid point. It is important to point out at 
this stage that the operation count in evaluating F′(v̄; v′) cannot be reduced because, in general, F(v) is not a point-wise 
function, and, as a consequence, we are not justified in applying the row-selector matrix P† to its argument. It is equally 
important to stress that the assumption of a component-wise nonlinearity has been instrumental in reducing the evaluation 
of the nonlinear terms from every grid point to the DEIM-interpolation points — a crucial step in arriving at a nonlinear, 
reduced-order model. For applications to the Euler and Navier–Stokes equations this assumption no longer holds: the type of 
nonlinear terms contained in the discretized equations is, in general, not component-wise because of the spatial derivatives, 
and the procedure outlined above does not directly apply.

In [1], the authors provide an extension to the DEIM technique that permits the consideration of general non-component-
wise nonlinearities. Following this procedure, the authors then introduce sparse matrices to take into account the depen-
dence on the different grid points. However, such an approach relies on the sparsity of the spatial differentiation operators. 
In most high-order finite-difference approximations, though, the corresponding differentiation matrices either have a large 
bandwidth or are dense, and this latter approach becomes impractical as the matrices typically exceed the available storage 
capacity.

Similar drawbacks are also encountered in the evaluation of linear, direct and adjoint operators in numerical solvers 
that feature high-order spatial discretizations [2], where it is shown that these limitations can be overcome by recasting 
nonlinear terms as component-wise functions. As before, we illustrate this procedure on the contribution of the advection 
terms −u · ∇u to F(v):

fu(u, v) = −(u∂xu + v∂yu), (27a)

f v(u, v) = −(u∂x v + v∂y v). (27b)

Upon spatial discretization, the advection terms evaluated at the i-th grid point read

Fi(u) = − [
Dx,i ju j Dy,i ju j

]
ui , (28)

where ui = [
u v

]T
i , and the matrices Dx and Dy represent the discrete spatial differentiation operators of a given vector 

field along the x- and y-direction, respectively. The question that has to be addressed then is how to reduce the operation 
count in the evaluation of the DEIM approximation of equation (28). In order to restate equation (28) as a component-wise 
function, such that the operation count can be reduced, we introduce auxiliary variables r and s defined as r = Dxu and s =
Dyu, and then define the point-wise function F̂i(u, r, s) = [

ri si
]

ui in terms of these auxiliary variables. Algorithmically, 
we compute the nonlinear terms in the following two steps

r, s ← Dxu, Dyu, (29a)

F̂i(u, r, s) = [
ri si

]
ui . (29b)
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Even though Fi(u) is equivalent to F̂i(u, Dxu, Dyu), the latter form is preferable because F̂(v) is a point-wise function, and 
we are justified in applying the row-selector matrix P† to its arguments, i.e., P†F(u) = F̂(P†u, P†Dxu, P†Dyu). In applying the 
row-selector matrix to the arguments of F̂, the row-selector matrix has to be modified so that it also selects the remaining 
state variables at a given grid point (other than the variable selected by the DEIM algorithm). When the row-selector 
matrix P is applied to the arguments, its dimension is pq × lq. To keep the notation compact for the remainder of this 
article, we will simply use P for the row-selector matrix, and its appropriate dimension will be clearly deduced from the 
context.

A similar procedure allows for the restatement of the right-hand side of the Euler equations in terms of a component-
wise nonlinear function. For the sake of argument, we first consider the function F(v) for the two-dimensional case:

f p(p, s, u, v) = −(u∂x p + v∂y p) − γ p(∂xu + ∂y v), (30a)

fu(p, s, u, v) = −(u∂xu + v∂yu) − 1

γ M2

∂x p

ρ(p, s)
, (30b)

f v(p, s, u, v) = −(u∂x v + v∂y v) − 1

γ M2

∂y p

ρ(p, s)
, (30c)

f s(p, s, u, v) = −(u∂xs + v∂ys). (30d)

Second, we introduce auxiliary variables for the state vector, i.e., r = Dxv and s = Dyv. Third, we recast F(v) as a 
component-wise function F̂(v, r, s) by decoupling the evaluation of the spatial derivatives and the evaluation of nonlin-
earities, i.e., F(v) = F̂(v, Dxv, Dyv), or using a more compact notation, F(v) = F̂(Dξ v).

At this point, we can perform the DEIM approximation of the nonlinear terms in the Euler equations. Symbolically, we 
write

P†F(v̄ + Vṽ) = P†F̂(Dξ (v̄ + Vṽ)),

= F̂(P†Dξ (v̄ + Vṽ)).
(31)

Introducing the vectors ˆ̄vξ = P†Dξ v̄ that contain the value of the reference field variables and their spatial derivatives at the 
interpolation points, and V̂ξ = P†Dξ V which is the matrix whose column vectors contain the value of the spatial derivatives 
of the basis V at the interpolation points, the above relation reads

P†F(v̄ + Vṽ) = F̂( ˆ̄vξ + V̂ξ ṽ). (32)

Note that, ξ takes on the values ξ ∈ {0, x, y} and D0 = I. At this point the operation count has been reduced. On the one 
hand, the evaluation of the left-hand-side expression requires first to form the vector v̄ + Vṽ and second to evaluate F(·); 
the operation count is O (α(m) + mk), where α(m) is the evaluation cost of F(·). On the other hand, the evaluation of 
the right-hand-side requires first to form ˆ̄vξ + V̂ξ ṽ and then to evaluate F̂(·); in this case, the operation count is reduced 
to O (α(l) + lk), with k, l � m, and similarly, α(k) is the evaluation cost of F̂(·).

3.3. Practical implementation of the model reduction

In a final step, the nonlinear reduced-order model is obtained by inserting equations (32) and (26) into equation (4)
which yields

dṽ

dt
= f̃ + Ãṽ + Ũ

[
F̂( ˆ̄vξ + V̂ξ ṽ) − Âṽ − f̂

]
. (33)

The computational cost of the right-hand-side of the above reduced-order model is O (α(l) + k2 + (3 + d)kl), with k, l � m, 
d = 2 for two dimensions and d = 3 for three dimensions.

Normally, the various nonlinear functions introduced above and their Jacobians are not readily available in a nonlinear 
numerical solver; consequently, the implementation of the reduced-order model given in equation (33) seems tedious and 
unwieldy at first sight. In this section we address the practical implementation, reusing functionalities already present in 
common flow solvers with minimal code development efforts.

First, the POD bases V and U need to be constructed. To this end, we start with a given reference field v̄ and an ensemble 
of snapshots for the flow field {v(ti)}n

i=1. The set of snapshots for the perturbation v′ — which we will use for the basis V
— can be easily constructed noting that{

v′(ti)
}n

i=1 = {v(ti) − v̄}n
i=1 . (34)

On the other hand, the construction of a set of snapshots for the nonlinear function
{

F′(v̄;v′(ti))
}n

i=1 is more involved: in 
typical flow solvers, the nonlinear function F′(v̄; v′) is commonly not implemented. Instead, we opt for the evaluation based 
on the definition given in equation (2). Therefore, the set of snapshots from which the nonlinear basis U arises reads{

F′(v̄;v′(ti))
}n = {

F(v̄ + v′(ti)) − A(v̄)v′(ti) − F(v̄)
}n . (35)
i=1 i=1
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Table 1
Nonlinear reduced-order model for the Euler equations: summary table. n is the number of snapshots, m = pq, is the length of the state vector, where p is 
the number of grid points, q = 2 + d is the number of flow variables per grid point, d = 2 for two-dimensional flows and d = 3 for three-dimensional flows. 
The dimension of the basis V is k and the dimension of the basis U is l.

Vector/matrix Number Size Description

v̄ 1 pq × 1 Reference field{
v′(ti)

}n
i=1 n pq × 1 Set of snapshots for the disturbances v′ = v − v̄

V 1 pq × k POD-based vector basis for the disturbances v′

f̃ = V†F(v̄) 1 k × 1 Projection of the constant term F(v̄) onto basis V
Ã = V†A(v̄)V 1 k × k Reduced-order linear dynamics{

F′(v̄;v′(ti))
}n

i=1 n pq × 1 Set of snapshots for the nonlinear term F′(v̄;v′)
U 1 pq × l POD-based vector basis for the nonlinear term F′(v̄;v′)
P 1 pq × l Row-selector matrix

Ũ = (V†U)(P†U)−1 1 k × l Interpolation matrix
ˆ̄vξ = P†Dξ v̄ d + 1 lq × 1 Spatial derivatives vector v̄ at the interpolation points
V̂ξ = P†Dξ V d + 1 lq × k Spatial derivatives of the basis V at the interpolation points
Â = P†A(v̄)V 1 l × k Linear terms at the interpolation points
f̂ = P†F(v̄) 1 l × 1 Constant term F(v̄) at the interpolation points

Algorithm 2 Nonlinear model-order reduction of the Euler equations using POD–DEIM.
Require: Reference field v̄, snapshots {v(ti)}n

i=1, number of POD modes k and l.

1: Generate snapshot sequence for the perturbations
{

v′(ti)
}n

i=1.

2: Construct V from the leading k modes of the POD decomposition of
{

v′(ti)
}n

i=1.
3: Construct matrix Ã and vector f̃.
4: Generate snapshot sequence for the nonlinearities

{
F′(v̄;v′(ti))

}n
i=1 (equation (35)).

5: Construct U from the leading l modes of the POD decomposition of
{

F′(v̄;v′(ti))
}n

i=1.

6: Obtain interpolation point grid indices p j and row selector matrix P (Algorithm 1).

7: Construct matrices Ũ, V̂ξ , Â, and vectors ˆ̄vξ , and f̂.

In the above, it has been assumed that the matrix–vector product A(v̄)v′ is available; however, depending on the specifics 
of the numerical code, this might not be the case. Nevertheless, A(v̄)v′ can still be evaluated by quasi-linearization using a 
first-order approximation

A(v̄)v′ ≈ F(v̄ + εv′) − F(v̄)

ε
. (36)

The cost of evaluating A(v̄)v′ is typically O (m), where m is the number of flow variables. The reader is referred to [14] for 
practical guidelines for choosing the small parameter ε . Once a suitable inner product is given, the bases V and U are then 
constructed from the first k and l leading modes, respectively, of the POD decomposition of

{
v′(ti)

}n
i=1 and

{
F′(v̄;v′(ti))

}n
i=1.

Provided that the basis U has been computed, the DEIM algorithm given in Algorithm 1 is then employed to select the l
interpolation points, and thus the row-selector m × l matrix P. Note that by construction the matrix (P†U) is non-singular. 
The matrices Ã, Ũ, V̂ξ , Â and the vectors f̃, and ˆ̄vξ then follow directly from their definitions. A summary of the procedure 
described above and the different matrices that have been introduced is presented in Table 1 and Algorithm 2, respectively.

4. Reduced-order modeling for the Navier–Stokes equations using POD–DEIM

In a further step in complexity, we extend the reduced-order modeling procedure described in section 3 to the compress-
ible Navier–Stokes equations. The application of the Discrete Empirical Interpolation Method to these equations introduces 
an additional complexity: the highest-order derivative is increased by one order, and if turbulence models or temperature-
dependent viscosity or heat conductivity is introduced, additional nonlinear functions are introduced. In what follows, we 
focus on our formulation of the compressible Navier–Stokes equations in terms of pressure, entropy and velocity variables; 
nonetheless, the procedure below can be readily adapted to different formulations.

The compressible Navier–Stokes for an ideal gas, appropriately non-dimensionalized, read

1

p

(
∂ p

∂t
+ u · ∇p

)
= −γ ∇ · u + (γ − 1)

(
∂s

∂t
+ u · ∇s

)
, (37a)

ρ

(
∂u

∂t
+ u · ∇u

)
= − 1

γ M2
∇p + 1

Re
∇ · τττ , (37b)

p

(
∂s

∂t
+ u · ∇s

)
= γ M2

Re
τττ :∇u − γ

(γ − 1)PrRe
∇ · q, (37c)
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with the constitutive relations for the heat flux q and the viscous stress tensor τττ given by

q = −κ∇T , (38a)

τττ = μ
(∇u + ∇ut) +

(
μv − 2

3
μ

)
(∇ · u) I, (38b)

together with the non-dimensional state equation p = ρT , and the non-dimensional equation for the entropy (γ − 1)s =
log(p/ργ ). The reference value for the temperature is T∞ = p∞/(rρ∞); the reference values for the remaining flow vari-
ables, spatial coordinates and time are given in section 3. These equations can be easily recast into the form in equation (1). 
In the above, Re denotes the Reynolds number, Pr is the Prandtl number, κ represents the heat conductivity, μ is the 
dynamic viscosity and μv stands for the volumetric viscosity coefficient written in non-dimensional form. Upon spatial 
discretization, we introduce the column vectors vi and wi at every grid point given in the two-dimensional case by

vi = [
p s u v

]T
i , (39a)

wi = [
τxx τyy τxy qx qy

]T
i , (39b)

and define the state vectors v and w defined as the composite vectors containing the values of vi and wi , respectively, at 
every grid point. Recalling that the number of grid points is p, the length of the column vector v is mv = pqv , with qv = 4
(in the three-dimensional case qv = 5), and the length of the column vector w is mw = pqw with qw = 5 (in the three-
dimensional case qw = 9). With these considerations, the governing equations can be recast into the following form

dv

dt
= F(v,w), (40a)

w = G(v). (40b)

It should be emphasized that the function G(v) is nonlinear: for instance, although the heat flux q = −κ∇T (p, s) is linear 
in the temperature variable T , it is nonlinear in the pressure p and entropy s variables, which renders the heat flux in 
our implementation a nonlinear function. Similarly, if a temperature-dependent viscosity μ(T ) is specified, such as given by 
Sutherland’s law, the viscous stress tensor also becomes a nonlinear function of the state variables.

4.1. Approximation of the inviscid terms

Analogously to the developments presented in section 3, we start by considering the linear and nonlinear dynamics 
separately by introducing a reference field v̄ plus disturbances v′ . For convenience, such a decomposition is also introduced 
for the intermediate variable: we define w̄ = G(v̄) and set w = w̄ + w′ . Hence, equation (40a) reads

dv′

dt
= F(v̄) + A(v̄, w̄)v′ + F′(v̄, w̄;v′,w′), (41a)

w′ = G′(v̄;v′), (41b)

where

A(v̄, w̄) = ∂F

∂v

∣∣∣∣
v̄,w̄

+ ∂F

∂w

∣∣∣∣
v̄,w̄

∂G

∂v

∣∣∣∣
v̄

, (42)

F′(v̄, w̄;v′,w′) = F(v̄ + v′, w̄ + w′) − A(v̄, w̄)v′ − F(v̄, w̄), (43)

G′(v̄;v′) = G(v̄ + v′) − G(v̄). (44)

Given an orthogonal basis V, an equation for the temporal evolution of the approximation ṽ is obtained by setting v′ ≈ Vṽ
in equation (41a), and left-multiplying by V†. We obtain

dṽ

dt
= f̃ + Ãṽ + V†F′(v̄, w̄;Vṽ,w′), (45)

where, as before, f̃ = V†F(v̄, w̄) and Ã = V†A(v̄, w̄)V. Approximating the nonlinear terms in the above equation using basis U
and DEIM, the nonlinear terms read

V†F′(v̄, w̄;Vṽ,w′) ≈ (V†U)(P†U)−1P†F′(v̄, w̄;Vṽ,w′)

= (V†U)(P†U)−1
[

P†F(v̄ + Vṽ, w̄ + w′) − P†A(v̄, w̄)Vṽ − P†F(v̄, w̄)
]
,

(46)

and, defining Ũ = (V†U)(P†U)−1, Â = P†A(v̄, w̄)V and f̂ = P†F(v̄, w̄), we write

V†F′(v̄, w̄;Vṽ,w′) ≈ Ũ
[

P†F(v̄ + Vṽ, w̄ + w′) − Âṽ − f̂
]

. (47)
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As before, we introduce auxiliary variables and recast function F(v, w) into a point-wise function such that

F(v,w) = F̂(Dξ v,Dξ w), (48)

where Dξ is the differentiation operator corresponding to v and w, respectively. We point out that the dimensions of the 
differentiation operators Dξ and the row-selector matrix P† differ when applied to v or w, since the number of variables 
per grid point for the vectors v and w differ. Nevertheless, the same notation will be used independently of the dimension 
of the vector field on which they act, and their appropriate dimension will be deduced from the context. Therefore,

P†F(v̄ + Vṽ, w̄ + w′) = P†F̂(Dξ (v̄ + Vv),Dξ (w̄ + w′))
= F̂(P†Dξ (v̄ + Vṽ),P†Dξ (w̄ + w′))

(49)

or, introducing ˆ̄vξ = P†Dξ v̄, V̂ξ = P†Dξ V, ˆ̄wξ = P†Dξ w̄ and ŵξ = P†Dξ w′ , we arrive at

P†F(v̄ + Vṽ, w̄ + w′) = F̂( ˆ̄vξ + V̂ξ ṽ, ˆ̄wξ + ŵξ ). (50)

4.2. Approximation of the viscous terms: additional bases for nonlinearities

We stress that the evaluation of ŵξ in equation (50) still requires a large operation count: the evaluation of ŵξ reads

ŵξ = P†Dξ G′(v̄;Vṽ) (51)

= P†Dξ

(
G(v̄ + Vṽ) − G(v̄)

)
. (52)

The evaluation of G(v̄ + Vṽ) carries a cost of the order of the number of variables in the original system.
In the following, to further reduce the operation count, we propose to approximate these terms by applying again the 

DEIM algorithm. First, an additional basis W, obtained from the lw leading modes of the POD decomposition of the snapshots {
G′(v̄;v′(ti))

}n
i=1 is introduced. Second, Algorithm 1 is followed to obtain a set of interpolation points q j and, consequently, 

a row-selector matrix Q to approximate G(v̄ + Vṽ) in this basis. Hence

ŵξ = P†Dξ

[
G(v̄ + Vṽ) − G(v̄)

]
≈ (P†Dξ W)(Q†W)−1

[
Q†G(v̄ + Vṽ) − Q†G(v̄)

]
.

(53)

In the following, we introduce Ŵξ = (P†Dξ W)(Q†W)−1, and ǧ = Q†G(v̄). It is noted that matrix (Q†W) is invertible by 
construction. As before, we recast G(v) as a component-wise function by introducing auxiliary variables for the spatial 
derivatives, i.e., G(v) = Ĝ(Dηv). We obtain

ŵξ = Ŵξ

[
Ĝ( ˇ̄vη + V̌ηṽ)] − ǧ

]
(54)

where we have used the abbreviations ˇ̄vη = Q†Dη v̄, V̌η = Q†DηV.

4.3. Practical implementation

The reduced-order model for the compressible Navier–Stokes equations is given by

dṽ

dt
= f̃ + Ãṽ + Ũ

[
F̂( ˆ̄vξ + V̂ξ ṽ, ˆ̄wξ + ŵξ ) − Âṽ − f̂

]
, (55a)

and

ŵξ = Ŵξ

[
Ĝ( ˇ̄vη + V̌ηṽ)] − ǧ

]
. (55b)

A summary of the different matrices involved in the reduced-order model as well as their respective size is provided in 
Table 2; the procedure to generate these matrices is described in Algorithm 3. As in the case of the Euler equations, the 
vectors f̃, ˆ̄vξ , ˆ̄wξ , f̂, ˇ̄vη and ǧ and the matrices Ã, Ũ, V̂ξ , Â, Ŵξ and V̌η are computed offline. Once these matrices have 
been computed, the evaluation cost of the right-hand-side of the reduced order model in equation (55) has been reduced 
to O (α(l) + β(l) + k2 + l2 + (4 + 2d)lk) operations, where we have considered for simplicity l = lu ≈ lw . In the above α(·)
and β(·) is the computational cost of evaluating F̂(·) and Ĝ(·), respectively.
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Table 2
Nonlinear reduced-order model for the Navier–Stokes equations: summary table. The number of snapshots is n, the number of grid points is p, q = 2
for two-dimensional flows and q = 3 for three-dimensional flows. The length of the state vector v is mv = pqv , where qv = 2 + d is the number of flow 
variables per grid point; the length of the state vector w is mw = pqw , where qw = 5 in two-dimensions and qw = 9 in three dimensions. The size of the 
bases V, U and W is, respectively k, lu and lw .

Vector/matrix Number Size Description

v̄ 1 pqv × 1 Reference field{
v′(ti)

}n
i=1 n pqv × 1 Set of snapshots for the disturbances v′ = v − v̄

V 1 pqv × k POD-based vector basis for the disturbances v′
f̃ = V†F(v̄, w̄) 1 k × 1 Projection of F(v̄, w̄) onto basis V
Ã = V†A(v̄, w̄)V 1 k × k Reduced-order linear dynamics

w̄ = G(v̄) 1 pqw × 1 Reference field{
F′(v̄, w̄;v′(ti),w′(ti))

}n
i=1 n pqv × 1 Set of snapshots for the nonlinear term F′(v̄, w̄;v′,w′)

U 1 pqv × lu POD-based vector basis for the nonlinear term F′(v̄, w̄;v′,w′)
p 1 lu × 1 Interpolation points (I)
P 1 pqv,w × lu Row-selector matrix for the interpolation points p
Ũ = (V†U)(P†U)−1 1 k × lu Interpolation matrix (I)
ˆ̄vξ = P†Dξ v̄ d + 1 luqv × 1 Spatial derivatives of the vector v̄ at the interpolation points p
V̂ξ = P†Dξ V d + 1 luqv × k Spatial derivatives of the basis V at the interpolation points p
ˆ̄wξ = P†Dξ w̄ d + 1 luqw × 1 Spatial derivatives of the vector w̄ at the interpolation points p
Â = P†A(v̄, w̄)V 1 lu × k Linear terms at the interpolation points p
f̂ = P†F(v̄, w̄) 1 lu × 1 Constant term at the interpolation points p
{

G′(v̄;v′(ti))
}n

i=1 n pqw × 1 Set of snapshots for the nonlinear term G′(v̄;v′)
W 1 pqw × lw POD-based vector basis for the nonlinear term G′(v̄;v′)
q 1 lw × 1 Interpolation points (II)
Q 1 pqv,w × lw Row-selector matrix for the interpolation points q
Ŵξ = (P†Dξ W)(Q†W)−1 d + 1 luqw × lw Interpolation matrix (II)
ˇ̄vη = Q†Dη v̄ d + 1 luqw × 1 Reference field spatial derivatives at the interpolation points q
V̌η = Q†DηV d + 1 luqw × k Spatial derivatives of basis V at the interpolation points q
ǧ = Q†G(v̄) 1 lw × 1 Constant term at the interpolation points q

Algorithm 3 Nonlinear model-order reduction of the compressible Navier–Stokes equations.
Require: Reference field v̄, snapshots {v(ti)}n

i=1, number of POD modes k, lv and lw .

1: Generate snapshot sequence for the perturbations
{

v′(ti)
}n

i=1.

2: Construct V from the leading k modes of the POD decomposition of
{

v′(ti)
}n

i=1.

3: Construct matrix Ã and vector f̃.
4: Compute G(v̄) and generate snapshot sequence for

{
w′(ti)

}n
i=1.

5: Generate snapshot sequences for the nonlinearities
{

F′(v̄, w̄;v′(ti),w′(ti))
}n

i=1.

6: Construct U from the leading lv modes of the POD decomposition of
{

F′(v̄, w̄;v′(ti),w′(ti))
}n

i=1.
7: Obtain interpolation point grid indices p j and row selector matrices P, Pv and Pw .

8: Construct matrices Ũ, V̂ξ , Â, and vectors ˆ̄vk , and f̂.
9: Construct W from the leading lw modes of the POD decomposition of

{
G′(v̄;v′(ti))

}n
i=1.

10: Obtain interpolation point grid indices q j and row selector matrix Q.

11: Construct matrices Ŵξ , V̌η , and vectors ˇ̄vη , and ǧ.

5. Examples of reduced-order models

In this section we demonstrate the model-reduction technique described above on a compressible Navier–Stokes solver. 
This code solves equations (37) together with equations (38) on multiblock, curvilinear grids using high-order schemes 
and a domain decomposition technique to perform parallel calculations. The equations are implemented in the so-called 
pseudo-characteristics formulation [15]. Discretization in space is performed using the Compact Upwind Low-Dissipation 
(CULD) schemes [16] for the advection terms and centered third-order schemes for the diffusive terms [17]. Integration 
in time is carried out using a low-storage 4-th-order Runge–Kutta scheme (see [18]). Suitable boundary conditions are 
implemented using the Navier–Stokes characteristic-based boundary conditions [19,20], and sponge layers [21] are included, 
where appropriate, to avoid spurious reflections from the boundaries of the computational domain. Further details about 
the numerical code and the choice of non-dimensional variables can be found in Fosas de Pando et al. (2014) [22].

5.1. Vortex shedding and sound radiation in the wake of an airfoil

We consider the two-dimensional compressible flow around a NACA-0012 airfoil at a zero angle-of-attack. The Reynolds 
number based on the chord-length of the airfoil is chosen as Re = 10000, the Mach number is taken as M = 0.6, the heat 
capacity ratio is γ = 1.4, and the Prandtl number is fixed at Pr = 0.71. To properly resolve the flow in the vicinity of the 
airfoil as well as the free-stream and wake, a nonuniform numerical grid is required that ultimately yields a dynamical 
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Fig. 4. Instantaneous flow field about a NACA 0012 airfoil at a zero angle-of-attack, visualized (a) by the vorticity field showing periodic vortex shedding 
into the wake and (b) by the dilatation field showing significant upstream sound directivity. The Reynolds number is Re = 104, and the Mach number 
is M = 0.6.

Fig. 5. Selected modes of (a–d) POD basis V of the snapshot series, (e–h) POD basis U, and (i–l) POD basis W of the nonlinear snapshots together with the 
interpolation points selected by the DEIM algorithm. In (a–h) cases the stream-wise component of the velocity vector is represented, whereas in (i–l) the 
stream-wise component of the heat flux is depicted.

system with m = 106 degrees of freedom. Integration in time, starting from a suitable initial condition, has been performed 
until transients attenuate and a finite-amplitude limit-cycle emerges at t ≈ 100. At this point, the flow fields are sampled 
and stored every � = 0.01 time units; this produces a data sequence from t0 = 100 to t f = 105 with n = 500 snapshots.

Fig. 4 shows the main elements of the limit-cycle state: vortices (visualized by the ωz-component) shed from the vicinity 
of the trailing edge into the wake (see Fig. 4(a)); the corresponding dilatation field d = ∂xu + ∂y v shows acoustic waves ra-
diating from the trailing edge with a preferred upstream directionality (Fig. 4(b)). The mean flow v̄ is taken as the reference 
field.

We proceed by forming the different bases, i.e., V, U, and W, from the snapshot sequence {v(ti)}n
i=1, together with 

their respective DEIM-points. To this end, we follow the three steps: (i) the basis V is generated by computing the Proper 
Orthogonal Decomposition or singular value decomposition of the snapshot matrix consisting of

{
v′(ti)

}n
i=1, (ii) the vec-

tor bases U and W for the nonlinear terms are extracted via Proper Orthogonal Decomposition from the nonlinear-terms 
snapshots

{
F′(v̄;v′(ti))

}n
i=1, and

{
G′(v̄;v′(ti))

}n
i=1, and (iii) the grid coordinates of the discrete interpolation points are de-

termined, for each of the nonlinear bases, using the above DEIM algorithm.
Figs. 5(a–d) depict the dominant structures of the basis V, visualized by the perturbation stream-wise velocity compo-

nent u′ . All modes are characterized by spatial support in the wake, with specific wavelengths and symmetry patterns. Only 
modes k = 1 and k = 2 exhibit acoustic radiation in the far field (not shown). The principal vectors of the bases U and W
are displayed, respectively, in Figs. 5(e–h) and Figs. 5(i–l), together with their interpolation points.
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Fig. 6. (a) Residual ε for the different bases V, U and W. (b) Error between the full system and the reduced order models for varying number of vector 
basis.

The residuals ε(·), as defined in equation (15), are displayed in Fig. 6(a) as a function of the number k of basis vectors 
that are retained. We have constructed reduced-order models for increasing sizes of the vector bases, following the above 
procedure. For a given number of basis vectors in V, a criterion for the number of nonlinear basis vectors in U and W has 
to be introduced. We consider two choices: (i) we select an equal number of vectors, and (ii) we include as many vectors 
as necessary to match the respective residuals.

For each choice, we integrate the reduced-order model in time over T = 5 units and compare the results to the original 
(non-reduced) system by computing the relative residual εrel given by

εrel =
√√√√

∑n
j=1 ‖v′(t j) − Vṽ(t j)‖2∑n

j=1 ‖v′(t j)‖2
. (56)

The result is shown in Fig. 6(b), where a decrease in the residual can be observed as the basis vectors are aug-
mented, until a residual level of approximately 5 · 10−3 is reached for k = 32 beyond which no more improvements 
could be made. No appreciable difference between the two suggested criteria for choosing the number of vectors in 
the nonlinear bases could be identified. In Fig. 7(c) the spatial distribution of the relative residual, given by ε(xi) =√∑n

j=1 ‖v′
i(t j) − Vi ṽ(t j)‖2/

∑n
j=1 ‖v′

i(t j)‖2 is also displayed.

Robustness of the reduced-order model to perturbations about the limit cycle and the correct prediction of the long-time 
behavior constitute qualities that are important in many applications. To gain more insight into these properties of our 
reduced-order models and thus of our model-reduction algorithm, we present in Fig. 8 the norm of the state vector for 
long integration times starting from various initial conditions. Among these initial conditions are starting values on the 
limit cycle (indicated by the dotted line) and starting values far from the limit cycle or the mean flow (solid line). For 
severely truncated systems with k < 4, the reduced-order models diverge, no matter whether we start at the limit cycle 
or far from it. Increasing the number of basis vector, for example by choosing k = 4, renders the reduced-order models 
stable, but a discrepancy to the correct limit-cycle amplitude is observed over the long term. For k > 16, this discrepancy is 
substantially reduced, and the limit-cycle amplitude is reproduced remarkably accurately and robustly by the reduced-order 
model, independent of the starting point of the time integration.

6. Conclusions

An effective algorithm for the design of nonlinear reduced-order models of large-scale compressible flows has been 
presented. It relies on an earlier study [1] and is based on an POD-based Galerkin projection using multiple bases. These 
bases are attuned to particular terms of the governing equations, in our case the nonlinear terms, to produce a high-fidelity, 
more localized and robust representation of the dynamic processes arising from these terms. The various bases are joined 
by the Discrete Empirical Interpolation Method (DEIM) that impose the nonlinear terms at specific points, which are chosen 
by a greedy algorithm to sequentially reduce the residual of the nonlinear reconstruction. The original model-reduction 
algorithm has been generalized to take into account nonlocal nonlinearities (present in simulations of compressible flow). 
This has been accomplished by introducing auxiliary variables that are treated independently and thus reduce nonlocal 
nonlinearities to local ones. An efficient implementation of the nonlinear model-reduction technique, taking advantage of 
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Fig. 7. (a) Pressure field at t = 105 computed using the POD–DEIM reduced-order model with k = 32, (b) instantaneous pressure-field difference between 
the reduced-order model and the numerical simulation (note the different color scale), and (c) spatial distribution of the relative residual for the complete 
simulation. See text for details.

Fig. 8. Norm of the state vector for reduced-order models of orders k = 2, k = 4 and k = 16 for different initial conditions: steady state (dotted line), zero 
initial condition and perturbations around the limit cycle. The amplitude of the limit-cycle of the full system is also shown.

our previous work [2], has been achieved, that results in a flexible and adaptive framework for the design of nonlinear 
low-dimensional models of complex flows.

As a validation case, we chose the compressible flow in the wake of a NACA0012 airfoil. This type of flows contains a 
range of spatial and local scales with localized nonlinearities and is typical and representative of large-scale multi-physics 
simulations. The reduced-order models contained only a few degrees of freedom (with the full simulation of the order of 
106 degrees of freedom) but, nonetheless, captured the mean features of the flow with remarkable accuracy. Moreover, 
an encouraging and important robustness of the reduced-order model has been found, as it recovered the dynamics of 
the full system even for off-design conditions. Both accuracy and robustness are important and necessary attributes for 
reduced-order models in control applications. Our future efforts will focus on the design of nonlinear reduced-order models 
for flow control of complex flows and on nonlinear model-predictive control applications based on our POD–DEIM models.
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