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Unsteadiness in noise amplifier flows is driven and sustained by upstream environ-
mental perturbations. A dynamic mode decomposition performed with snapshots
taken in the statistically steady state extracts marginally stable dynamic modes, which
mimic the sustained dynamics but miss the actual intrinsic stable behaviour of these
flows. In this study, we present an alternative data-driven technique which attempts
to identify and separate the intrinsic linear stable behaviour from the driving term.
This technique uses a system-identification algorithm to extract a reduced state-space
model of the flow from time-dependent input–output data. Such a model accurately
predicts the values of the velocity field (output) from measurements of an upstream
sensor that captures the effect of the incoming perturbations (input). The methodology
is illustrated on a two-dimensional boundary layer subject to Tollmien–Schlichting
instabilities, a canonical example of flow acting as a noise amplifier. The spectrum
of the identified model compares well with the results reported in literature for the
full-order system. Yet the comparison appears to be only qualitative, due to the poor
robustness properties of eigenvalue spectra in noise-amplifier flows. We therefore
advocate the use of the frequency response between the upstream sensor and the
flow dynamics, which is revealed to be a robust quantity. The frequency response
is validated against full-order computations and compares well with a local spatial
stability analysis.
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1. Introduction
Unsteadiness in open flows can be classified into two main categories (Huerre &

Rossi 1998): (1) oscillator-type flows, which are defined by a global instability
resulting in self-sustained oscillatory fluid behaviour (intrinsic dynamics); and
(2) noise amplifiers, which are characterized by selectively amplifying environmental
noise that is present in the upstream flow (extrinsic dynamics). Dynamic mode
decomposition (DMD) (Rowley et al. 2009; Schmid 2010) provides a powerful post-
processing tool for analysing oscillator-type flows from a sequence of measurement
snapshots. DMD assumes that a linear mapping A links the nth flow field u(n) to
the subsequent flow field u(n+ 1), that is, u(n+ 1)=Au(n). This technique has been
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proven to successfully recover the oscillatory modes and frequencies in flows with
self-sustained oscillations (Schmid 2011; Schmid et al. 2011; Seena & Sung 2011;
Bagheri 2013). In the presence of environmental noise, the time-period of such flow
fields may be slightly affected. The effect of such uncertainties on the DMD analysis
may be assessed and quantified theoretically (Bagheri 2014).

The recovery of the intrinsic dynamics of amplifier flows, on the other hand, is
a more challenging problem. Amplifier flows are globally stable, but selectively
amplify upstream disturbances by convective instabilities. Consequently, the system
dynamics is entirely driven by the environmental noise. If this driving term is
statistically stationary, the flow is maintained in a statistically stationary state. Since
a DMD analysis does not distinguish the external driving from the inherent dynamics,
marginally stable eigenvalues are predicted, which is in contradiction with the inherent,
globally stable dynamics of such flows. For this reason, an alternative data-based
technique, which takes into account the noise-driven characteristics of the flow, is
needed for the case of amplifier flows.

In this paper, we propose to separate the noise from the inherent dynamics using
a localized sensor together with system identification. Over the past few years,
system identification has proven to be a promising approach for the extraction of
amplifier-flow models from input–output data. Several applications to closed-loop
control have been successfully carried out in numerical simulations (Hervé et al.
2012; Juillet, Schmid & Huerre 2013) and experimental set-ups (Gautier & Aider
2014; Juillet, McKeon & Schmid 2014). While in previous studies the models focus
on the dynamics between one upstream and one downstream sensor, Guzmán Iñigo,
Sipp & Schmid (2014) extended the technique to capture the dynamics between
upstream measurements and the entire velocity field. In this work, we employ this
latter technique to extract the inherent dynamics of a boundary layer. More specifically,
the eigenvalues and associated eigenvectors of the identified model will be extracted
from data sequences of the noise-driven flow, and the flow characteristics will be
compared to results obtained from global stability analyses (Ehrenstein & Gallaire
2005; Alizard & Robinet 2007; Åkervik et al. 2008).

In these studies it was found that the spectrum of boundary-layer flows is rather
sensitive to the conditions imposed on the downstream boundary, as well as to
the extent of the domain in the streamwise direction. This sensitivity was due
to the fact that the computational domains in these studies did not contain the
full wavemaker region of the analysed Tollmien–Schlichting modes. Brandt et al.
(2011) indeed showed that the wavemaker region of those modes extends from the
branch I location up to the branch II location. For energetic Tollmien–Schlichting
waves (F ≈ 50, for example), this region is rather large and is almost never entirely
contained in the computational domain. We will similarly give a theoretical argument
indicating that DMD modes are converged only if the DMD window includes the
entire wavemaker region. A second reason explaining the sensitivity of the spectrum
in noise-amplifier flows is the high non-normality of the Jacobian operator in such
flows, which renders eigenvalues a mathematically ill-posed quantity (Trefethen
et al. 1993; Schmid & Henningson 2001; Sipp et al. 2010). We therefore suggest
to instead identify input–output quantities in order to characterize the dynamics of
noise-amplifier flows. Ideally, we would have liked to determine pseudo-resonances
(Trefethen et al. 1993), which for given frequencies extract the optimal gain, forcing
and response. Such quantities accurately and robustly characterize the instability
potential of noise-amplifier flows (Sipp et al. 2010; Sipp & Marquet 2013). However,
in an experimental set-up, since the upstream forcing is generally unknown in such
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flows, the only input–output quantity at hand is the frequency response from the
upstream sensor (which accounts for the unknown upstream forcing) to the flow
dynamics. We believe that in an experimental set-up this quantity is the relevant one
to quantify the dynamics of noise-amplifier flows with a data-based technique.

The article is organized as follows. After a brief description of the flow configuration
and the governing equations (§ 2), the results obtained from a DMD analysis of a
noise-driven boundary layer are reported in § 3. These results demonstrate that DMD
does not manage to separate the dynamics produced by an external driving term
from the inherent dynamics of the flow and, consequently, predicts marginally stable
eigenvalues. We also show that a DMD analysis applied to snapshots obtained
from an impulse released upstream succeeds in identifying stable global modes,
characteristic of the inherent stable dynamics of boundary layer flow. However, this
constitutes a thought experiment that cannot be done in reality, due to the unknown
characteristics of the upstream noise environment. We propose a new method to
overcome this difficulty, which is based on an identified model introduced by Guzmán
Iñigo et al. (2014). After a brief presentation of the model in § 4, we show in § 5
that the eigenvalue spectrum presents a branch of stable global modes, similar to the
branch obtained by the DMD analysis with the impulse response. Yet the agreement
is only qualitative, due to the sensitivity of the eigenspectrum in boundary-layer
flow. We therefore (§ 6) turn our attention to the frequency response between the
upstream sensor and the velocity field, which is a relevant and robust quantity to
characterize the inherent dynamics of boundary layer flow. A summary of the results
and conclusions are given in § 7.

2. Flow configuration and governing equations

The flow configuration chosen to illustrate the proposed techniques and concepts
consists of a transitional two-dimensional boundary layer over a flat plate. This flow
constitutes a classical and generic example of a noise amplifier, i.e. a globally stable
system which selectively amplifies upstream disturbances by convective instabilities.
In a low-amplitude noise environment, two-dimensional Tollmien–Schlichting waves
appear as a result of this convective instability mechanism.

We consider the spatio-temporal evolution of small-amplitude disturbances u about
a given base-flow U0, which we take as a zero-pressure gradient boundary layer. The
disturbances u are driven by an external forcing term, Fww(t), which represents and
models an upstream disturbance source of unknown origin. For simplicity, we assume
that w(t) is a random process of zero mean and variance W, while Fw describes a
spatial two-dimensional Gaussian distribution centred at (xw, yw)= (50, 0.95), of width
(σx, σy)= (1, 0.1) and amplitude A= 0.1. The spatio-temporal evolution of the entire
flow field, Utot =U0 + u, is governed by the incompressible Navier–Stokes equations,
augmented by the forcing term. With the base flow U0 as a solution of the unforced
steady Navier–Stokes equations, the evolution of the perturbations is given by the
following equations

∂tu+U0 · ∇u+ u · ∇U0 =−∇p+ Re−1
δ∗0
1u+Fww(t), ∇ · u= 0, (2.1a,b)

where the nonlinear term u · ∇u has been omitted since only low-amplitude noise
W � 1 will be considered. This assumption ensures linear perturbation dynamics, as
well as a linear response to the noise w. During the direct numerical simulations
(DNS), white noise is imposed via w(t) to mimic upstream excitations of unknown
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FIGURE 1. (Colour online) Neutral curve obtained by a local spatial stability analysis; the
grey area represents the extent of the computational domain.

source and distribution (mimicking conditions in physical experiments). For the
temporal evolution, we use a time step of dtdns = 0.1 (corresponding to a Courant–
Friedrichs–Lewy number of 0.379). The flow variables are non-dimensionalized using
the displacement thickness δ∗0 of the boundary layer at the computational inlet (x0= 0)
and the free-stream velocity U∞. Consequently, the Reynolds number is defined as
Reδ∗0 = U∞δ∗0/ν. All simulations were performed at Reδ∗0 = 1000, which guarantees
strong amplification produced by the Tollmien–Schlichting instability. Convective
instabilities can be studied within a local stability framework by considering
perturbations of the form ei(αx−ωt), with ω as the frequency and α as the streamwise
wavenumber of the perturbation. An analysis of this type shows that the Blasius
boundary layer is subject to convectively unstable Tollmien–Schlichting waves, when
the Reynolds number based on the local displacement thickness δ∗0 surpasses the
critical value of Reδ∗0 = 520. In figure 1, the neutral curve obtained from a local
spatial stability analysis performed with wall-normal profiles extracted from the base
flow U0 is displayed. The unstable frequencies fall within the interval 0.055<ω<0.13
at the computational inlet and 0.015<ω< 0.052 at the end of the domain.

The governing equations (2.1) are solved in a computational domain Ω of size
(0, 1000) × (0, 40), sketched in figure 2. A Blasius profile of unit displacement
thickness is prescribed at the left boundary, outflow conditions are employed at the
upper and right boundaries, and a no-slip condition is imposed at the wall. The base
flow U0 is imposed at the initial time for noise-driven simulations; the data used to
compute the models is collected after an initial transient phase is passed. We use
the spectral-element code Nek5000 (see https://nek5000.mcs.anl.gov) to perform the
computations below. The computational domain is discretized using a mesh consisting
of 8000 elements of spectral order 7.

Two different measurements are extracted from the simulations in order to compute
the reduced-order model. Special emphasis is directed towards the use of data that
may be readily available in an experiment, since the application of our technique
to an experimental set-up is the final objective of the procedure described in this
paper. We first consider a wall-friction sensor s (see figure 2), located at xs = 200
and of spatial streamwise extent 1x= 5, which records the wall shear-stress stot. The

https://nek5000.mcs.anl.gov
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FIGURE 2. (Colour online) Sketch of the flow configuration. The computational domain Ω
is of size (0, 1000)× (0, 40), represented by the light grey box. The upstream receptivity
of the boundary layer to external perturbations is modelled by the noise w which is placed
at (xw, yw) = (50, 0.95). A sensor located at (xs, ys) = (200, 0) will identify incoming
perturbations, while a velocity window of extent (200, 900)× (0, 40) (represented by the
dark grey box) is used to quantify the effect of the forcing on the velocity field.

fluctuating component s may be obtained by subtracting the time-averaged value of stot
from the signal stot. For the case of low-amplitude forcing, i.e. for linear perturbation
dynamics, the time-averaged value also corresponds to the base-flow value. In addition
to the wall-friction sensor s, we also consider velocity snapshots usnap, taken in a given
domain Ωsnap of size (200, 900)× (0, 40) (see figure 2). The fluctuating components
of the velocity field may again be obtained by subtracting the time-averaged snapshots
from the total snapshot sequence. The wall-friction sensor was placed at the upstream
edge of the velocity window. For a chosen velocity window, this set-up is optimal
(not shown here) for the reconstruction of the flow field due to the highly convective
behaviour of the flow. In what follows, we will consider time series of composite
data comprising skin-friction measurements and velocity snapshots. The reduced-order
model will be extracted from these data.

3. Dynamic mode decomposition of noise-driven amplifier flows
This section is concerned with the application of the traditional DMD technique for

boundary layer flow. After a brief reminder on the underlying assumption of DMD
(§ 3.1), we show that the DMD modes of boundary layer flow driven by upstream
noise consist of marginally stable modes (§ 3.2), which is in contradiction with the
inherent stable nature of this flow. For comparison, we then (§ 3.3) perform a DMD
analysis of an impulse released by w and show that the spectrum is qualitatively close
to that obtained in global stability analyses.

3.1. Reminder on DMD
The starting point of a DMD analysis is a temporal sequence of Nsnap data field
snapshots u(n) written as

V
Nsnap
1 = {u(1), u(2), . . . , u(Nsnap)}. (3.1)

The sampling time between each snapshot 1t in the above sequence is assumed to be
constant. DMD assumes that the sequence (3.1) is related by the mapping

u(n+ 1)= Au(n). (3.2)
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FIGURE 3. (Colour online) Dynamic mode spectrum in the (ωr, ωi)-plane extracted from
two different datasets: white-noise-driven simulation (blue squares) and impulse response
(red circles). The size of the symbols represents the relative amplitude of the velocity
snapshots projected onto the dynamic modes.

Using the classical Arnoldi idea that the vectors of the sequence (3.1) sooner or later
become linearly dependent, the mapping (3.2) can be expressed by

AVN−1
1 = VN

2 ≈ VN−1
1 S. (3.3)

The eigenvalues of S (also known as the Ritz values) approximate some of the
eigenvalues of A (Ruhe 1984); the eigenvectors of S contain the coefficients for the
reconstruction of dynamic modes expressed within the snapshot basis. The matrix S
can be computed from the above equation by a least-squares approximation based on
the two datasets VN−1

1 and VN
2 . We obtain

S = R−1QHVN
2 , (3.4)

where Q and R stand for the QR decomposition of the dataset VN−1
1 , i.e., QR = VN−1

1 .
Here QH denotes the Hermitian operation (complex conjugate transpose) on Q. The
time-discrete eigenvalues of S (λ = λr + iλi) can be mapped to the time-continuous
domain ω=ωr + iωi using the relation λ= e−ω1t.

3.2. Case of driven simulation
In this section, the DMD spectrum was extracted from data obtained by performing
a linearized direct numerical simulation of a boundary layer excited in w by white
noise. We used a sampling interval of 1t= 5 for the velocity snapshots. A dataset of
length Nsnap= 2000 (T = 9995) was extracted from this simulation. This same dataset
will be used in § 4 to extract the dynamic observer.

The dynamic mode spectrum in the (ωr, ωi)-plane is represented in figure 3. The
horizontal and vertical axes correspond, respectively, to the frequency ωr and the
growth rate ωi. The figure is symmetric with respect to ωr = 0, and eigenvalues in
the half-plane ωi < 0 represent stable eigenmodes. The velocity field was projected
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onto the DMD modes to obtain the time-dependent dynamic mode coefficients. The
relative amplitude of such coefficients is represented by the size of the symbols and
indicates the importance in the dynamics of each mode.

The spectrum obtained from the driven simulation (blue squares) shows marginally
stable eigenvalues. The interpretation of this result implies that the boundary layer
presents self-sustained oscillations (even if the system is globally stable). This
contradiction arises from DMD interpreting the unsteadiness produced by the external
driving term as oscillations intrinsic to the flow. An alternative approach that separates
the external driving term from the inherent stable dynamics is therefore required.

3.3. Case of impulse response
A first attempt to separate the driving term from the inherent dynamics is to perform a
DMD analysis of snapshots obtained with an impulse response in w. This amounts to
performing a linearized Navier–Stokes simulation with u=Fw as the initial condition.
A DMD analysis of such snapshots should clearly identify stable global modes, which
would accurately characterize the inherent dynamics of the flow.

A sampling interval 1t = 1 was used to extract a dataset of length Nsnap = 2800
(T = 2799). A certain amount of time is necessary for the wavepacket to reach the
velocity window, since the forcing term w is located upstream of it. This time-range,
corresponding to snapshots Nsnap= 0 to Nsnap≈ 250 (T ≈ 250), was removed from the
dataset before performing the DMD analysis.

We observe in figure 3 that the eigenvalues obtained from a DMD analysis with
the impulse response (marked as red circles) are stable (as expected) and display
a parabolic distribution characteristic of convection–diffusion systems. These results
favourably compare with the spectra obtained from global stability analyses previously
reported in literature (Ehrenstein & Gallaire 2005; Alizard & Robinet 2007; Åkervik
et al. 2008). The shape and amplification rate of the Tollmien–Schlichting branch
roughly correspond to those reported in these articles. However, agreement is only
qualitative since it was found that the details of these spectra (damping rate and
separation distance between successive eigenvalues) were strongly influenced by the
location and nature of the downstream boundary (Ehrenstein & Gallaire 2005; Alizard
& Robinet 2007).

Such results clearly characterize the inherent stable dynamics of boundary layer flow.
Yet in an experiment it is not possible to perform an impulse response, since the
upstream driving term is unknown. We therefore need a different data-based technique
to separate the inherent dynamics of the flow from the external forcing in the case of
a driven flow field. This technique is presented in the next section.

4. A reduced-order dynamic observer
We first (§ 4.1) recall the technique introduced by Guzmán Iñigo et al. (2014) to

obtain a reduced dynamic observer, which captures the input–output dynamics from
the upstream sensor s (which stands as a proxy of the upstream driving term w) to
the velocity field. Then, in § 4.2, based on the snapshots of the driven simulation
introduced in § 3.2, we compute the dominant proper orthogonal decomposition (POD)
modes and build the reduced-order state-space model of the flow.

4.1. Reminder on identified dynamic observers
Considering (2.1), the evolution of small-amplitude perturbations u about a given base
flow for the case of a noise amplifier can be represented in the time-discrete domain
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by u(n+ 1)= Awu(n)+ Fw(n), where Aw denotes the linear system operator, Fw(n)
represents the driving by external perturbations and n stands for the nth time step.
The system dynamics is entirely driven by the term Fw(n), which generally represents
a random external noise of unknown distribution. In the present work, we propose
to capture the influence of the forcing term Fw(n) by means of a localized sensor,
specifically wall-shear stress measurements s(n). This approach implies the loss of the
receptivity information by correlating the effect of the noise at a single point with
the effect on the entire domain. A dynamic observer which describes the dynamics of
ue(n) based on the input s(n), instead of Fw(n), is introduced according to

ue(n+ 1)= Aue(n)+ Ls(n). (4.1)

The matrices A and L are chosen to render the temporal evolution of ue as close as
possible to the temporal evolution of u. We use the approach introduced by Guzmán
Iñigo et al. (2014), which consists of the extraction of the above matrices from
time-evolving data using system-identification techniques. However, the large number
of degrees of freedom contained in the snapshots u makes direct application of
identification techniques excessively expensive. It is thus mandatory to reduce the
dimensionality of the measured data. To this end, we use POD modes (Lumley
1967; Sirovich 1987) to form a reduced basis. We process a sequence of m velocity
snapshots extracted from the simulation in the presence of the upstream noise w. The
POD then enables us to compute a ranked orthonormal basis {Φi}i=1...m of flow fields,
satisfying 〈Φi,Φj〉 = δij, i, j= 1, 2, . . . ,m, which can be expressed most conveniently
as a linear combination of these m snapshots. Here, the scalar product 〈·〉 denotes
the energy-based inner product: 〈u1, u2〉 = ∫

Ω
(u1u2+ v1v2) dx dy. Any velocity field V

from the domain Ω can then be projected onto the first k POD modes according to

yi = 〈Φi,V〉, i= 1, 2, . . . , k, (4.2)

to produce the approximate flow field V′=∑k
i=1 Φiyi. Properties of the POD guarantee

that, for all k, the error ‖V − V′‖2 = 〈V − V′, V − V′〉 is minimal for the set of
m measured snapshots. For the following derivations, we define the reduced output
vector given by the k POD coefficients by Y=[y1, y2, . . . , yk]T and denote the reduced
POD basis by U = [Φ1, Φ2, . . . , Φk]. The velocity snapshots u are projected onto
these modes to obtain the time-evolving POD coefficients Y(n) which constitute the
new output of the system. The equation governing the dynamic observer (4.1) can be
projected as well onto the POD basis, leading to the equation

Ye(n+ 1)= ÃYe(n)+ L̃s(n), (4.3)

where Ãi,j = 〈Φi, AΦj〉 and L̃i = 〈Φi, L〉. We will seek to recover and analyse the
dynamics of the system by computing these reduced-order matrices from the projected
data.

System identification aims at determining the system matrices such that Ye(n)
recovers the closest possible Y(n) from the time series of input–output data
{s(n), Y(n)}, with n= n0, . . . , nf , using statistical methods. A wide range of system-
identification algorithms is available. For our case, subspace identification is a
particularly convenient choice since our formulation relies on a state-space formulation
(see (4.3)). A detailed explanation of the algorithm is beyond the scope of this
work; a comprehensive description is given in Qin (2006). More specifically, the
N4SID-algorithm (Van Overschee & De Moor 1994) has been used to obtain all
models in this study.
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FIGURE 4. (Colour online) (a) First 100 POD eigenvalues λi of the correlation matrix.
(b) Contours of the streamwise velocity component of the first (Φ1) and tenth (Φ10) POD
mode.

Our choice of the discrete-time formulation emerges naturally when data-based
methods are considered to analyse experimental situations. However, some of the
concepts of dynamical-systems theory that are introduced in the subsequent sections,
such as modal analysis or the frequency response, have a more direct physical
interpretation and definition when a continuous-time framework is employed. The
continuous formulation of the dynamic observer (4.3) reads

dYe/dt= Ã
′
Ye(t)+ L̃

′
s(t). (4.4)

The time coordinate t is related to the time index n by t= n1t, with 1t representing
the sampling time. A relation between the matrices of (4.3) and (4.4) can be derived,
resulting in L̃= ∫ 1t

0 exp[Ã′(1t− τ)]L̃′ dτ associated with the discrete driving term and
Ã = exp(Ã

′
1t) denoting the evolution matrix over a time interval 1t; see Antoulas

(2005) for a more comprehensive description of the discrete-to-continuous time
transformation.

4.2. Model
A total of Nsnap = 4000 snapshots has been extracted from the linearized simulation.
These data have been split into two parts: (1) a learning dataset, used to obtain
the model, and (2) a validation dataset, used to assess its performance. The learning
dataset is composed of Nsnap= 2000 (T= 9995) and corresponds to the same snapshots
as those used for the DMD analysis of the driven system in § 3.2. A POD basis has
been computed using a total of 1500 snapshots. Guzmán Iñigo et al. (2014) reported
that this length was sufficient to capture the slowest time scale (frequency) of the
system.

Figure 4(a) shows the corresponding eigenvalues of the correlation matrix,
confirming a steady decay over approximately three decades in the first 30 modes
(95 % of the energy is contained in the first 10 modes). Two representative POD
modes, Φ1 and Φ10, are displayed in figure 4(b).

The datasets to be processed are composed of the input signal from the sensor s and
several outputs yi corresponding to the projection of the snapshots onto the basis of
POD modes Φi (figure 4). Using the N4SID algorithm, the model parameters Ã and
L̃ can then be determined by fitting the model output to the true, measured output,
as the model is forced by the recorded input. The ability of the model to capture
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FIGURE 5. (Colour online) Learning and validation datasets: a model is obtained using
a segment of the data (with length T = 9995 (grey box)); the performance of the model
is then assessed in a different interval, initialized by Ye = 0 at t = 12 500. The input of
the system (a) is the measurement obtained from the wall-shear sensor s capturing the
influence of external noise. (b–d) Comparison between the DNS (black) and the model
prediction (red) recovered from the input for three variables: (b) the perturbation energy
of the system, and (c,d) the POD coefficients yi for the first and tenth modes, respectively.

the dynamics of the system is then assessed on a different part of the data. For this
purpose, we use the perturbation kinetic energy E = 〈usnap, usnap〉 ≈ Y∗Y taken from
the system measurements and predicted by the model Ẽ(t). The quality of the model
can be quantified based on the fit between the temporal evolution of both magnitudes.
Figure 5 shows a reduced-order model determined using k = 60 POD modes and a
learning dataset of length T = 10 000. Figure 5(a) displays the measurement from the
shear-stress sensor s from which all the subsequent variables (figure 5b–d) can be
recovered using the identified model. The plotted outputs correspond to the energy (b)
and the first and tenth POD coefficients (c–d). The grey box represents the data falling
within the interval t ∈ [2505, 12 500] used to compute the model to FITener = 96.87 %.
The model is then initialized to Ye = 0 at t = 12 500 and, after a transient period,
the performance is evaluated within the interval t ∈ [14 505, 20 000], which yields a
relative match of FITener = 97.26 %.

The length of the transient period, estimated as T ≈ 1900, can be directly linked
to the convective time scale of the disturbances. Tollmien–Schlichting waves are
convected with a group velocity equal to vg = 0.375 U∞ (see Guzmán Iñigo et al.
(2014) for more details). This convective velocity defines the characteristic time
Tconv required by the wavepacket to cover the distance between the sensor s and the
downstream edge of the domain Ωsnap. This time (Tconv ≈ 1900) accurately predicts
the duration of transient effects. This agreement between the time the estimator needs
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FIGURE 6. (Colour online) Eigenvalue spectrum in the (ωr, ωi)-plane for two different,
identified reduced-order models using 60 (red circles) and 100 (blue triangles) POD
modes. The black rectangles and diamonds represent the dynamic mode spectra depicted
in figure 3.

to propagate information and the time the system needs to convect a wavepacket
confirms that the input–output behaviour of the system is properly captured by the
model.

The number of POD modes considered here is rather high (60 and 100) due to the
requirement for the model to accurately reconstruct the upstream measurement from
the coefficients of the POD basis (Guzmán Iñigo et al. 2014). This requirement is
therefore linked to the observability of the sensor by the reduced basis.

5. Global modes of dynamic observer
We now turn to the computation of the eigenvalue spectrum of the identified input–

output model. Considering (4.3), the temporal global spectrum of the system may be
obtained by introducing an exponential time-dependence of the form Ye(t) = Ŷee−iωt.
We consequently obtain a generalized eigenvalue problem for (ω, Ŷe)∈C of the form

Ã
′
Ŷe =−iωŶe. (5.1)

5.1. Results
The eigenvalues ω=ωr + iωi are displayed in figure 6 with red (k= 60 POD modes)
and blue (k= 100) symbols. The spurious eigenvalues were removed by projecting the
velocity snapshots onto the obtained eigenmodes, computing the mean amplitude of
the time-dependent coefficients and ranking the modes as a function of this amplitude.
We observe that, for the two models k = 60 and k = 100, all extracted eigenvalues
are stable and show similar growth rates. The damping rate and shape of the branch
of identified Tollmien–Schlichting eigenvalues is again similar to those reported in
global stability studies (Ehrenstein & Gallaire 2005; Alizard & Robinet 2007; Åkervik
et al. 2008).

Figure 6 also offers a comparison with the spectra obtained from the DMD analyses
reported in § 3. The black squares and black diamonds respectively correspond to the
results of the DMD analyses presented in figure 3 for the driven simulation and the
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FIGURE 7. Contours of the real part of the eigenmodes associated with four of the
eigenvalues depicted in figure 6 corresponding to the model based on k= 60 POD modes:
ωr = 0.036 (a); 0.05 (b); 0.059 (c); 0.08 (d).

impulse response. We observe that the eigenvalue spectra obtained with the dynamic
observers are similar to the DMD spectrum obtained with the impulse response, but
that the overall damping rate is different. These slight discrepancies are linked to
the appreciable sensitivity of the eigenvalues in such flows. This idea will further be
supported by the analysis given in the next section.

The associated global modes can be recovered using the relation V̂ = UŶe. Based
on the spectrum of the model composed of 60 POD modes, the modal structures
for eigenvalues with ωr ≈ 0.036, ωr ≈ 0.05, ωr ≈ 0.059 and ωr ≈ 0.08 are displayed
in figure 7. Contours of the real part of the streamwise velocity component V̂ are
depicted, and the perturbations are seen to be located near the wall, with the typical
wavelength of the structures decreasing with increasing frequency. The amplitudes of
the modes grow in the downstream direction for the three lowest frequencies, while
the highest frequency displays a maximum that can be linked to the branch-II location
for that particular frequency.

In the next section, we will show that the characteristics of the velocity window
(size, location) in the case of a DMD analysis or in the case of global modes
determined from a dynamic observer play a role similar to the characteristics of the
computational domain (size, location) for explaining the sensitivity of the obtained
eigenvalue spectra.

5.2. Sensitivity of global modes to the location of the velocity window
We will argue in this section that the overlap region of the direct and adjoint modes
(the wavemaker region) should be fully contained in the velocity window in order
to obtain converged, insensitive eigenvalues with a DMD technique or an identified
dynamic observer. More precisely, we are interested in determining the sensitivity of
a specific eigenvalue λ to a change in the size of the velocity window Ωsnap. To this
end, let us consider a standard eigenvalue problem of the form Av= λv and introduce
a small perturbation δA of the operator A. The sensitivity δλ of the eigenvalue due to
the structural perturbation δA is given by

δλ=wHδAv, (5.2)
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with AHw = λHw and wHv = 1 (Giannetti & Luchini 2007). If we partition the
computational domain into two subdomains, we can recast the matrix A and vectors
v and w according to

A=
(

A11 A12
A21 A22

)
, v =

(
v1
v2

)
, w=

(
w1
w2

)
, (5.3a−c)

where the subindices 1 and 2 represent the elements corresponding to each subdomain.
Let us perturb the operator A by

δA=−
(

0 A12
A21 A22

)
, (5.4)

leading to

A+ δA=
(

A11 0
0 0

)
. (5.5)

The eigenvalue problem for this new matrix can be written as A11z= µz. If δA is
small, then

µ− λ= δλ=wHδAv = (wH
1 A12v2 +wH

2 A21v1 +wH
2 A22v2). (5.6)

Considering that A is a local operator and that the pressure term in the linearized
moment equations is weak, the terms |wH

1 A12v2| and |wH
2 A21v1| are small. We can,

therefore, conclude that µ ≈ λ if |wH
2 A22v2| � 1. If v2 or w2 are close to zero, then

|wH
2 A22v2| � 1 and µ≈ λ. This condition implies that the second subdomain must be

outside of the ‘wavemaker’.

6. Frequency response of dynamic observer
A more robust alternative for studying the dynamics of noise amplifiers involves

the frequency response. Assuming that the system (4.3) is forced by a harmonic
input s(t) = eiωt, a response is sought in the form Ye(t) = Yeeiωt, which leads to the
expression

R(ω)= Ye(ω)/s(ω)= (iωI − Ã
′
)−1L̃

′
, (6.1)

where R(ω) is defined as the frequency response and links the harmonic forcing to
its associated response. The frequency response from the input s to the first k = 60
POD modes can also be computed from the full-order model. In this case, we cannot
rely on an explicit matrix expression for Rf (ω). Instead, we need to apply an impulse
in w to the system, compute the Fourier transform of the responses in s and Y and
finally apply the relation Rf (ω)= Y(ω)/s(ω).

In figure 8(a) the 2-norm of the vector R(ω) at each ω (which represents the square-
root of the kinetic energy of the perturbation) is shown (using a blue solid line) for the
full-order system and (using a red dashed line) for the reduced-order model composed
of k = 60 POD modes. We can report a close agreement between both models over
a wide (and interesting) range of frequencies. Keeping in mind that the frequency
response for the full-order system has been based on an impulse on w, the former
result implies that the bulk of the forcing noise is transmitted through the boundary
layer and can be detected by a wall sensor. The response of the reduced-order model
at a given frequency can be expressed in the full-order state using, once more, the
relation V(ω)=UYe(ω). The streamwise components of the real part of the frequency
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FIGURE 8. (Colour online) (a) Transfer function from s to the first 60 POD coefficients of
the full-order system (blue, solid line) and of an identified reduced-order model of size
k = 60 (red, dashed line). (b,c) Streamwise component of the real part of the transfer
function (frequency response) from s to the velocity field V for two given frequencies,
ω=0.05 (b) and ω=0.06 (c). The velocity field has been reconstructed from the identified
reduced-order model depicted in (a).

response for ω ≈ 0.05 and ω ≈ 0.06 are depicted in figure 8(b). The response for
both frequencies is located near the wall, and decreasing wavelengths are observed
as the frequency is increased. These characteristics have also been observed in the
eigenmodes computed in § 5.

The two-dimensional temporal modes exhibit a growth in amplitude as they progress

downstream; this growth may be quantified by computing A(x)=
√∫ yPIV

0 |V|2 dy, where
| · | denotes the complex modulus, and compared to the amplitude growth due to a
convective instability, as predicted by a local stability analysis with u = û(y)ei(αx−ωt)

and ω and α as the frequency and streamwise wavenumber of the perturbation,
respectively. The comparison between the streamwise growth of the frequency
response and the locally parallel flow prediction has been undertaken for the two
frequencies depicted in figure 8. The corresponding A(x)/A(0) are compared in
figure 9. We notice a similar trend for the two approaches (local analyses and
identified global structures), which means that an identified reduced-order model
robustly captures the intrinsic dynamics of the flow. The slight disagreement between
the curves can be attributed to the non-parallelism of the flow (Gaster 1974).

7. Summary and conclusions
The extraction and analysis of the inherent dynamics of noise amplifiers from

experimental data represents an important challenge due to the difficulty of separating
the intrinsic (globally stable) behaviour from the surrounding noise environment that
continuously drives and maintains the system.

A dynamic observer which accurately recovers full-state information from a
single wall shear-stress measurement has been designed that relies on a POD basis
and system identification techniques. Within the limitations of linear perturbation
dynamics, the design process for the dynamic observer extracts the system matrix
from a sequence of snapshots and shear-stress measurements. The spectrum of the
system matrix describes a globally stable flow configuration that is sustained by
selectively amplified random perturbations from the noise environment. The proposed
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FIGURE 9. Normalized amplitude A(x)/A(0) as a function of the streamwise distance x for
the reconstructed velocity field at the two frequencies shown in figure 8(b,c); comparison
with a local stability analysis (solid and dotted lines).

method thus successfully separates the intrinsic, stable perturbation dynamics from
the external noise excitation; previously only the combined (statistically stationary)
dynamics could be described. The present approach can also be employed to extract
the frequency response of the system. This type of analysis is significantly more
robust than a spectral (eigenvalue) analysis and provides insight into the non-modal
behaviour of the system.

Two main limitations that may be encountered in an experimental implementation
of the dynamic observer are: (1) the restriction to linear dynamics, and (2) the
restriction to two-dimensional configurations. In the first case, an extension of the
present approach to nonlinear identification is possible, but its higher computational
cost and challenging convergence characteristics make this extension a non-trivial
undertaking.

The extension to three-dimensional flows involves using several sensors to capture
the spanwise distribution of the incoming noise, as well as three-dimensional
velocity measurements. Since three-dimensional particle image velocimetry (PIV)
measurements require complex experimental set-ups that are not always feasible, an
alternative solution can be obtained by measuring the velocity field of two-dimensional
planes of relevant areas of the flow. In this case, the sensitivity of the eigenvalues to
the extent and location of subdomains and to low-dimensional representations derived
in this paper can be used to assess the quality of the experimentally obtained spectra.
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