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Numerical simulations and perturbation analysis of a radially imploding laminar
premixed flame are used to study the mechanisms responsible for the generation
of pressure fluctuations at flame fronts for various Lewis numbers. The relative
importance of mechanisms based on unsteady heat release and on vorticity is
investigated using an optimization methodology. Particular attention is paid to the
influence of non-axisymmetric conditions and local flame curvature. It is shown
that vorticity-based noise generation prevails for high-wavenumber, non-axisymmetric
disturbances at all curvatures, while heat-release-driven noise generation dominates
the axisymmetric and low-wavenumber regimes. These results indicate that short-
wavelength vorticity waves actively participate in flame acoustic activity and can
surpass acoustic output mechanisms based on heat-release fluctuations in the vicinity
of the flame front.
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1. Introduction
Turbulent flames are associated with acoustic sound radiation (Mahan & Karchmer

1991; Dowling & Mahmoudi 2015), which in turn may lead to thermo-acoustic
instabilities in many combustion systems with high reflection properties (Candel
et al. 2009). The problem of sound generation in premixed turbulent flames, and
its underlying physical mechanisms, has been thoroughly studied using experiments
and, more recently, direct numerical simulations (Zhao & Frankel 2001; Shalaby,
Laverdant & Thévenin 2009; Swaminathan et al. 2011). Theoretical studies of
combustion noise indicate that heat-release disturbances constitute the main source
of noise radiated by flames (Strahle 1971). In this case, the local sound pressure
level is proportional to the rate of change of the volumetric heat-release rate. These
findings were validated in experiments for far-field conditions (Hurle et al. 1968;
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Kidin et al. 1984). Unfortunately, owing to the low frequencies typically observed in
combustion systems, the strict acoustic far-field limit is rarely achieved in practice.
Heat-release-rate sound sources based on the local heat-release rate, however, still
provide practicable predictions of noise levels at mid-range acoustic distances (Smith
& Kilham 1963; Candel, Durox & Schuller 2004).

Based on previous studies, heat-release-rate variations originate from flame surface
density fluctuations (Abugov & Obrezkov 1978; Clavin & Siggia 1991) as well
as from local changes in the burning rate (Kidin et al. 1984; Talei, Brear &
Hawkes 2011). On the one hand, the instantaneous local flame speed depends
on the combustible mixture temperature and pressure, on the equivalence ratio
of the mixture and on the flame stretch through the tangential strain rate and
the local curvature of the flame front (Markstein 1964; Williams 1985). On the
other hand, flame surface-area variations can stem from fluctuations in the local
burning velocity (Birbaud et al. 2008), from local flame instabilities (Matalon
& Matkowsky 1982; Pelce & Clavin 1982; Truffaut & Searby 1999), or from
interactions with hydrodynamic disturbances (Candel & Poinsot 1990; Blanchard et al.
2015; Schlimpert et al. 2015). As a consequence of the dependences, flame–vortex
interactions represent, for instance, a canonical component when modelling turbulent
combustion processes (Driscoll 2008).

Vortices typically cause a roll-up motion of the flame, thus inducing a strong
local stretch (Renard et al. 2000). This phenomenon can considerably alter the flame
structure and sometimes even induce quenching (Katta et al. 1998). Alternatively,
the roll-up can isolate a portion of cold gases; when the fuel pocket is depleted,
quenching occurs. This dynamic process corresponds to a two-phase sequence: first,
the reactive surface slowly increases due to the roll-up; second, vast portions of flame
surface quickly quench, thereby leading to a large-amplitude acoustic pulse (Candel
et al. 2009). More generally, under stationary operating conditions, it is found that
mechanisms yielding flame surface destruction produce far more acoustic output
than mechanisms associated with flame surface creation (Candel et al. 2004). For
instance, in flame–flame interactions, flame pinching has been shown to generate two
subsequent acoustic pulses: the first one occurs during pinching, the second one at
the end of the flame pocket annihilation (Schuller, Durox & Candel 2003; Geiser,
Schlimpert & Schroeder 2013). These impulses have been shown to be related to the
local acceleration of the flame burning velocity during the final stage of combustion,
when the local flame curvature becomes sufficiently large (Talei, Hawkes & Brear
2013). These studies confirmed that this phenomenon is caused by interpenetrating
thermal and species-diffusion layers of neighbouring flame elements (Bui, Schröder
& Meinke 2006).

Most of these thermo-acoustic phenomena are intrinsically nonlinear and associated
with significant flame-front displacements. Nonetheless, a linear approach can provide
important insights into noise-generation processes. Such a methodology, for instance,
confirmed that local regions characterized by reaction layers with strong curvature as
present in the flame tip are responsible for intense noise emission (Blanchard et al.
2015). Such a linear framework allows to us separate flow perturbations into entropy,
vorticity and acoustic waves (Chu & Kovásznay 1958) and thus uncover a mechanistic
viewpoint of flame-induced noise generation. Flat flame fronts are known to strongly
absorb vorticity waves (Matalon, Cui & Bechtold 2003). Experimentally, vortices
whose width is 10 to 100 times the flame thickness were observed to attenuate due
to viscous effects in the internal structure of the flame front (Roberts & Driscoll
1991). This vortex–flame front interaction may subsequently be associated with strong
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FIGURE 1. (Colour online) Sketch of a flame-front perturbation propagating along an
axisymmetric anchored flame.

acoustic radiation; its underlying mechanism, however, has not yet been considered
as a possible route to noise generation in flames.

In our study, we consider vortices ranging from 100 flame thicknesses to far larger
scales. Even though vortex noise is commonly associated with multipolar pressure
sources and is therefore rapidly decaying away from its source (Powell 1964), its
contribution to the overall acoustic radiation may be significant and play an important
role in the near field. A local analysis of flame pressure generation, taking into
account a full flame structure, is also relevant. To carry out such an analysis, a flame
model is required to generate a base flow. We seek to vary the mean stretch of the
flame in a controlled manner in order to investigate its role in the noise-generation
mechanism. For this reason, an axisymmetric imploding flame, such as studied by
Talei et al. (2011), is considered. In this configuration, and in the absence of mean
vorticity sources, the aerodynamic strain rate vanishes. Stretch is directly related
to the flame curvature, i.e. to the flame radius, and an accurate estimate of the
stretch is readily accessible from the simulation. The objective of this study is to
use numerical techniques and linear perturbation analysis, applied to a simplified but
relevant combustion model of a radially imploding flame, to examine the influence of
the wavenumber of the hydrodynamic disturbances and the local flame-front curvature
on the generation of local pressure sources.

2. Configuration, modelling approach and numerical details

Flames submitted to a non-zero tangential velocity tend to propagate wrinkles
along the flame front, as sketched in figure 1; this is true even for stable flame
configurations (Blackshear 1953; Petersen & Emmons 1961; Boyer & Quinard
1990). This well-known behaviour was recently analysed within a linear framework
(Blanchard et al. 2015). Flame perturbations then appear as a superposition of
(1) entropy and reaction waves, associated with flame-front displacement, and
(2) vorticity waves that enforce mass conservation across the dilatation zone; at the
flame tip, this set of waves becomes unstable before it disappears. An analysis of the
Lighthill equation for this configuration shows that the associated far-field combustion
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FIGURE 2. (Colour online) Sketch of an axisymmetric, radially imploding flame.

noise is dominated by the heat-release rate contribution to the acoustics (Lighthill
1952; Crighton et al. 1992), and this theoretical result has been confirmed in many
experiments (see e.g. Hurle et al. 1968; Kidin et al. 1984). While these insights are
important and consequential for the far field, they provide little understanding of
noise-generation mechanisms for the near field. Even though flame wrinkling is an
integral component of the flame dynamics, other type of waves may be destabilized by
the flame front and lead to localized favourable conditions for high-amplitude noise
generation. A local analysis can then provide useful information on these issues. In
this study, we will focus on flow structures producing the largest (optimal) acoustic
output, without prescribing a specific mechanism for flame-induced noise generation.

A simple flame configuration is introduced and used as the basis for our analysis.
It consists of a one-dimensional, axisymmetrically imploding cylindrical flame, as
shown in figure 2. In this set-up, a flame front propagates towards the centre while
burning homogeneously premixed fuel (see e.g. Crighton et al. 1992; Talei et al.
2011). A fully compressible, reactive Navier–Stokes solver, resolving all spatial
and temporal scales, has been used. The reactive component consists of a one-step,
one-way chemistry model of Arrhenius type with a local reaction rate of the form

ω̇f = AρYf Tβ exp
(
−Ta

T

)
, (2.1)

where ρ is the flow density, Yf is the fuel mass fraction, Ta is the activation
temperature and T is the local fluid temperature. Coefficients A and β are kept
constant. The time-independent planar flame thickness δf is defined in the limit of
small local curvature according to (Poinsot & Veynante 2005)

δf = Tb − Tu

max |∂T/∂r| , (2.2)

with Tu denoting the temperature of the fresh gases and Tb the temperature of
the burned products. In what follows, the reference length is taken as δf , the
reference velocity as the laminar burning velocity, and the reference temperature
as the temperature of the unburned gases at Tu. With this choice, we consider the
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parameters A= 6.3× 1010, β = 0.35 and Ta = 120, which yield a reference Reynolds
number of Re= 5.56 in fresh gases, a reference Mach number of Ma= 0.006 and a
constant Prandtl number of Pr = 0.72. The heat release of the chemical reaction is
set to enforce Tb = 6.5. Differential diffusion is taken into account by Fick’s law at
a constant Lewis number Le. In what follows, the values Le = 0.8, 1 and 1.2 will
be considered. Finally, the temperature dependence of the viscosity is modelled by
Sutherland’s law with µ=µref (T/Tu)

0.65.
A chemistry model of this type has been used by Williams (1985) to analytically

study planar flame fronts. Details about the numerical discretization of our governing
equations can be found in Sandberg (2007) and Blanchard et al. (2015). Our
simulations use a conservative formulation of the state variable q= (ρ, ρur, ρuθ , ρE,
ρYf )

T with ρ as the density, (ur, uθ) as the radial and angular velocity, respectively,
E as the total energy and Yf as the fuel mass fraction. The computational mesh
is adapted to ensure a minimum of 25 grid points across the reaction layer and a
proper convergence in the diffusive regions. Absorbing boundary conditions at a large
outer radius are employed using a perfectly matched layer along with characteristic
boundary conditions (Poinsot & Lele 1992).

Our flow analysis consists of a two-step procedure. First, a nonlinear axisymmetric
simulation is performed, from which snapshots are extracted at discrete time instants
ti corresponding to a set of radial positions r0(ti) that satisfy Yf (r0)= 0.5 and 0.4 6
r0 6 160. In a second step, we compute the maximum amount of pressure that can
be generated by a linear perturbation superimposed on the extracted flow field at the
specific radii. The next section presents more details about this second step.

3. Linear analysis and optimization of acoustic output

The linear operator A describing the temporal evolution of perturbations
superimposed on a reference state q0 can formally be defined as A = ∂F(q)/∂q|q0

,
where F stands for the nonlinear reactive Navier–Stokes operator and q0 is taken
as the state vector associated with a particular snapshot (Schmid & Henningson
2001). Alternatively, the operator A is also the rate of change of F with respect to q,
evaluated at q= q0.

Our set-up concentrates on perturbations about the nonlinear, non-periodic flow
of the imploding flame. Consequently, q0 changes in time. Because of this fact,
choosing the appropriate linear method to investigate this system is not trivial.
The time dependence of the base state excludes the direct use of eigenvalues and
eigenvectors, without more overly restrictive assumptions of temporal scale separation
or limitation to a steady or harmonic base-flow dynamics. The same is true for a
frequency response or resolvent analysis, which also requires a time-independent
evolution operator A. As another option, a direct-adjoint optimization methodology
(Schmid 2007; Luchini & Bottaro 2014) could be brought to bear on the problem; this
approach introduces a user-specified time horizon over which the acoustic output is
optimized and, in addition, requires a computationally involved effort. In our pursuit
of an alternative linear analysis technique, we are aided by our focus on acoustic
waves generated at the flame front: we can study these waves by concentrating
on the time derivative of the pressure, which eliminates the necessity of solving
and imposing the time-dependent evolution equation. This approach is equivalent to
considering the limit t0→ 0 and can be motivated by physical arguments.

Applying the decomposition of Chu & Kovásznay (1958), a general perturbation
in a compressible flow can be divided into a vortical, an entropy and an acoustic
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structure. The same decomposition can be augmented by a mixture composition
structure for reactive flows. In this study, we are especially interested in energy
transfers from vortical, entropy and mixture composition modes to the acoustics.
For this reason, we will attempt to generate a maximum instantaneous sound output
from an initial condition that is as void of acoustics as possible. This approach is
based on three assumptions. First, the pressure sources located at the flame front are
assumed to be directly associated with the radiated sound field. This hypothesis is
admittedly rather stringent, since, in actual configurations, acoustic pressure is only
one component of the pressure field. It is thus assumed here that a maximization
of the total pressure is equivalent to an optimization of the acoustic output. Second,
since the acoustic wavelengths generated by combustion processes are typically much
larger than the flame thickness, only the integral of the pressure sources over the
compact flame front will be considered. This assumption eliminates the computation
of eigenvalues for large-scale linear operators associated with typical 2-norm optimal
perturbation computations (Schmid & Henningson 2001). Third, the above integration
will be carried out over the radial direction only. This last assumption relies on
the vanishing of any volume integral for a non-zero azimuthal wavenumber m. In
addition, fixing an arbitrary angle of integration would induce spurious angular-based
amplifications/damping that would be of little interest in this study, as we focus on
local phenomena.

Within this framework, our objective is to maximize the short-time acoustic energy
production at the flame front starting from an acoustic-free initial condition. To
do so, we wish to maximize the pressure p′(0+) starting from a normalized initial
perturbation q′(0−) such that p′(0−)= 0. We measure the amplitude of a perturbation
q′ using a physics-based norm for compressible flows following Chu (1965) and
Hanifi, Schmid & Henningson (1996). We have

‖q′‖2
comp =

∫ ∞
0

[
ρ0(|u′r|2 + |u′θ |2)+

p0

ρ2
0
|ρ ′|2

+ ρ2
0

γ 2(γ − 1)Ma4p0
(|T ′|2 + |1QMa2(γ − 1)Y ′f |2)

]
r dr, (3.1)

properly augmented to account for reactive terms. In this expression, 1Q is the heat
output of the reaction per unit mass of mixture. The premultiplying coefficient for
the perturbed fuel mass fraction Y ′f identifies a variation in mixture composition with
its corresponding temperature variation T ′ in the burned gases. In order to focus our
study on the flame-front dynamics, the initial perturbation is taken to be localized in
[r0 − 2, r0 + 2]. For a given r0, we have

q′(r)= 0 if r< r0 − 2 or r> r0 + 2. (3.2)

The corresponding projector that accomplishes this spatial restriction is referred to as
M loc in what follows. This windowing allows our study to focus on the whole flame
structure, including the preheating area. A standard strategy would then consist in
maximizing ∂‖p′‖2

comp/∂t by solving an eigenvalue problem (Schmid & Henningson
2001). Instead, we propose a novel and more efficient methodology based on the
maximization of the objective function J ,

J (q′)= 1√req

∣∣∣∣∫ ∞
0

∂p′

∂t
g(r, r0)r dr

∣∣∣∣ , (3.3)
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FIGURE 3. (Colour online) Shape of the output optimal pressure production associated
with (a) axisymmetric disturbances at r0 = 48.4, and (b) non-axisymmetric disturbances
with m= 40, λ= 7.5 and r0= 48.2. Blue line, real part of the pressure; red line, imaginary
part of pressure; dashed line, rescaled base-flow temperature; solid black line, output
window g(r, r0); shaded area, input window implemented by M loc.

where

req =

(∫
g(r, r0)r dr

)2

∫ r0+2

r0−2
r dr

=

(∫
g(r, r0)r dr

)2

4r0
, (3.4)

q′ is the perturbation state vector and p′ is the corresponding pressure disturbance. The
masking function g(r, r0) ensures information extraction from the flame front and is
designed to satisfy g(r, r0)= 1 at the flame front and to smoothly decay towards zero
elsewhere in the domain. The shape of g(r) for a representative value of r0 = 48.4
is presented by the black line in figure 3. The premultiplying factor 1/√req scales
the result to obtain a constant optimal value of J (q′) for large radii by ensuring
a scaling compatibility between the 2-norm-based normalization ‖ · ‖comp of the input
and the form of the objective function, while maintaining consistent results at lower
radii. The results stemming from (3.3) and a more classical 2-norm optimization were
compared for axisymmetric configurations and found to agree within 1 % relative error.
Maximization of (3.3) is preferred due to its algorithmic efficiency, as it does not
require expensive large-scale eigenvalue computations. Converting our problem to a
linear, discretized formulation, we have the following system of equations:

d
dt

q′ = A q′, p′ =Mpq′, ‖q′‖comp = ‖Mnormq′‖2, (3.5a−c)

q′p =Mq,pq′, (3.6)∫ ∞
0

fg(r, r0)r dr≈ (gint)
Hf . (3.7)

These involve the linear system matrix A, the matrix Mp isolating the pressure field
from the full state vector and the matrix Mnorm implementing the weights given by the
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norm above. Equation (3.6) extracts the pressure-related part of the perturbation q′.
The vector q′p has the same dimensionality as q′ and, in our case, is equal to
(0, 0, 0, p′/(γ − 1), 0)T. The last equation recasts the integral of any quantity f and
the masking function g in discretized form as a simple scalar product, with f as
the discretized equivalent of f ; the complex conjugate operation is denoted by the
superscript H. All the above matrices and vectors depend on the snapshot q0 and are
additionally parametrized by the azimuthal wavenumber m. Based on this notation,
our optimization problem can be stated as

q̃= argmax||q1||2=1 gH
intMpA(I −Mq,p)M

−1
normM locq1, (3.8a)

q′opt = (I −Mq,p)M
−1
normM locq̃. (3.8b)

The first equation, reading from right to left, seeks a normalized perturbation q1
that, when localized in space (by M loc), converted to the physical space (by M−1

norm)
and with its pressure component removed (by I − Mq,p), maximizes its time rate
of change of pressure (multiplying by MpA) within the confines of the flame front
(by multiplication with the integrating masking vector gint). The perturbation that
maximizes this expression is denoted by q̃. The second line retrieves the physical
state corresponding to this optimal solution and removes the pressure component. The
solution to the above optimization problem is straightforwardly given by

q̃= (MpA(I −Mq,p)M−1
normM loc)

Hgint

‖(MpA(I −Mq,p)M−1
normM loc)Hgint‖2

. (3.9)

This expression shows that no large-scale and costly matrix manipulations are required
so long as a multiplication with the adjoint system matrix AH is provided; this makes
the computation of optimal perturbations very efficient and fast. The cost functional
measuring the overall acoustic output is then given for the optimal (pressure-free)
perturbation by

Jopt ≡J (q′opt)=
1√req
‖(MpA(I −Mq,p)M

−1
normM loc)

Hgint‖2. (3.10)

The quantity determines the maximally achievable acoustic radiation from pressure-
free initial perturbations; it is a valuable instrument in identifying regions of increased
acoustic activity along the flame front. A second quantity will help us to determine the
manner in which this optimal acoustic output is generated. We allow small variations
δA of the system matrix A and record the resulting first-order variation of the cost
functional,

δJopt(δA)= 1
reqJopt

Re [q̃H
(MpδA(I −Mq,p)M

−1
normM loc)

Hgint], (3.11)

thus constructing a sensitivity measure for the optimal perturbation. This measure
will be used to assess the contributions of various terms in the system matrix to the
optimal acoustic output.
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4. Results
4.1. Axisymmetric disturbances

As a first step, we will establish a base case and assume axisymmetric perturbations,
where we will find that acoustic sources are independent of vortical components and
the optimal perturbation q′opt is dominated by a superposition of entropy and fuel mass-
fraction modes. Indeed, in an axisymmetric configuration, the angular derivative ∂ ·/∂θ
is null: azimuthal velocity and vorticity waves lose all influence on the rest of the flow
field.

The measure Jopt is shown, for this case, in figure 4 by the black continuous curve,
demonstrating a strong preference of the flame tip (i.e. small radii of curvature) to
generate acoustic waves at Lewis numbers Le= 1.2 and 1.0; the opposite tendency is
observed for Le= 0.8. This behaviour is compatible with pressure waves induced by
heat-release rate disturbance. Chemical activity indeed intensifies with increasing mean
curvature (Kidin et al. 1984; Crighton et al. 1992; Talei et al. 2011). This finding is
further corroborated by considering the sensitivity of Jopt to small variations in the
operator Achem describing the chemistry of the combustion process. We define Achem as
the linearized operator associated with reaction rate terms in our governing equations:
it is given by a combination of (1) fuel sources due to modifications in the reaction
rates and (2) energy sources due to variations of the corresponding heat-release rate. In
a further step, we assume a multiplicative (scaling) change in this operator according
to δAchem = εAchem, with ε� 1. The corresponding relative first-order change in Jopt
due to this latter scaling can be defined as

δJ = δJopt(δAchem)

δJchem
. (4.1)

The quantity δJchem denotes the expected variation of Jopt if Jopt is proportional
to the chemistry operator Achem. Here, δJchem = εJopt as δAchem = εAchem. A value of
δJ = 1 indicates that all changes in the chemistry terms convert into acoustic energy;
it thus points towards acoustic output based entirely on unsteady heat release in the
flame.

The results for δJ are shown in figure 4. The continuous black line presents
the special case of axisymmetric disturbances, which, except at the smallest radius,
confirms δJ = 1 and thus a pure generation of acoustic radiation due to reactive
processes. In other words, at the flame front, in the axisymmetric case, unsteady
chemistry is responsible for the coupling of entropy and fuel modes with the acoustics
at all radii r0 as long as r0>δf . This finding is in agreement with experiments (Hurle
et al. 1968; Candel et al. 2009). The observed variation in optimally generated noise
at small radii r0 can be largely accounted for by the variation of the flame velocity
due to diffusive effects (Talei et al. 2011).

4.2. Non-axisymmetric disturbances
We proceed by allowing an azimuthal dependence of the flame front, thus modelling
wrinkles in the flame front propagating towards the flame tip. It should be emphasized
that this model neglects the influence of the tangential strain rate on the propagation
of disturbances along a flame front. When approaching the flame tip, this assumption
may limit the validity of our approach. In this second step, an azimuthal wavenumber
m is introduced. Owing to this new degree of freedom, the optimal perturbation q′opt
depends not only on the flame radius but also on this azimuthal wavenumber. In
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FIGURE 4. (Colour online) (a,c,e) Comparison of optimal acoustic generation for various
characteristic wavelengths and axisymmetric perturbations. (b,d, f ) Relative sensitivity δJ
of Jopt with respect to changes in the chemistry operator Achem. A value of |δJ | = 1
indicates that the acoustic output is solely generated by the unsteady heat-release rate.
Symbols: non-axisymmetric cases with λ= 2.5λLe (1), λ= 5.0λLe (2), λ= 7.5λLe (3), λ=
12.6λLe (4), λ = 25.1λLe (5) and λ = 62.8λLe (6), with λLe = 0.89 for Le = 0.8 (a,b),
λLe= 1.0 for Le= 1 (c,d) and λLe= 1.10 for Le= 1.2 (e, f ). Black solid line: axisymmetric
reference case (7). The parameter λLe is a scaling factor that corrects for flame thickness
variations with Lewis number Le.

order to maintain a connection between the convection of a flame wrinkle and a
varying flame curvature radius (see figure 2), a meaningful choice of scale is based
on considering a perturbation of constant size. For a flame of radius r0 and a wrinkle
described by a wavenumber m, the characteristic wavelength of a perturbation is
given by

λ= 2πr0

m
. (4.2)
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This choice enforces a balance between the azimuthal derivative operator and the
radius of curvature,

1
r
∂f
∂θ
∝ m

r0
f = 2π

λ
f . (4.3)

In the limit of large λ, azimuthal derivative terms vanish and the optimal perturbations
should asymptotically approach the axisymmetric solutions. Figure 4, showing Jopt

versus the flame radius, confirms this limit: for values of λ greater than 50 times the
flame thickness, the optimal acoustic output coincides with the axisymmetric case
(represented by the black solid line). For values of λ< 50, non-axisymmetric effects
become important. The curves separate. In the non-axisymmetric regime, optimal
perturbation q′ may be composed of any combination of an entropy mode, a mixture
composition mode and a vortical mode. This fact provides additional degrees of
freedom for the optimization, which explains why non-axisymmetric perturbations
achieve higher acoustic output |Jopt| than axisymmetric disturbances, as shown
in figure 4. Moreover, the generation of acoustic output may rely on complex
mechanisms involving more than just an unsteady heat-release rate. This effect is
reflected in the variation of |δJ |, presented in figure 4: for λ < 50, the values of
|δJ | strongly deviate from one and converge towards zero, indicating a diminishing
contribution of reactive processes (i.e. linearized chemistry) to the generation of
acoustic output. This change of physics has an impact on the composition of the
modes and their amplitudes at high flame curvature. We also note from inspection of
figure 4 that axisymmetric disturbances for Le = 1 and 1.2 achieve their maximum
acoustic output at low values of r0 (i.e. near the flame tip for a conical flame),
while non-axisymmetric perturbations produce their maximum at large radii (i.e.
for planar flames). Furthermore, the shape of the pressure sources is modified as
well at high λ, as demonstrated in figure 3 for two representative cases. In the
axisymmetric case, the pressure sources are attached to the reaction zone, whereas
for large azimuthal wavenumbers the pressure sources are spread across the diffusion
zone and even extend into the region of burned gases. For all cases, output pressure
sources were found to have a uniform phase along the radial direction r: this is a
consequence of the integral form of our objective function J . These phenomena hold
for all Lewis-number values considered in this study. The most significant difference
observed is related to the asymptotic behaviour of axisymmetric disturbances at low
radii. For Le= 1.2 and 1.0, pressure-source amplitudes increase with curvature, while
they decrease for the case of Le= 0.8.

Last, it should be noted that the choice of the scaling factor req may change the
value of |Jopt| at low radii. However, the relative behaviour of these curves will be
unchanged, as this scaling factor is identical for all cost functionals. Besides, it was
checked that other choices of req do not change the sign of the slope of the curves
at small r0 as long as req ∼ r0.

Understanding the transition of pressure generation at the flame front from large
to small wavelengths is of importance and warrants further analysis. To this end, we
propose a vortex–sound mechanism (see e.g. Powell 1964) as the dominant process
for the generation of pressure output at low wavelength and investigate the validity of
this assumption. Hence, a new objective function is introduced according to

J2(q′)= 1√req

∣∣∣∣∫ ∞
0

∂ζ ′

∂t
g(r, r0)r dr

∣∣∣∣ , (4.4)
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FIGURE 5. (Colour online) Comparison of acoustic output for modes optimizing
J (circles) and modes with maximal vorticity changes optimizing J2 (squares) for
λ = 2.5 (1), λ = 5.0 (2), λ = 7.5 (3), λ = 12.6 (4), λ = 25.1 (5) and λ = 62.8 (6) and
for Lewis number Le= 0.8 (a), 1.0 (b) and 1.2 (c).

where ζ ′ denotes the vorticity of the linear perturbation. The maximization of
this cost functional leads again to an optimal pressure-free perturbation q′opt,2.
The acoustic output computed by optimizing either the previous cost functional
(emphasizing pressure generation processes) Jopt = J (q′opt) or the above cost
functional (emphasizing vorticity-based process) Jopt,2 = J (q′opt,2) is compared in
figure 5. In this figure, the circles are identical to the markers shown in figure 4(a,c,e).
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At low values of λ, we observe a close agreement between the two optimization
problems, indicating a dominant contribution of vorticity to the generation of sound.
This may also have implications on the modal behaviour at low values of r0: when
the mean flame curvature is important, vortices interact strongly and dominate the
acoustic activity. At higher values of λ, at least one order of magnitude separates
the values of J computed by the two methods, and the pressure field generated by
vorticity variations becomes negligible.

As a conclusion, for large-scale perturbations, the unsteady heat-release rate
constitutes the dominant source of sound, while for disturbance wavelengths of
the order of the planar flame thickness, vorticity dynamics becomes the prevailing
mechanism in acoustic wave generation.

5. Discussion and conclusions

In this paper the influence of mean flame curvature r0 and small-amplitude flame
wrinkles (characterized by a wavelength λ) on the production of acoustic output has
been addressed by posing an optimization problem for a generic configuration. More
specifically, the flame dynamics has been studied by considering an axisymmetric,
laminar, imploding flame front upon which azimuthal disturbances have been
superimposed, and their dynamics along the flame front has been investigated. The
choice of optimization variable (in our case, unsteady heat-release rate or vorticity)
has allowed us to quantify the contribution of various noise-generation mechanisms
to the overall acoustic output.

The main characteristic length of the problem is the flame thickness δf , and the
wavelength λ, quantifying flame wrinkles, has been non-dimensionalized using δf

(as have all other spatial scales). From our analysis, two distinct behaviours can be
observed. For large-scale perturbations (with λ > 50), the unsteady heat-release rate
is the dominant contributor to acoustic radiation. As a consequence, the maximum
of our objective functional Jopt increased with the flame-front curvature for r0 < 10.
In contrast, for small perturbations (with λ < 8), changes in vorticity become the
prevalent sources of pressure fluctuations and thus acoustics. The values of Jopt then
decrease for high mean curvature (r0 < 10). This transition between two contrasting
behaviours has important physical implications.

The importance of vorticity in the generation of noise is well known for
non-reactive flows (Powell 1964); in combustion systems, on the other hand, the
contribution of vorticity to acoustics is far less established. Indeed, experimentally,
a flame submitted to a large-scale vortex (λ� 1) will simply roll up (Renard et al.
2000). At smaller scales, however, Poinsot, Veynante & Candel (1991) and Roberts
& Driscoll (1991) showed that vortices (of constant vortex strength) were unable
to disrupt the flame front. The transition between these two behavioural regimes
was observed for 3 < λ < 100. The transitional values of λ found in our study are
compatible with these simulations and experiments. Our results also suggest two
distinct scenarios. At large scales, flame–vortex interaction may lead to an increased
flame surface variation and consequently to the generation of sound via an unsteady
heat-release rate. At small scales, the vortex is unable to disrupt the flame front, is
partly absorbed by the flame structure and generates high local pressure levels. This
result was observed to hold across all Lewis numbers considered here.

If confirmed by further experiments or simulations, this physical phenomenon will
strongly influence the root-mean-square values of the near-field pressure. Moreover,
our analysis shows that the flame diffusion thickness δf plays an essential role as
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the crucial characteristic length. The effects of complex chemistry also need to be
assessed. Energy exchanges between entropy, vorticity, mixture fraction and acoustic
modes at the flame surface is a complex and sensitive topic, further complicated by
nonlinear effects rising quickly in flames. A proper validation of these results by
nonlinear simulations or experiments would greatly enhance our understanding of
combustion noise and flame dynamics and contribute to a mechanistic and physical
picture of sound generation in reactive flows.
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