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Linear control applied to fluid systems near an equilibrium point has important
applications for many flows of industrial or fundamental interest. In this article we give an
exposition of tools and approaches for the design of control strategies for globally stable or
unstable flows. For unstable oscillator flows a feedback configuration and a model-based
approach is proposed, while for stable noise-amplifier flows a feedforward setup and an
approach based on system identification is advocated. Model reduction and robustness
issues are addressed for the oscillator case; statistical learning techniques are emphasized
for the amplifier case. Effective suppression of global and convective instabilities could be
demonstrated for either case, even though the system-identification approach results in a
superior robustness to off-design conditions.
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I. INTRODUCTION

Many fluid devices of technological or fundamental importance are limited in their operational
range by instabilities or sensitivities. Instabilities in a laminar boundary layer can cause a transition
to turbulence and consequently increase drag and heat transfer on aircrafts [1–4]; reactive-flow
instabilities [5] can give rise to nonstoichiometric combustion and thus increase the output of
environmentally harmful side products; thermoacoustic instabilities in combustion chambers can
lead to strong vibrations and material fatigue [6,7]; magnetically induced instabilities in tokamak
configurations can be detrimental to sustaining the plasma fusion process [8,9]; the onset of
vortex-induced vibrations can bring about substantial damage to flexible structures [10,11]. These
examples are but a few that illustrate the need for and potential benefit of controlling instabilities in
advanced fluid devices. Quests for more performance, less drag, increased safety margins, unexplored
parameter regimes, and diminished environmental impact can only be answered by changing the
innate flow behavior of fluid systems. Some of these quests can be achieved with improved designs,
judicious modifications, localized roughness, or other passive devices [12]; some quests need a simple
forcing of the flow at a given frequency. Yet other quests require adaptive control based on information
gained from the flow about the current state [13–15]. This latter approach is the topic of this article.

Since the inherent flow behavior has to be changed, it seems intuitive that different flow behaviors
call for different control techniques and setups. As we will see in what follows, the most critical
component in the design of control strategies is the response to uncertainty and noise. What can be
controlled in a clean and numerically controlled noise environment may fail to achieve the same
results in an experimental setting where unidentified or unidentifiable noise sources have not been
incorporated into the control design.

Physically, noise and uncertainty can arise from different sources: Turbulent fluctuations in the
freestream, acoustic waves, wall roughness, or imposed frequencies from secondary sources (due
to separation, from a pump or other measuring equipment, etc.) are but a few examples that may
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disrupt a control design that has not included these influences in its setup. Besides these physical
error sources, we also have to be aware of modeling errors. They manifest themselves, for example,
in flow effects not accounted for by our governing equations, in design assumptions that are only
approximately valid in our application, in mean and base profiles that fluctuate stochastically, and
parameters and input fields that can only be measured or determined within a specific tolerance.
Regardless of their origin or type, these errors and uncertainties propagate through the model, which
underlies the control design and impact its layout and ultimately its performance and robustness.

In the design of linear active flow control strategies, we distinguish two distinct flow behaviors:
noise amplifiers and oscillators. Oscillators are characterized by the presence of a global instability
that dominates the flow. Our goal is the suppression of this instability and the return of the
compensated system to the linearly stable regime [16,17]. Due to the dominance of an instability
on the measurements we take from the flow, noise-related issues in the control design, although
present, play a somewhat subordinate role: They are not critical, but are nonetheless important. The
latter statement holds for modeling errors as well. In the case of oscillators then, an approach based
on postulating governing equations with a rudimentary model for the noise environment appears
sufficient for an effective design of a compensator, as long as the dominant instabilities of the system
have been modeled appropriately. Flow control for stabilizing the shear layer over cavities [16,18] or
the wake of blunt bodies (such as cylinders) has shown success following this approach. Amplifier
flows represent the second category and are far more challenging to control. In this case, no global
stability is present in the flow and perturbations are typically amplified locally, as they are convected
downstream by the flow. In the absence of a dominant unstable structure, the flow reacts sensitively
to incoming perturbations and the general noise environment. Modeling this type of behavior thus
critically depends on how well and accurately this noise environment can be captured. It is not
difficult to imagine that this issue poses a far greater challenge, when contrasted with oscillator
flows. Even if the incoming perturbations could be measured with sufficient accuracy, there still
remains the important matter of modeling errors and parameter uncertainties.

Due to their different response behavior to external noise, it should not come as a surprise
that oscillator and amplifier flows require different approaches for an effective control design. The
distinction concerns not only the actual control design procedure, but also the control setup, i.e.,
where to place the sensor(s), where to place the actuator(s), is crucially affected by the type of flow
we wish to manipulate.

II. TWO GENERIC FLOW BEHAVIORS: ONE MODEL

During the course of this article we will cover the control design steps for oscillator and amplifier
flows, pointing out challenges and particularities in their analysis and control. As a typical oscillator
flow, we consider the open flow over a square cavity at supercritical Reynolds numbers (in our case
Re = 7500). The geometric configuration is sketched in Fig. 1(a). The shear layer forming on top of
the cavity becomes unstable for Reynolds numbers (based on the freestream velocity and the cavity
depth) above Re = 4140, rendering the flow globally unstable [19]. In the same sketch we also
indicate the control setup for this flow. An actuator u is placed upstream near the cavity edge, while
sensors are placed at three locations: a sensor s upstream of the actuator (to gain information about
the incoming disturbance field w), a sensor y near the downstream edge of the cavity (providing
information about the general flow behavior, in particular about the instability), and a sensor z farther
downstream (to evaluate a cost objective). For our specific case, the actuator consists of a localized
region of vertical velocity near the wall, imposed as a volume force in the corresponding momentum
equation, while the sensors record the wall-shear stress, again over a localized region.

As an example for an amplifier flow, we introduce the flow over a backward-facing step at a
Reynolds number (based on the step height) of Re = 500, as sketched in Fig. 1(b). Past the step a
separation zone forms that, just as in the case of the cavity, recirculates fluid upstream where it again
interacts with the oncoming flow. The two-dimensional flow over a backward-facing step is globally
stable and thus qualifies as an example of a noise amplifier [20]. The setup for controlling this flow
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FIG. 1. Sketch of typical flow control configurations for (a) flow over a square cavity, representing an
oscillator flow, and (b) flow over a backward-facing step, representing an amplifier flow. A single actuator u
and upstream noise source w constitute the input to the system; the upstream and downstream sensors s and
y, respectively, together with the performance sensor z constitute the output from the system. (c) Sketch of a
simplified model, consisting of equivalent input and output devices and a system-specific feedback of variable
strength.

is identical to the one introduced for the cavity: Noise w introduced upstream passes the upstream
sensor s and the actuator u before impacting the downstream sensor y (in our case, placed near the
base-flow reattachment location); a final sensor z is placed farther downstream, its purpose being
the evaluation of the cost objective and thus the success and performance of our control effort. As
before, we consider an actuator, which imposes a localized source of vertical momentum near the
wall, and a sensor, which detects shear information over a localized region of the wall.

Even though the two configurations represent two rather distinct flow behaviors, they also show
a large degree of similarity. Both flows (i) are subject to upstream noise w, (ii) are convectively
dominated by a base flow from left to right, and (iii) show a localized region where information
propagates upstream (in the cavity and the separation bubble, respectively) to interact with the
oncoming flow (near the upstream edge of the cavity and the step, respectively). The distinguishing
feature of the two flows, which labels them as oscillators or amplifiers, appears to be the strength
of the internal feedback: If it is strong enough to cause in-place amplification at at least one point
of the flow domain, a global instability ensues; if the internal feedback is insufficient to cause
amplification, we have a globally stable flow.

In an attempt to reduce the two generic shear flows to an even simpler model equation we propose
and introduce a discrete model [21] that captures the main features of either flow and uses the
strength of the internal feedback to switch from amplifier to oscillator behavior. The model consists
of a state vector with a finite number of components, among them the input location of the upstream
noise w, the three sensor locations (for s, y, and z), and the actuator location u. In addition, two
locations [indicated by (a) and (b) in Fig. 1(c)] are introduced that will be used to enforce a link
between downstream and upstream positions in the flow. For our analysis, we choose a state vector
with 12 components, yielding a 12-dimensional system; the layout of the state vector components
is indicated below in Fig. 2.
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FIG. 2. Layout of the 12-component state vector for the model system, describing the configuration depicted
in Fig. 1(c).

In mathematical terms, we use a time-discrete formulation and describe a mapping of
the state vector q = (q1, . . . ,q12)T over a fixed time-unit based on the following set of
equations:

qn+1 = Aqn + Bun + Bwwn, (1a)

yn = Cyqn, (1b)

zn = Czqn. (1c)

The column vector q contains the 12 components that fully describe the state of the system. Following
the design of Figs. 1(c) and 2 we take the system, control, noise, and measurement matrices as

A =
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. (2)

Matrix entries that are not specified are taken as zero. The system matrix A describes pure advection
(with the subdiagonal matrix entries performing a lossless shift operation) and the matrix entry
A5,9 provides an opportunity to introduce feedback from a downstream position q9 to an upstream
position q5, mimicking the transport of information via the cavity or separation bubble. The remaining
matrices describe input (B and Bw) or output (Cy and Cz) details; see Fig. 2. It is easily verified that the
system, described by the matrix A, becomes unstable as the absolute value of the feedback coefficient
b exceeds unity. In the case of an instability, with |b| > 1, there are five unstable eigenvalues and the
associated eigenfunctions show support between the fifth position and the right edge of the domain,
i.e., q̃ = (0 0 0 0 × × · · · ×)T , with a peak at the fifth location followed by a “wake” farther

040501-4



INVITED ARTICLES

LINEAR CONTROL OF OSCILLATOR AND AMPLIFIER FLOWS

downstream; this is reminiscent of fluid systems with a spatially limited amplification zone. The
remaining seven eigenvalues are zero with associated eigenfunctions that show a nonzero component
only in the rightmost, 12th position; they are associated with pure advection and related to boundary
modes [22].

Dissipative (amplification) effects (certainly present in the two flow configurations) will be
neglected in this model, as it is argued that, for our purpose, added dissipation (amplification)
simply requires a larger (smaller) feedback strength to generate the equivalent flow behavior. The
feedback strength in the model thus should be interpreted as the effective, dissipation-(amplification-)
corrected feedback present in the two flow configurations.

The above simplified model will be used to guide us towards an effective setup of control problems
for oscillator and amplifier flows.

III. CONTROL SETUP

The sketches of the flow configurations and model considered in this article already present a
first impression of a typical flow control setup; we will further elaborate on this in what follows.

The motion of the fluid is fully described by the state vector q, which describes the evolution of
perturbations about an equilibrium state q0. For sufficiently small amplitudes, this evolution can be
described by linearized equations. This linearized model is subjected to an input signal, describing
the action of our controller, and supplemented by an output signal, representing a measurement taken
by a sensor. To account for the noise environment and uncertainties, as well as for the contamination
of the sensor signal, we append two stochastic terms to the governing equations. This setup has to
be augmented by a final measurement, taken from the system, whose norm acts as a performance
measure for our control efforts.

Mathematically, the above layout of the control problem reads (in continuous-time form)

q̇ = Aq + Bu + Bww, (3a)

y = Cyq + g, (3b)

z = Czq. (3c)

In the above equation, the system matrix A expresses the inherent dynamics of the perturbations, B
describes the manner in which a control signal u acts on the fluid system (which contains information
about the location and type of control), Cy includes information about the measurements taken from
the system (again, in location and type), and Cz contains the manner in which we choose to
evaluate the system. Even though z can also be considered an output from the system, we make
a distinction between true measurements s and y that are fed back to establish control and the
signal z that merely enters into a cost objective J . The two stochastic noise sources w and g
respectively influence the evolution of the perturbations via Bw or contaminate the measurements
directly.

The cost objective J quantifies our goal of applying a control strategy: For oscillator flows, this
is commonly the suppression of global instabilities, while for amplifier flows, it is the suppression of
environmental noise amplified by the system. This cost objective is often augmented by a second term
that takes into account the energy of the exerted control effort. Inclusion of this term avoids excessive
injection of control energy into the flow to reach our objective. While the first part quantifies the
(raw) performance of our control strategy, the second part penalizes the amount of control energy to
reach this performance. A balance has to be struck between these two counteracting components of
the cost objective.

The goal of our flow control problem is to translate measurements taken from the flow (i.e., y) into
a control strategy u such that our cost objective J is rendered optimal. The resulting optimization
problem has to be solved while observing the governing equations (3).
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This optimization can be accomplished in two stages [13]. First, Eq. (3b) is ignored (as are error
terms) and a controller of the form u = Kq is assumed, which yields

q̇ = Aq + BKq, (4a)

z = Czq. (4b)

This assumption results in what is referred to as the full state-information control (FSC) design.
We choose our cost objective in the form

∫ ∞
0 |z|2 + �2|u|2 dt , which includes both our performance

measure z and a measure of our expended control u. The parameter �, balancing these two
components, is user defined and can be used to penalize or encourage control efforts. Optimizing our
cost objective subject to the above closed-loop equation yields an algebraic Riccati equation from
which the control gain K can be determined that optimally accomplishes our control objective.

Our assumption of access to the full state q is the concern of the second stage of the control design,
as only the measurements s,y are available for our control effort. An estimator that reconstructs
an approximation to the state q solely from available measurements s,y has to be constructed. The
estimated state and measurements are denoted by carets, e.g., q̂ and ŷ. This estimator is governed
by the identical system, control, and measurement matrices from Eqs. (3), with all error terms
ignored, but (3a) is augmented by an additional driving term of the form −L(y − ŷ), which takes into
account discrepancies between the true measurement y and the estimated measurement ŷ to force
the estimated state q̂ towards the true (inaccessible) state q. We have

˙̂q = Aq̂ + Bu − L(y − ŷ), (5a)

ŷ = Cyq̂, (5b)

e = q − q̂. (5c)

The underlying assumption is that a small mismatch in the measurement signals coincides with
a minimal mismatch between the estimated and true states. The manner in which measurement
discrepancies are accounted for is determined by L, referred to as the Kalman gain. This gain
results from a second optimization problem: This time the performance measurement is equivalent
to the estimation error field e, i.e., the difference between the true state q and the estimated state
q̂. Minimizing ‖e‖ subject to satisfying the governing equation for the estimator yields, again, an
algebraic Riccati equation; its solution determines, via an algebraic expression, the optimal Kalman
gain L.

In the design of the estimator and the calculation of the Kalman gain L the noise environment
plays a big role. In particular, the ratio of G to W determines the effectiveness of the estimator
in recovering state information from noise-corrupted measurements. In this ratio, G stands for the
covariance of the signal noise g, while W represents the covariance of the incoming noise w. Large
ratios of G/W indicate highly corrupted signals with little information about the true measurement.
Low ratios, on the other hand, are evidence of a clean uncorrupted signal that the estimator can
use to approximately reconstruct the state vector q̂. As we will see below, the performance of the
estimator and, consequently of the compensator, crucially depends on the ratio G/W.

Once the estimated state q̂ is recovered from the measurements y, it is used in place of the true
state q in the controller, i.e., we implement the control strategy u = Kq̂. The control gain K is still
optimal, even if it is used with the estimated rather than the true state. This property, referred to as
the separation principle, can be easily deduced by formulating a governing equation for the state
estimation error e = q − q̂, which is independent of the true state q. We obtain

q̇ = Aq + Bu + Bww, (6a)

y = Cyq, (6b)

z = Czq, (6c)
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FIG. 3. Block diagram of a typical feedback control setup, including plant, compensator, external noise
sources (w,g), and objective output z.

ė = (A + LCy)e + Bww − Ly, (6d)

u = Kq̂. (6e)

Combining the estimator and controller into a compensator and applying it to the fluid system
provides an optimal control strategy that accomplishes our set objective. The entire control setup is
displayed in Fig. 3 in the form of a block diagram. Considering this setup from a purely control-
theoretic viewpoint, it is evident from the figure that the configuration represents output feedback
control for each case (oscillator and amplifier), as the control is reintroduced into the fluid system.
A distinction of disturbance feedforward and disturbance feedback can be made, respectively, for
amplifiers and oscillators.

IV. WHAT CAN WE LEARN FROM OUR SIMPLE MODEL?

Before launching into the control design for amplifier and oscillator flows, we consider our
simplified 12-dimensional model introduced in the previous section. To this end, we employ the above
procedures and design feedback control schemes for our system for the distinct cases of oscillator
(|b| > 1) and amplifier (|b| < 1) behavior. In addition, we consider distinguishing limits for the
controller as well as the estimator. We are particularly interested in the closed-loop performance of
the compensated system (with estimator and controller attached) in these limits and in the associated
flow of relevant information from the sensors to the actuator. As a performance measure, we take
the norm of the transfer function linking the upstream noise w to the downstream sensor z, with
the system in a closed-loop feedback state; a performing compensator will successfully reduce
the transfer function, compared to the uncontrolled configuration. The layout for our analysis is
illustrated in the sketch in Fig. 4; the results of our analysis are tabulated in Fig. 5.

A. Oscillator behavior

Globally unstable flows, in our case enforced by setting the intrinsic feedback parameter to
b = 1.1, results in oscillatory flow behavior. Following the two-stage control design procedure,
we first determine the control gain K for a full-state information setting by solving an algebraic

FIG. 4. Sketch of the 12-dimensional closed-loop feedback system, indicating the input and output ports,
the system-internal feedback, the user-designed compensator, and the performance measure.
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FIG. 5. Summary of performance analysis for the FSC and the estimator in various gain limits and input
configurations (see the text for explanation). On the left is oscillator flow with the feedback parameter chosen
as b = 1.1, yielding a globally unstable condition. On the right is amplifier flow with a feedback parameter set
to b = 0.

discrete Riccati equation. For this case, we have to decide on the user-specified parameter �, which
determines the amount of expended control efforts. In the limit of � → ∞, control is applied rather
parsimoniously, as any control effort is drastically penalized in the optimization problem. As a result,
the control gains are rather small and any control effort is limited to doing the most necessary to
stabilize the unstable system. This limit is referred to as the small-gain limit (SGL). Owing to this
minimal control effort, the performance is restricted as a consequence. Measured by the norm of
the closed-loop transfer function, i.e., ‖Twz‖, the performance in this limit is P = 1.984, which will
serve as a reference value for other cases and the partial state-information control (PSC). In the limit
of � → 0, we apply control far more liberally; as a result, the control gains K become rather large
and this limit is referred to as the large-gain limit (LGL). In this limit, with full-state information
available to the controller and no limitations imposed on the control effort, the performance is ideal
with P = 0, i.e., the instabilities are not only weakened, but entirely eliminated.

It is instructive to assess the shape of the control gain K, which indicates from which positions
the optimal controller extracts the information necessary to control the flow. In our case, the control
gain K has only two nonzero entries: immediately upstream of the actuator (third position, to target
the incoming perturbations using opposition control) and at the downstream edge of the feedback
loop (eighth position). We thus have K = (0 0 α 0 0 0 0 β 0 0 0 0), with α and β as (negative) entries.
The relative weight of the control gain entries α,β is displayed in Fig. 6 as a function of the feedback
strength b. As we change from a mildly unstable flow (b � 1) to a strong feedback-generated
instability (b = 5), the relative weights tend from an equal consideration of the two input signals
towards an increasing preference of the downstream edge of the feedback loop for the information
that is passed to the full-state information controller. In other words, the stronger the instability, the
less we have to concern ourselves with the details of the incoming disturbance environment.

We proceed with the second stage of the design: the development and incorporation of an estimator
into the feedback loop. Only the two signals s and y are taken into account, from which the flow
state q̂ is estimated. For oscillator flows to be successfully compensated, it is imperative that the
estimator detects and recovers the unstable modes from the measurements. We have seen above that
all unstable modes have a particular shape, with support only downstream of the intrinsic feedback
loop (in our case, starting at the fifth position). For this reason, estimating the instabilities from the
s sensor upstream must result in failure, since all unstable modes are unobservable by s. This is
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FIG. 6. Relative control gain versus the strength of the internal feedback—downstream control gain (in red)
and upstream control gain (in blue)—for the small-gain limit.

confirmed when solving the Riccati equation to determine the Kalman gain L for the sensor location
s: No solution can be found.

Using an input signal from the downstream sensor y for the estimation of the unstable modes
yields an optimal Kalman gain L from the algebraic Riccati equation, which, coupled to the optimal
controller, achieves a satisfactory performance result. At this point, we have to distinguish two limits
for the estimator. (i) In the first limit, we assume a highly corrupted measurement signal (indicated by
G � W) that causes the estimator to react rather reluctantly to detected measurement discrepancies.
This limit is known as the small-gain limit for the Kalman gain L. In the second limit, the noise
variance in the measurements is very small (i.e., G � W) and the estimator reacts sensitively and
strongly to any measurement discrepancies y − ŷ. This latter limit is referred to as the large-gain
limit. In the small-gain limit (SGL, G � W), a configuration based on the downstream measurement
y is capable of controlling the unstable flow: The transfer function norm ‖Twz‖ is 5.489 and 2.823
depending on the parameter setting for �. The unconstrained controller with � → 0 naturally achieves
a better performance, but in both cases progress is made towards the stabilization of the unstable
flow. Including both s and y in the estimator does not change the performance outcome, since the
upstream signal s is dismissed by the estimator; we achieve the same performance numbers. In
the large-gain limit (LGL), with negligible signal contamination G � W, the control performance
improves over the corresponding small-gain limit as the estimator is able to better detect the unstable
state from y. When both signals y and s are taken into account, the unstable dynamics (due to y)
and the noise-induced disturbances (due to s) are fully recovered and the optimal performance limit
of full state-information control (FSC) is reached.

B. Amplifier flow

For the case of an amplifier flow, where we set b = 0, no global instability is observed and
the perturbation dynamics is entirely determined by the upstream noise. We conduct the same
performance analysis as before, however, only the large-gain limit for the controller, with the
vanishing control cost penalty � → 0, has to be considered. The absence of an instability causes a
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no-action strategy in the small-gain limit, where control efforts are maximally avoided while still
rendering the flow stable. For freely dispensable control (� → 0), the full state-information control
(FSC) strategy achieves the best possible result of P = 0, i.e., the incoming disturbances have been
entirely suppressed and the performance signal z is identically zero.

For the partial state-information control (PSC), with an estimator providing the state information
from local measurements, the small-gain limit (SGL) of the estimator produces a no-action control
law. This is expected as the input signals are heavily corrupted by measurement noise (G � W) and
the state vector q̂ cannot be reliably estimated, no matter the input signal(s); the performance measure
is the same as for the uncontrolled case, P = 1. For the large-gain limit of the estimator, when the
signal-to-noise ratio of the measurement signals s and y is large, the inclusion of the s signal from
upstream results in optimal performance, i.e., the full state-information control (FSC) performance
of P = 0. By choosing only the y signal as an input, we recover the (normalized) uncontrolled
reference performance of P = 1. This is not surprising since, in a convective environment, the
downstream sensor y provides information that arrives too late for the controller to act upon. As
a consequence, the combined input signal (s,y) achieves again the full-state control performance
P = 0, whereby the downstream y signal is ignored by the estimator and the upstream s signal is
solely responsible for the optimal performance.

C. Conclusions from the model problem

Our simple model problem, mimicking the key features of oscillator and amplifier flows
(depending on the strength of the feedback parameter b), revealed characteristics that influence
the setup and performance behavior of flow control configurations. We summarize and expand on
these characteristics below:

(i) For oscillator flows (with a global instability), the input signals have to provide information
from the feedback zone. Sensor input upstream of this feedback zone is irrelevant for the design and
operation of the compensator. While in our case the upstream edge of the feedback zone is given
directly by our choice of model, for a realistic application of this design rule the point of maximum
receptivity to upstream propagating information (e.g., by acoustic radiation in compressible flows)
has to be determined to establish the extent of the feedback domain.

(ii) Flows with oscillator behavior are best controlled with an upstream-downstream sensor setup,
which tends towards a pure feedback configuration, as the instability gets stronger and the inclusion
of upstream noise information becomes less relevant.

(iii) In the large-gain limit of the estimator, equivalent to clear uncontaminated signals, an ideal
full state-information control (FSC) performance can be achieved if both upstream and downstream
sensors are included; the downstream sensor, however, is more critical for this success.

(iv) For amplifier flows (i.e., in the absence of a global instability), only the large-gain limit (LGL)
for the controller has to be considered. The small-gain limit (SGL), with a high penalization of any
control effort, will result in a no-action control law, yielding a natural stabilization of the flow.

(v) For the estimator design, the limit of a vanishing signal-to-noise ratio results in a zero
Kalman gain (SGL) and, consequently, to a no-action control strategy. In this case, we recover the
performance of the uncontrolled case.

(vi) For untainted signals (G � W), on the other hand, we obtain large Kalman gains (LGL)
and a nonzero control effort. The input from the signal y downstream of the actuator is dismissed
in the estimation, as its information arrives too late for appropriate control action. Rather, the
upstream signal s carries the necessary information and yields a disturbance rejection strategy for
the controller, together with a full state-information control (FSC) performance.

(vii) Flows with amplifier behavior are best controlled with an feedforward sensor-actuator setup;
the downstream sensor y can be safely ignored without any ensuing loss in performance.

These findings will be relevant for the setup and the performance analysis of more complex flow
situation, treated in this paper. Similar results have been obtained in a recent comprehensive study
of actuator and sensor placement for the disturbance control in boundary layers [23].
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The sensor placement, with respect to the actuator, and the incorporation of available sensor
information into the overall compensator design can also be analyzed [21] by turning to the estimation
problem, given by the system (6). We deduced that, for convectively dominated flows (small values of
b), state estimation improves significantly when information is processed from the upstream sensor.
To further demonstrate this, we assess the estimation error e resulting from the downstream y and the
upstream s sensor in the limit of vanishing feedback, i.e., for the limiting case of purely advecting
flow. We first only consider the second column in Cy, describing the downstream sensor y, and
denote it by Cy . Placing the sensor downstream of the actuator guarantees a nonzero transfer function
between u and y, an argument that is often made in practice in favor of a feedback configuration. It
can easily be shown that the discrete observability matrix for the downstream sensor is of full rank
and, as a consequence, we have full control over the eigenvalues of the matrix A + LyCy , which
governs the estimation-error dynamics [see Eq. (6d)]. The control of these eigenvalues, however,
can only ensure the long-time behavior of the estimation error. In convectively dominated systems
(small b), information quickly becomes irrelevant as it propagates downstream and adjusting the
eigenvalues of A + LyCy proves inadequate for ensuring proper estimator performance. Physically,
information from y is ineffective for the estimator, since it is swiftly swept away. This can also be
seen by computing the Kalman gain in the presence of noise w. Solving a discrete algebraic Riccati
equation, using only Cy , and evaluating the Kalman gain, we observe Ly = 0 in the large-gain limit.
Thus, information from the downstream sensor y in the limit of b = 0 (pure advection) does not
enter the estimation problem, despite the full rank of the observability Gramian; as a consequence,
the downstream sensor can safely be removed without effect.

We repeat the above analysis for the upstream sensor s by considering the first column of Cy,
which we denote by Cs . Forming again the discrete observability matrix based on A and Cs , we
detect a rank deficiency. Nonetheless, for b = 0 this placement can yield accurate state estimation.
The corresponding Kalman gain for this sensor is given as Ls = (0 0 1 0 0 0 0 0 0 0 0 0)T . Forming the
composite matrix A + LsCs that governs the estimation error dynamics, we see that the estimation
error ek is given by (wk−1 wk−2 0 0 0 0 0 0 0 0 0 0)T , indicating that no estimation error is made
anywhere downstream of the sensor location.

The above analysis of our simple system has shown that in convection-dominated flows a
feedforward configuration with a sensor located upstream of the actuator is superior to a feedback
configuration. This has been illustrated for the extreme case of pure advection. Realistic flows
typically contain a variety of physical processes, with advection only being one part; therefore,
a hybrid feedback and feedforward setup may be advantageous. Nevertheless, the above findings
should provide a guide for the effective layout of flow control problems based on the relative presence
of advection and global instabilities.

A supplementary result of this analysis concerns the suitability of information about the
observability Gramian as a guiding principle and diagnostic tool for an effective sensor placement. It
seems that, for advection-dominated flows, classical observability measures (the rank of the Gramian)
yield misleading results and should be applied with caution. As we observed for our model problem,
rank deficiency of the Gramian does not pose a problem, while a full rank of the Gramian does
not give any guarantees. The question of an appropriate quantity describing sensor effectiveness for
the estimation process in advection-dominated flows has been addressed before [21]: An alternative
measure, introduced as the sensor’s visibility length, has been proposed that determines the spatial
range over which the input from the sensor can maintain a given estimation error. This criterion
appears more fitting to fluid flows with strong advection, as the asymptotic nature of the observability
Gramian seems incompatible with the short time scales of fast advection.

V. CONTROL OF OSCILLATOR FLOWS: A MODEL-BASED APPROACH

From our simple model equation we have learned that fluid systems with a strong internal
downstream-to-upstream feedback and a global instability are best controlled by a feedback
configuration. Information about the instability comes from the downstream sensor, which is
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processed by a controller and passed to an upstream actuator. In general, oscillator flows undergo a
supercritical Hopf bifurcation at a critical Reynolds number, become globally unstable, and establish
limit-cycle behavior. An example of this type of flow behavior is the flow behind bluff bodies: The
wake vortices show little sensitivity to the external random disturbances and the shedding frequency
is hardly influenced by noise sources. The goal of control efforts is commonly the suppression of
the linear instability, i.e., the preservation of the flow near the unstable equilibrium point by linear
control strategies [18]. A far more challenging goal is the manipulation of the limit-cycle behavior;
it requires a nonlinear model for the flow behavior and a nonlinear approach to flow control, in
particular for strongly supercritical parameter choices. Within the scope of this article, we focus
on the former control goal: the suppression of linear instabilities by linear control near the critical
Reynolds number. To this end, we consider as a specific case of an oscillator the flow over an
open square cavity at supercritical Reynolds numbers of Re = 7500 [see Fig. 3(a) for a sketch
of the geometry]. Following the results from our 12 × 12 model system, we place one actuator
upstream of the cavity and one sensor near the downstream cavity edge. Due to the presence of
a dominating instability, the upstream sensor s of the model (furnishing information about the
incoming perturbations) contributes little to the control; consequently, we eliminate this sensor in
our control layout.

A. The need for model reduction

We could follow the two-step optimization outline mentioned in the previous section to design a
controller and estimator for our linear model [see Eqs. (6)]. We notice, however, that the dimension of
the compensator, in particular the dimension of the estimated state q̂, is equal to the dimension of the
system to be controlled. While this is acceptable for small models or academic exercises, in practical
and large-scale applications the compensator has to provide control information in real time. Only
control signals that are computed efficiently and arrive in time to achieve their intended purpose
are constructive in a feedback control setup. It is necessary then to reduce the dimensionality of the
compensator without compromising its effectiveness in transforming measurement input into control
output. By design, the compensator and full system have the same number of degrees of freedom;
to ultimately design a reduced-order compensator, we thus have to reduce the dimensionality of the
full system and formulate a compensator for this reduced-order system.

A common technique of model reduction is based on a Galerkin projection approach that
represents the full state vector q as a linear combination of a few coherent structures [24]. Denoting
by V a rectangular matrix whose columns consist of these structures, we can state that q ≈ Vq̄,
where q̄ contains the coefficients of the linear combination. The columns of the matrix V represent a
basis in which we approximate the full-state dynamics. A second basis W is necessary to perform the
projection; it has to satisfy WH V = I, with I as the identity matrix, i.e., it has to be biorthogonal to V.
Substituting this Galerkin expansion into the governing equations (3), we can formulate a reduced
state-space system for the expansion coefficients q̄. The system matrix for this reduced system reads
Ā = WH AV, the control matrix is B̄ = WH B, and the measurement matrix is C̄y = CyV.

While this projection provides a way to reduce the dimensionality of the full system to a size
given by the number of coherent structures (columns in V or W), the question remains on how to
select these structures to attain a valid reduced-order system that best approximates the original
system during the subsequent compensator design procedure.

Figure 3, showing the ultimate closed-loop layout of the controlled system, suggests that during
the model reduction process, the relation between the input u and the output y is most important. This
relation is influenced by the instability of the flow as well as the stable dynamics. For the unstable part,
it seems sensible to choose the unstable global modes (and their adjoints) as the coherent structures,
or columns in V (and W), to represent the input-output behavior [16,17]. For the stable part, the
choice is less obvious. In our case, we decide on balanced modes [25]; they represent structures that
are equally observable and controllable and therefore best approximate the input-output behavior
from u to y. Computationally, they are extracted from the impulse response from the actuator location
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FIG. 7. Principal balanced mode (top) and its adjoint (bottom) for flow over an open cavity; contours of the
streamwise velocity component are shown. The actuator and sensor locations are indicated by a black symbol.

and the adjoint impulse response from the sensor location by a snapshot technique [26–28] or other
methods [29,30]. Special care has to be taken to eliminate components from the unstable dynamics
during the impulse response simulations. Aligning all unstable global modes and the most dominant
balanced modes as columns in V and analogously the adjoint counterparts in W, the reduced state q̄
consists of the amplitudes of the respective structures.

Figure 7 shows the principal direct and adjoint balanced modes. They show support near the
sensor and actuator locations and span the shear-layer region on top of the cavity. Even visually they
seem to well represent the flow dynamics between upstream input and downstream output. The fact
that these structures are respectively focused near the downstream and upstream edges of the cavity
can be attributed to the non-normality of the linearized Navier-Stokes operator.

To assess the quality of our model reduction effort and validate the choice of our expansion bases,
we compute the transfer functions for the full and reduced models. Our single-input-single-output
(SISO) configuration ensures that the transfer function is a scalar function. It is given by the
Laplace transform of the linearized governing equations and reads, for input u and output y,
Tyu(ω) = Cy(iω − A)−1B, with iω denoting the Laplace variable. The transfer function for the
reduced system T̄yu follows from using the reduced matrices Ā,B̄,C̄y . We evaluate the transfer
function for real forcing frequencies, i.e., ω ∈ R. The transfer function of the full system requires
the inversion of a large matrix iω − A for each choice of ω. A computationally more efficient method
consists of computing an impulse response from the actuator location u recorded at the sensor location
y; Fourier transforming this temporal signal yields the desired transfer function. As a quality measure
of our model reduction we choose ‖Tyu(ω) − T̄yu(ω)‖∞, which can be applied equally to stable and
unstable configurations. For unstable systems, it enforces the unstable eigenvalues of the reduced
and unreduced systems to coincide while imposing a close match for the stable subspace dynamics.

In Fig. 8 the absolute value of the full-system transfer function Tyu is displayed as a black
dashed line. The peaks in the transfer function can be associated with a set of global modes
describing the Kelvin-Helmholtz-type instabilities of the shear layer: For our chosen parameters,
the lowest-frequency peak corresponds to a stable response, whereas the four subsequent peaks
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FIG. 8. Open-loop transfer function |Tyu(ω)| of the full plant (black dashed line) and of reduced-order
models based on the four unstable global modes and no (blue), four (green), and eight (red) balanced modes to
represent the stable subspace.

describe the global instability. Transfer functions of the reduced-order model are included as well.
All underlying expansion bases V,W contain the four unstable global modes, but a varying number
of balanced modes. If only the unstable global modes are used (blue line), the reduced-order
transfer function deviates substantially from the full-system transfer function, even though there is
an indication of all four unstable frequencies. As more balanced modes are added, the match improves
rapidly. With eight balanced modes, in addition to the four unstable global modes, a very good match
between the reduced-order and full-system transfer function could be achieved. This comparison
highlights the fact that the stable subspace has to be represented properly for an effective model
reduction of an oscillator system and, as a consequence, a successful controller. Even though the
dynamics is dominated by the instabilities, information about the stable dynamics is equally required.

B. Design of a reduced-order compensator

With the Galerkin bases for the model reduction established, we can formulate the reduced-order
equivalent of our fluid system. It describes the evolution of the coefficient vector q̄ driven by
the control signal u and the external noise w; measurements y are taken, which are assumed to be
contaminated by measurement noise g. The cost objective is based on the performance sensor signal z.

Mathematically, we have

˙̄q = Āq̄ + B̄u + B̄ww, (7)

y = C̄y q̄ + g, (8)

z = C̄zq̄. (9)

We will use the above system in place of the full system to design a controller and estimator.
We proceed by designing an estimator that reconstructs an approximate state q̂ from the

measurements y of the full system; this state q̂ constitutes an estimate of the state vector q̄ of
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the reduced system. As mentioned before, the addition of a second driving term of the form L(y − ŷ)
accomplishes this task. The estimator (Kalman filter) reads

˙̂q = Āq̂ + B̄u + L(y − ŷ), (10a)

ŷ = C̄y q̂. (10b)

The additional driving term accounts for the discrepancy between the true measurement y and the
estimator-produced measurement ŷ [from Eq. (10b)] and the manner in which this discrepancy enters
the equation for the estimated state is determined by the Kalman gain L. This gain follows from an
optimization problem: We wish to minimize the variance of the estimation error e = q − q̂ while
observing the governing equations (10). A variational formulation of this optimization problem
produces the algebraic Riccati equation

ĀP + PĀH − PC̄H
y G−1C̄yP + B̄wWB̄H

w = 0, (11)

which has to be solved for the intermediate variable P. The optimal Kalman gain can be determined
via the algebraic expression

L = PC̄H
y G−1. (12)

In Eq. (11), covariances of two noise sources appear: the covariance of the system noise w denoted
by W = E(wwH ) and the covariance of the measurement noise g represented by G = E(ggH ),
where E(·) stands for the expected value of its argument. It immediately becomes clear that the
optimality of the Kalman gain L and, consequently, the performance of our estimator (in providing
accurate approximations to the flow state from measurements alone) critically depend on our ability
to furnish covariances of the noise sources that reliably reflect reality. Deterioration of the estimator
is to be expected when the solution to the Riccati equation is based on incomplete or inaccurate
noise covariances.

It is interesting to distinguish two limiting cases: (i) For G/W � 1, which corresponds to highly
corrupted measurements or a relatively quiet noise environment, confidence in our model is high
and the Kalman gain L is very low and (ii) for G/W � 1, which stems from either very accurate
measurement signals or a strong influence of external noise sources, the corresponding Kalman gain
L is very high, indicating that repeated sensing is necessary to arrive at sufficiently accurate estimates
of the state.

For the design of the controller, we assume a proportional control law [31] of the form u = Kq̄.
As was the case for the estimator, the control gain K is the outcome of an optimization problem: We
seek to minimize our cost objective subject to the governing equations. Furthermore, as before, a
variational approach leads to an algebraic matrix Riccati equation for an auxiliary variable Q given by

ĀH Q + QĀ − QB̄�−2B̄H Q + C̄H
z C̄z = 0. (13)

The optimal control gain K follows from Q via the algebraic expression

K = −�−2B̄H Q. (14)

In the above, the commonly used quadratic cost functional J = ∫ ∞
0 |z|2 + �2|u|2 dt has been used,

where the user-specified parameter �2 imposes a balance between control performance |z|2 and
control cost |u|2.

We notice that the Riccati equation (13) for the control problem is void of terms relating to noise
sources; only the system and control matrices and the details of the cost objective enter the equation.
We thus conclude that not the controller but the estimator is concerned with the influence of noise
and uncertainty on the compensated system. Any deterioration in performance, or failure to control,
in the presence of noise must be attributed to the estimator’s inefficacy in recovering a sufficiently
accurate state from measurements.

Finally, the combination of estimator and controller, i.e., the compensator, provides the reduced-
order module that transforms the measurement signal from the full system into an optimal control
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FIG. 9. Block diagram of the compensator consisting of estimator and controller.

signal. It is sketched as a block diagram in Fig. 9; the governing equations of each subunit are stated
as well. This module is then attached to the reduced-order system, a procedure referred to as closing
the loop. The closed-loop control problem, including true and estimated states, finally reads (in
matrix form) (

˙̄q
˙̂q

)
=

(
Ā B̄K

LC̄y Ā − LC̄y + B̄K

)
︸ ︷︷ ︸

Ācl

(
q̄
q̂

)
+

(
B̄ww

Lg

)
. (15)

By design, the composite closed-loop block matrix Ācl is stable. With the system in closed-loop
mode, the transfer functions from the noise sources w and g to the performance signal z provide a
quality measure for the compensated system. The presence of a dominant instability argues for a
comparatively small noise source, which allows for the design of the Kalman gain L in the small-gain
limit. Similarly, by considering rather large control costs (large �2), also the control gain K can be
determined for the small-gain limit. In these limits, we can assess the controller performance by
inspecting the transfer function T̄cl

zg of the compensated system with measurement noise g as input
and the performance measure z as output; in our case, we take the downstream sensor signal y to
double as our performance measure z. The magnitude of this transfer function is displayed (by a
black line) in Fig. 10. In the same figure, we also display (by a red line) the transfer function T̄cl

ug

of the compensated system with again measurement noise g as input, but the control signal u as
output. These transfer functions should be compared to the open-loop transfer function depicted (by
the black dashed line) in Fig. 8.

At the end of the design procedure, the compensator dimension is identical to the reduced-order
plant system, which can easily be deduced from Eq. (15). In terms of a block diagram, the design step
for the reduced-order compensator is shown in Fig. 11(a). The motivation for the model reduction,
however, has been the design of a low-dimensional compensator, which will ultimately be attached
to the full-scale fluid system and provide control signals in real time [see Fig. 11(b)]. Residual
degrees of freedom in the full system that have not been accounted for in the reduced-order system
represent a perturbation of the closed-loop dynamics. It is imaginable that these perturbations cause
a degradation of the control performance or even a failure (due to instability) of the closed-loop
system. Hence, it is legitimate to investigate the effect of perturbations that originate from applying
a compensator to a system it was not exactly designed for; the issue of robustness of the control
design thus naturally arises.

C. Robustness

The combination of a full-state system and reduced-order compensator can be stated mathemati-
cally (in matrix form) as

(
q̇
˙̂q

)
=

(
A BK

LCy Ā − LC̄y + B̄K

)
︸ ︷︷ ︸

Acl

(
q
q̂

)
+

(
Bww

Lg

)
, (16)
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FIG. 10. Closed-loop transfer function |Tcl
zg(ω)| of the reduced plant from measurement noise g to

performance sensor output z (in black) and from measurement noise g to control input u (in red).

where A represents the large-scale system matrix with many degrees of freedom, while Ā is our
16 × 16 reduced system matrix describing the dynamics in a space spanned by four unstable global
modes (and their counterparts with negative frequencies) and eight balanced modes. We derive
the closed-loop transfer function from the sensor noise g to the performance measure z as Tcl

zg =
TzuKuy/(1 − TyuKuy), with Tzu and Tyu as the full-plant transfer functions (see Fig. 8) and Kuy as the
transfer function of the compensator given by Kuy(ω) = K(iωI − Ā − B̄K + LC̄y)−1L. Closed-loop
instabilities are to be expected when a pole of the transfer function Tcl

zg ventures into the unstable
half plane, defined as C+ ≡ {z|Re(z) > 0}, or, equivalently, when unstable zeros appear in the
denominator of Tcl

zg , i.e., 1 − Tyu(ω)Kuy(ω). If there is no difference between the full-plant transfer
function Tyu and its reduced analog T̄yu, then all zeros of 1 − Tyu(ω)Kuy(ω) are stable by design and
correspond to the eigenvalues of Ācl . Nonetheless, approximations and truncations have been made
in the derivation of T̄yu and minor departures from the transfer function of the original system Tyu

should be anticipated. Even a slight mismatch in the two transfer functions may induce an instability
in the feedback loop and render the compensator ineffective. Quantifying this margin to instability
is the purpose of a robustness analysis.

To this end, we modify the open-loop transfer function T̄yu of the reduced system and track
its influence on the eigenvalues of the closed-loop system [32]. More specifically, we consider
multiplicative changes of the form T̄yu → ξ T̄yu, with ξ ∈ C, and monitor the movement of zeros
of 1 − ξ T̄yu(ω)Kuy(ω) into the unstable half plane as ξ varies. The values of ξ where we observe
these zero crossings provide critical gain margins when ξ = a ∈ R+ or critical phase margins
when ξ = eiφ . Beyond these critical margins the closed-loop system will be unstable. From a
physically perspective, the gain margin a is linked to an estimation error of the amplification
rate of an instability and the phase margin φ represents an estimation error of its advection
speed.

It is worth pointing out that robustness is most relevant when the open-loop transfer function Tyu

is nonzero, i.e., in a feedback configuration when the control signal u affects the measurement y used
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FIG. 11. Shown on top is the design of a compensator based on a reduced-order model of the true plant.
Stability of this configuration is ensured by design. On the bottom is the application of the designed compensator
to the full model of the true plant. Stability is not guaranteed; a robustness analysis can provide gain and phase
margins for the occurrence of closed-loop instabilities.

in the estimator. As we have concluded from our simple 12 × 12 model, this is the proper layout
for oscillator flows where a global structure destabilizes, synchronizes, and dominates the entire
dynamics. For amplifier flows, which favor a feedforward setup with the measurement y upstream
of the actuator u and hence Tyu = 0, a robustness analysis is nonessential.

As a reference case, we display the spectrum of the uncontrolled reduced-order system, i.e., the
eigenvalues of Ā; see the blue symbols in Fig. 12, where only positive frequencies λi > 0 are shown.
We verify the four unstable eigenvalues. Superposed on this spectrum are the eigenvalues of the
compensated system Ācl as red symbols. We have chosen � � 1, which heavily penalizes the control
effort, together with G/W � 1; due to the resulting small values of K this limit is referred to as the
small-gain limit. In this limit, control is focused on only the unstable modes, since further stabilizing
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FIG. 12. (a) Eigenvalues of the uncontrolled reduced-order model (blue symbols) and of the compensated
system (red symbols), showing the reflection of the (four) unstable eigenvalues into the stable half plane as well
as the invariance of the stable eigenvalues. (b) Robustness analysis: tracing the critical eigenvalues [indicated by
the green box in (a)] as a function of ξ = a ∈ R+. The gain margins are given by a+ = 1.05 and a− = 0.931.
For 0.931 � a � 1.05 the compensated system is stable. The case a = 1 corresponds to the red eigenvalues
inside the green box in (a).

stable modes would squander control energy and unnecessarily increase our cost objective. One can
further show that in the small-gain limit, the unstable eigenvalues are simply reflected about the
neutral line. Figure 12 verifies this phenomenon.
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FIG. 13. Controller performance for flow over an open cavity. (a) Applying control to the system dynamics
near the base flow, with corresponding control signal (b). (c) Applying linear control to the saturated limit-cycle
behavior, with corresponding control signal (d).

Pursuing the robustness ideas introduced above, we investigate the change in eigenvalues of the
compensated system as the multiplicative parameter ξ is varied. We will focus on one particular
stabilized eigenvalue (indicated by the green box in Fig. 12) and probe its movement as ξ = a ∈ R+

increases from 0.75 to 1.5. In the special case a = 1, we recuperate the design situation, i.e., a stable
compensated system.

As we detune the transfer function by premultiplying it by 0.75 � a � 1.5, the eigenvalue traces
an arclike curve that, for two critical values of a, crosses into the unstable (gray) half plane. We
determine these critical values as a+ = 1.05 and a− = 0.931. For values of a within the interval
a− < a < a+ we can guarantee stability of the closed-loop system; of course, this interval contains
the design point for a = 1. The permissible gain margins, however, are rather narrow and indicate
that only a 5% overprediction or 7% underprediction of the perturbation’s amplification can be
tolerated before the compensated system becomes unstable and ineffective. The phase margins, i.e.,
the robustness to errors in the estimated advection speed, can be determined in an analogous manner
by choosing ξ = exp(iφ). This analysis reveals a small phase margin of φ = ±3◦ before closed-loop
instabilities prevail, an equally bleak result.

D. Performance evaluation in full-plant mode

In spite of the rather narrow gain margin, we still anticipate a reasonable compensator performance
as long as the mismatch between the full-plant transfer function Tyu and its reduced-order equivalent
T̄yu is sufficiently small. We use direct numerical simulations of flow over the open cavity and
choose as initial condition a superposition of the base flow and the least stable global mode with a
small amplitude. The downstream sensor y, providing flow information to the estimator, is taken to
be corrupted by Gaussian white noise of variance G = 1. We first consider the time interval from
t = 0 to t = 18 in Fig. 13(a). A short transient period can be observed, after which the compensated
performance signal z settles into an erratic oscillation whose variance and spectral content coincide
with the behavior deduced from Fig. 10 (black curve); the control signal u shows an analogous
behavior and validates the closed-loop transfer function in Fig. 10 (red curve). The compensator is
switched off at t = 18, after which the performance measure z increases sharply and saturates into
a limit cycle. This simulation demonstrates that our compensator is capable of maintaining the flow
in the neighborhood of the equilibrium point.

A second simulation will test whether the same compensator can recover the equilibrium solution
once the system has establish a limit-cycle behavior. To this end, an uncontrolled simulation (t = 0
to 16) first leads to a limit cycle, after which, at t = 16, the compensator is activated. Again, we
monitor the performance signal z and the control signal u. We see that the compensator is unable
to stabilize the flow; increasingly larger control input is observed, without the intended effect on
the performance measure z. We conclude by noting that a compensator with increased robustness

040501-20



INVITED ARTICLES

LINEAR CONTROL OF OSCILLATOR AND AMPLIFIER FLOWS

margins, e.g., using H∞ techniques [33,34], may have performed more gracefully. The design of
such an improved compensator is beyond the scope of this article.

VI. CONTROL OF AMPLIFIER FLOWS: A DATA-DRIVEN APPROACH

For amplifier flows, where a global stability is absent and advection is the dominant transport
process, our simple 12 × 12 model shows that the signal from the downstream sensor y becomes
less and less important for the compensator, while the upstream sensor s provides the pertinent
information for the control of incoming perturbations. The same absence of a global instability
brings to the foreground the importance of modeling the noise environment and incorporating it into
the control design, which is accomplished by basing the control of the flow on the sensor s closest
to the noise source.

In this configuration, a formulation of the control problem based on a state-space model and
its solution by Riccati equations [35] becomes ill adapted to the control layout. Moreover, the
previous analysis for oscillator flows required the input of covariance information W and G
together with information about the form of noise input Bw to determine the optimal Kalman and
control gains. In the presence of a (strong) global instability, this information has only a secondary
influence on the ultimate control performance and thus modeling inaccuracies can be tolerated to
a certain degree (even though robustness issues have to be considered). For stable configurations,
the noise information becomes more important and imposes a far stronger influence on the control
performance; the indispensability of an accurate noise model becomes the principal design handicap
for amplifier flows.

A. Design of an input-output model

The block diagram of a compensated system in Fig. 9 demonstrated that the fluid system (i.e.,
the plant) is characterized by its transfer function from u to z under the influence of the two noise
sources w and g. In the previous, model-based approach this transfer function has been implicitly
given by a state-space formulation. The transfer from u to z thus occurs by u exciting a specific state
vector q, which is then measured at the performance sensor location yielding z. In other words, the
state-space formulation represents the transfer function as a mapping from a low-dimensional input
signal u to a low-dimensional output signal z via a high-dimensional state vector q.

An alternative to this approach is to postulate a mapping between the low-dimensional signals
by eliminating the high-dimensional state; the details of this mapping are then matched to observed
sequences of input-output data. Mathematically, this approach can be motivated by the formal
solution of (3) for zero initial condition q(0) = 0, which reads

z =
∫ t

0
Cz exp[(t − τ )A]B︸ ︷︷ ︸

hzu(t−τ )

u(τ )dτ +
∫ t

0
Cz exp[(t − τ )A]Bw︸ ︷︷ ︸

hzw(t−τ )

w(τ )dτ. (17)

In the above expression we replace the low-high-low-dimensional terms Cz exp[(t − τ )A]B and
Cz exp[(t − τ )A]Bw by the low-dimensional temporal convolution kernels hzu(t − τ ) and hzw(t − τ ),
respectively. The performance signal z can hence be represented by a time trace of input signals u

and w appropriately weighted by the kernel functions hzu and hzw. These kernel functions implicitly
carry information about the system dynamics A, the control input B, the noise input Bw, and the
measurement output Cz. However, we do not formulate these kernel functions explicitly from the
system matrices; we rather assume them as unknown and identify them by observing input and
output data sequences.

For convenience (but without loss of generality), we convert (3) to a discrete-in-time system [36]
describing the evolution of the state vector and performance measurement over a small, constant

040501-21



INVITED ARTICLES

PETER J. SCHMID AND DENIS SIPP

time step 
t . We have

qn+1 = Aqn + Bun + Bwwn, (18a)

zn = Czqn, (18b)

where qn = q(n
t) and similarly for the other time-dependent variables. In a slight abuse of notation,
we label the discrete-form matrices in the above expressions by the same symbols as in the continuous
case, even though they are different (but related). Motivated by the formulation (17), we express the
discrete measurement signal zn as a function of past control and past noise signals weighted by (yet
unknown) coefficients {bj },{ck} according to

zn +
∑
i=1

aizn−i =
∑
j=0

bjun−j +
∑
k=0

ckwn−k + R. (19)

In addition to the discrete convolution terms, we have introduced an autoregressive term for zn (taking
into account the history of the discrete z signal) with unknown coefficients {ai}. By recording and
processing sequences of un, wn, and the resulting zn we can fit the model output given by (19) to the
observed measurement zn by linear regression [37]. We encounter two difficulties with this approach:
(i) In most cases, the noise input w cannot be determined to a sufficient degree of accuracy to yield
an effective model and (ii) the residual error R for a linear-regression solution to (19) is assumed to
be white. The first issue will be dealt with by replacing the true noise input w by the upstream sensor
s [see Fig. 1(c)], which furnishes critical information about the incoming perturbation environment,
also in accord with the conclusions drawn from our 12 × 12 model, which favors input about the
noise from an upstream sensor for convectively dominated flows. Thus far, we then have

zn +
∑
i=1

aizn−i =
∑
j=0

bjun−j +
∑
k=0

cksn−k + R. (20)

The different paths of information, described by the above equation, are sketched in Fig. 14. The
link between the control signal and the downstream sensor, quantified by the coefficients {bj }, is
indicated by (1); the link between s and z, described by {ck}, is labeled by (2). By replacing the noise
environment w by the upstream sensor signal s, we have to acknowledge that only the observable
part of w can be captured by s; see pathway (3) in Fig. 14. The remaining (unobservable) component
passes through the system and directly impacts the measurement z downstream [represented by path
(4)]. During the passage of this noisy component through the system, it gets modified according
to the system’s transfer function: certain frequency components will be amplified, others will be
damped. As the modified signal arrives at the downstream sensor, it will resemble colored noise,
irrespective of its original frequency distribution upstream. It seems incorrect then to assume the
residual error R as white. For this reason, we model the residual error R by a moving-average term
(with unknown coefficients) that can account for a colored residual noise spectrum. We thus propose

FIG. 14. Sketch indicating the transfer of information to be modeled by the ARMAX structure. Transfer
of information (1) from the control u to the performance sensor z and (2) from the upstream sensor s to the
performance sensor z; (3) the observable part of the disturbance environment w measured by s and (4) the part
of w unobservable by s but impacting the performance sensor z.

040501-22



INVITED ARTICLES

LINEAR CONTROL OF OSCILLATOR AND AMPLIFIER FLOWS

the revised model

zn +
∑
i=1

aizn−i =
∑
j=0

bjun−j +
∑
k=0

cksn−k +
∑
p=1

dpRn−p + Rn. (21)

The additional coefficients {dp} are used to capture a temporal correlation in the error term and hence
describe colored noise impacting the downstream sensor. The final model (21) is referred to as an
ARMAX model: It consists of an autoregressive part for the measurement signal z, a moving-average
part for R, and two exogeneous inputs for u and s.

B. Applying statistical learning

The final form of our input-output model (21) has been determined by combining the form of the
exogeneous input (17) with physical arguments about the frequency content of residual errors. Now
that the model has been established, we collect time sequences of the various signals as a learning
data set to determine the coefficients {ai}, {bj }, {ck}, and {dp}. In the presence of (unknown) noise w

we force the system by an input signal u, which has to be sufficiently rich in frequencies such that all
relevant time scales of the fluid system are excited. We then gather, in a time-synchronous manner,
the responses in s and z. The collection of these signals constitutes the learning data set. The set of
unknown coefficients can be determined from this data set by a simple least-squares technique that
matches the model output to the true output. With the coefficients determined, a second data set, the
testing data set, is used to validate the generality of the identified ARMAX model by exposing it to
input data that has not been part of the training set; effective models will nonetheless reproduce the
correct output sequences.

The identification process is complex and dependent on many parameters. The intrinsic parameters
of the model (such as the number of the various coefficients) can be determined from correlation
analyses of the output and input signals (see [38] for details). The length of the learning samples
is another parameter the user has to choose. Models with a high complexity or models determined
from rather short data sequences often result in small errors for the learning data set but show large
discrepancies when applied to the testing data set. This issue, referred to as overlearning, has to be
avoided by finding a judicious compromise between the error norm from the learning and testing
data sets [39].

For the backward-facing step, we force the system by an actuator signal u, shown in Fig. 15(b),
and record the output signals in s and z, shown in Figs. 15(a) and 15(c), respectively. The signal in
u consists of a sequence of finite-width pulses of various amplitudes; it has been selected to force a
direct response in the downstream sensor z, while at the same time not masking the response of the
downstream sensor to the noise environment (represented by the proxy signal s). The signal z shows
the response both to the forcing in u (delayed due to advection) and to the signal s. The signal s

appears rather stochastic and captures the observable part of the upstream noise.
Once the model has been identified from this learning data set, it is subjected to a different

forcing u and the model-predicted output signal zp is recorded. The signal zp is then compared to
the output signal zt of the direct numerical simulation, which has been forced by the same input
signal u. This comparison is displayed in Fig. 15(d). An initial transient is observed over a time
span that corresponds to the approximate travel time of information between the s and z locations.
After this transient period, the predicted and true downstream signals coincide, verifying that the
system-identified ARMAX model is able to accurately predict the downstream signal z given the
upstream measurement s and the control input u.

C. Design of a compensator by disturbance rejection

The identification of an input-output relation from the learning data set can be thought of as
constructing a reduced-order model of the open-loop system. In the case of an oscillator flow, a
reduced-order model has been designed directly from the state-space model by Galerkin projection
onto a few flow-relevant structures; in the case of an amplifier flow, we postulated a low-dimensional
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FIG. 15. Learning data set consisting of the recorded measurements from the (a) upstream sensor s,
(b) input signal u, and (c) downstream performance sensor z. Note that a pulse in u (b) yields a pulse in
z (c) after a time delay corresponding to the traveling time of a perturbation between the actuator and the
performance sensor location. The validation of the model is shown in (d), where the predicted output (solid
black line), for a forcing different from the learning set and for a different noise environment, is compared to
the true signal (blue symbols) from the full system.

ARMAX model and determined its coefficients by observing and processing input-output data. In
either case, the final result of the model reduction can be formulated in terms of an open-loop transfer
function of the full fluid system.

In the next step, a compensator has to be designed. For the oscillator flow, this has been
accomplished by solving two Riccati equations and combining the resulting estimator and controller.
For amplifier flows, a compensator can be designed from the identified transfer function far easier
by applying a concept known as disturbance rejection.

After some simple algebraic manipulations involving z transforms, we can reformulate the
identified ARMAX model in the form z = Tzss + Tzuu using the two transfer functions from s

to z and from u to z. The measurement z is our performance output and we seek to minimize this
signal. By setting z = 0, the former expression directly yields a control law, namely, u = −T−1

zu Tzss.
This law links upstream measurements s about the incoming perturbations to a control strategy u.
The inverse of the transfer function Tzu should give us some pause, since this transfer function
may be small or zero for certain frequencies, in which case the inversion would yield infinite
or unacceptably large control gains. For this reason, the inversion is better to be performed by a
Moore-Penrose pseudoinverse, which allows us to specify a lower threshold below which any control
action is ignored. The pseudoinverse is equivalent to a regularization step and is needed to acquire
effective control action. In effect, the threshold below which singular values are not inverted but
rather ignored in the pseudoinverse allows us to process transfer functions Tzu that show stop-band
behavior for given frequencies.

It is worth mentioning that the compensator can also be designed in the time domain. In this
case, we need to decide on a time interval over which the performance signal z is to be minimized.
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FIG. 16. Global perturbation energy versus time for the uncontrolled (black) and controlled (blue) cases;
a reduction of two orders of magnitude is accomplished by applying feedforward flow control. The Reynolds
number of the flow is Re = 500.

Also in this case, a regularized inversion has to be applied before a practical control law can be
derived.

D. Performance of the compensator in full-plant mode

After a reduced-order model has been identified and a disturbance-rejection controller has been
designed, we can apply the compensator to the direct numerical simulation. We extract information
from the upstream sensor s and use the control strategy to act on the flow via the control signal
u. The control strategy has been designed to optimally reduce the measurement signal z farther
downstream and, strictly speaking, we cannot presume more than this imposed control objective.
Nevertheless, we evaluate the total perturbation energy of the flow within the entire computational
domain and compare the uncontrolled to the controlled case. Figure 16 displays the total perturbation
energy as a function of time for the two cases. We observe a substantial reduction of the perturbation
energy, of more than two orders of magnitude, corroborating the efficiency of the designed controller.
This plot, however, does not give any indication of the spatial extent of our control result. More
information can be gained by locally time averaging the perturbation energy. Figure 17 displays
contours of the time-averaged perturbation energy for the controlled and uncontrolled cases, using
the same color map for comparison. Without control, a localized region of high perturbation energy
forms downstream of the base-flow reattachment point, with a peak at about 25 units from the step,
which ultimately decays owing to the global stability of the flow. This energy peak is drastically
decreased, once the control is switched on [see Fig. 17(b)]. In the controlled case, the peak of
the locally-time-averaged perturbation energy has not shifted appreciably, but has diminished in
amplitude by two orders of magnitude. It is remarkable that the locally-time-averaged perturbation
energy could be reduced over a large extent of the computational domain downstream of the

FIG. 17. Time-averaged local perturbation energy for the uncontrolled (top) and controlled (bottom) flow
over a backward-facing step at Re = 500. The vertical coordinate has been scaled by a factor of 3; the controller
location (red symbol) and objective sensor location (black symbol) are also indicated. Logarithmic contour
levels have been used, with identical color maps.
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reattachment point, despite the fact that only a reduction of the measurement signal z (indicated by
the black symbol in Fig. 17) has been used in the design of the compensator.

VII. SUMMARY AND OUTLOOK

In this article we considered the design and performance of linear control schemes for the
manipulation of oscillator and amplifier flows. Two common flow configurations have been used:
(i) the two-dimensional flow over an open cavity that, above a critical Reynolds number, is globally
unstable and therefore acts as an oscillator flow and (ii) the two-dimensional flow over a backward-
facing step that is globally stable but acts as an amplifier of external noise sources. In addition, a
12 × 12 model has been introduced that reproduced the main features of either flow configuration,
simply by changing the strength of an intrinsic feedback loop. This model has been used to provide
guidance in effective control setups for the two cases. It could be shown that oscillator flows are most
appropriately controlled by a feedback configuration, while amplifier flows are best manipulated by
a feedforward controller.

The decision about the control layout also dictates the tools to determine the transfer functions
for the plant and the controller. In the case of an oscillator, a model-based approach has been taken
that starts with a state-space formulation and yields two optimization problems involving Riccati
equations. The resulting gains for the estimator and controller are combined into a compensator that
uses measurements from the full system to determine a control strategy that is optimal in reducing
a specified cost objective. The design process depends on our knowledge of two noise covariances
(for the plant and measurement noise); however, in the presence of a dominant instability, we have
enough latitude to approximate these covariances and still arrive at an effective control design. In
the case of an amplifier, a data-driven approach using techniques from system identification [40]
and statistical learning [39] is preferred. An underlying model, directly connecting control and
measurement to performance output without passing through the state vector, can be postulated,
with guidance from the governing equations. The unknown coefficients of this model are then
determined by a statistical-learning approach, i.e., by fitting the model predicted to the true output.
Any noise contamination in the processed data is thus reflected and accounted for in the identified
coefficients. The controller for this model is straightforwardly designed by a disturbance-rejection
argument. Both approaches, model-based design for oscillators and data-driven design for amplifiers,
managed to achieve the prescribed cost objective.

The physical behavior inherent in the flow determines not only the control setup, but also sets
bounds on what can be achieved by control efforts. As a critical component in this effort, the
degree of internal feedback, quantifying the strength of an instability or the amplification gain of
environmental disturbances (the parameter b in our model equation), plays an important role in
the design and performance evaluation of the compensated system. In this sense, the flow physics
substantially influences the degree of control success.

For the examples and configurations in this article, the optimal control resembles rather closely
opposition control, with an account for advective motion via a delay. Identified structures (from
an instability or arising from upstream noise via selective amplification) are opposed by nearly
destructive interference from the actuator. This type of control action is a consequence of our
performance-based control objective: lowering the kinetic energy of flow perturbations. Other
choices for the cost functional or imposed side constraints may yield control strategies that deviate
from opposition. To further study the effect of control on the flow physics, we need to study the
compensated system and its coherent structures (modes); in the case of amplifier flows, the transfer
functions will contain this information.

Robustness is an issue of great importance in the design of control systems [41]. It is concerned
with sensitivity of the performance measure to changes in the design components. For feedforward
control, robustness is ensured; for feedback control, it has to be quantified. Multiplicative detuning
of the system transfer function produces gain and phase margins that set boundaries for a stable
closed-loop system. The control design in this article has focused purely on performance measures.
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The robustness analysis of the final design has been performed as an a posteriori diagnostic. It appears
more fitting to incorporate robustness measures, together with performance measures, directly in
our cost objective rather than evaluating them as an afterthought. In this way, we would determine a
control law that shows good, albeit reduced, performance over a reasonable range of internal changes
to our system. This type of control strategies is of practical importance, when modest performance,
even off the design point, is more desirable than optimal performance that rapidly deteriorates for
even slight deviations from the design point. The design of robust flow control strategies is beyond
the scope of this article and is left for future investigations.

An alternative approach to the robustness problem is given by adaptive control strategies [42,43],
such as the FXLMS algorithm. Rather than determining a fixed control law, a proper actuator
response is identified from sensor input, based on an approximate model for the flow behavior.
In this setup, the performance sensor z is used to directly adjust the transfer function from the
upstream sensor to the actuator. This type of compensator shows encouraging performance as well
as significant robustness margins.

The techniques in this article are applicable to fluid system in the vicinity of an equilibrium point
and the control laws have been designed to steer, as best as possible, any deviating flow back towards
this point. We also learned that this linear control law becomes ineffective once the flow departs too
far from the equilibrium point and settles into a nonlinear limit cycle. In order to control limit-cycle
behavior, a nonlinear underlying model and a nonlinear control strategy are required. Following the
system-identification approach in this article, we can postulate a nonlinear reduced-order model (e.g.,
using a proper orthogonal decomposition (POD)-based Galerkin projection [44,45]) motivated by
the Navier-Stokes equations and determine the unknown coefficients of this model by matching the
predicted output to the true output. Once verified by a testing data set, this model can be incorporated
into a nonlinear model-predictive framework and used to manipulate limit-cycle behavior. In this
manner, we attempt to control oscillator flows that have settled in the nonlinear regime.

Flow control techniques will continue to play an important role in fluid dynamics as we seek
improved performance, reduced environmental impact, and increased operational ranges in fluid
devices. By using techniques adapted to the inherent flow behavior, effective and efficient strategies
can be designed to achieve these goals.
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