
1 3

Exp Fluids  (2017) 58:61 
DOI 10.1007/s00348-017-2336-8

RESEARCH ARTICLE

Data assimilation of mean velocity from 2D PIV measurements 
of flow over an idealized airfoil

Sean Symon1  · Nicolas Dovetta2 · Beverley J. McKeon1 · Denis Sipp3 · 
Peter J. Schmid4 

Received: 6 September 2016 / Revised: 13 March 2017 / Accepted: 20 March 2017 
© Springer-Verlag Berlin Heidelberg 2017

by altering the resolution and domain size of the time-aver-
aged PIV.

1 Introduction

It has been noted in several studies (Nisugi et al. 2004; 
Suzuki et al. 2009a, b; Suzuki 2012; Foures et al. 2014) 
that despite recent advances in computational fluid dynam-
ics (CFD) and experiments, both techniques have several 
disadvantages. Despite capturing the “true” physics of the 
flow, for example, experiments are corrupted by noise, 
limited by field of view, and have insufficient resolution 
to capture small scales. CFD, on the other hand, requires 
modeling assumptions about boundary conditions and sub-
grid scale models unless there is sufficient computational 
power to resolve all scales in turbulence. Data assimilation 
seeks to combine the advantages of experiments and CFD 
to produce numerical simulations which obey the govern-
ing equations yet closely resemble the experimental data. 
The assimilated or hybrid flow is able to recover quantities 
in the experiment which would otherwise be inaccessible or 
difficult to measure such as pressure, vorticity, and Reyn-
olds stresses by reducing noise and improving resolution. 
It is also possible to extrapolate the flow beyond the experi-
mental view by solving the equations on a larger domain.

One of the first hybrid simulations conducted by Nisugi 
et al. (2004) used offline, sequential assimilation for flow 
behind a square cylinder. By measuring the discrepancy 
between experimental and numerical pressure measure-
ments at finite time intervals to drive the momentum equa-
tions, the simulation was altered to match the experiment. 
Sequential assimilation was greatly expanded by Suzuki 
et al. (2009a, b) when particle-tracking velocimetry (PTV) 
data of an airfoil at high angle of attack was fed into a 

Abstract Data assimilation can be used to combine 
experimental and numerical realizations of the same flow 
to produce hybrid flow fields. These have the advantages 
of less noise contamination and higher resolution while 
simultaneously reproducing the main physical features of 
the measured flow. This study investigates data assimila-
tion of the mean flow around an idealized airfoil (Re = 
13,500) obtained from time-averaged two-dimensional 
particle image velocimetry (PIV) data. The experimental 
data, which constitute a low-dimensional representation 
of the full flow field due to resolution and field-of-view 
limitations, are incorporated into a simulation governed 
by the two-dimensional, incompressible Reynolds-aver-
aged Navier–Stokes (RANS) equations with an unknown 
momentum forcing. This forcing, which corresponds to the 
divergence of the Reynolds stress tensor, is calculated from 
a direct-adjoint optimization procedure to match the experi-
mental and numerical mean velocity fields. The simula-
tion is projected onto the low-dimensional subspace of the 
experiment to calculate the discrepancy and a smoothing 
procedure is used to recover adjoint solutions on the higher 
dimensional subspace of the simulation. The study quanti-
fies how well data assimilation can reconstruct the mean 
flow and the minimum experimental measurements needed 

 * Sean Symon 
 ssymon@caltech.edu

1 GALCIT, California Institute of Technology, Pasadena,  
CA 91125, USA

2 LadHyX, Ecole Polytechnique, 91128 Palaiseau, France
3 ONERA-DAAA, 8 rue des Vertugadins, 92190 Meudon, 

France
4 Department of Mathematics, Imperial College London, 

London SW7 2AZ, UK

http://orcid.org/0000-0001-9085-0778
http://crossmark.crossref.org/dialog/?doi=10.1007/s00348-017-2336-8&domain=pdf


 Exp Fluids  (2017) 58:61 

1 3

 61  Page 2 of 17

two-dimensional direct numerical simulation (DNS). The 
resulting hybrid flows contained less noise and recovered 
the unsteady pressure fields. They also offered insight into 
the statistics of the mean flow and the three-dimensional 
instabilities which attenuate vorticity strength.

Variational methods, which involve minimizing the dis-
tance between experimental and numerical velocity fields 
subject to governing equations, are another approach to 
data assimilation. The roots of variational data assimila-
tion can be traced back to optimal control theory which has 
been applied to various flow control problems (see Kim and 
Bewley 2007, for an overview). Bewley et al. (2001), for 
example, studied the control side of the problem by investi-
gating various control strategies applied to turbulent chan-
nel flow simulated using a DNS. Data assimilation, on the 
other hand, functions more closely to an estimator which 
reads in inputs from various sensors and fits them to an 
underlying model. The idea is to read in a sparse number of 
measurements and use the model to produce an estimated 
state which is more highly resolved in space and time. The 
current study investigates mean flow data assimilation, so 
improved time resolution is not applicable.

An improved estimation technique for mean flows has 
potential applications in mean flow modification studies. A 
large body of work has attempted to investigate this prob-
lem which has its roots in the experiments of Strykowski 
and Sreenivasan (1990), who showed experimentally that 
for low Reynolds numbers, a small control cylinder inserted 
in the wake behind a larger cylinder can completely sup-
press vortex shedding. Numerical studies including Gian-
netti and Luchini (2007) and Marquet et al. (2008) looked 
at the sensitivity of the cylinder instability to base flow 
modification and steady forcing near the critical Reynolds 
number of 47. Meliga et al. (2012) and Mettot and Sipp 
(2014) expanded this framework to higher Reynolds num-
bers and determined how a small control cylinder could 
impact the frequency of vortex shedding as predicted by the 
most unstable global mode of the mean flow. Data assimila-
tion could expand control techniques to wall actuators such 
as an oscillating ribbon or synthetic jet which are difficult 
to model computationally due to ambiguous boundary con-
ditions at the wall. It is possible, for example, to determine 
the mean flow from an experiment and recover a more 
highly resolved mean flow by tuning the boundary condi-
tion at the wall so that the simulated mean flow matches the 
experimental one.

A study conducted by Gronskis et al. (2013) illustrates 
this point quite well. They employed adjoint data assimi-
lation to generate initial and inflow conditions for a DNS 
of flow around a cylinder at a Reynolds number of Re = 
172. The resulting simulation reflected the flow physics 
from large-scale PIV measurements but contained far lower 
noise levels. Data assimilation has also been demonstrated 

by Mons et al. (2016) to be applicable for perturbed fluid 
problems. They compared variational, ensemble Kalman 
filter-based, and ensemble-based variational data assimila-
tion techniques to reconstruct the flow around a cylinder 
subject to coherent gusts. They found that the variational 
data assimilation approach produced the best results since 
the adjoint method can effectively capture the first-order 
sensitivity of the cost functional which penalizes the dis-
tance between experimental and numerical velocity fields.

The current study also employs variational data assimila-
tion modeled on the approach taken by Foures et al. (2014), 
who applied variational methods to minimize the discrep-
ancy between the mean velocity fields of a DNS and an 
incompressible RANS simulation for flow around a circular 
cylinder at a Reynolds number of Re = 150. The aim is to 
adapt this framework to mean flows obtained from experi-
mental data at significantly higher Reynolds numbers since 
variational data assimilation has already been demonstrated 
in other forms for non-experimental data (e.g., synthetic 
PIV) or low Reynolds number flows. Experimental data are 
obtained from time-averaged particle image velocimetry 
(PIV) data from a free-surface water tunnel and integrated 
with a numerical model predicated on the two-dimensional 
incompressible Reynolds-averaged Navier–Stokes (RANS) 
equations with an unknown momentum forcing. This study 
investigates the mean flow at a chord-based Reynolds num-
ber of Re = 13,500 around an idealized airfoil consisting of 
a cylindrical leading edge followed by two plane surfaces 
connected at the trailing edge.

The outline of this paper is as follows: Sect. 2 describes 
the experimental setup and procedure used to obtain the 
data set. Next, Sect. 3 outlines the governing equations and 
data assimilation framework. The practical implementation 
and numerical methods behind the algorithm are explained 
in Sect. 4. The results of the data assimilation procedure 
and the minimum number of experimental measurements 
are explored in Sect. 5 while the residual discrepancy is 
discussed in Sect. 6. Finally, a method for incorporating 
measurement uncertainty into the assimilation procedure is 
suggested in Sect. 7 before the presentation of conclusions 
in Sect. 8.

2  Experimental setup

Experiments are performed on an idealized airfoil (see 
Fig. 1) with a chord-length of 15.86 cm, a width of 3.43 cm 
and a spanwise extent of 50.8 cm. The airfoil is symmetric 
about the chord and consists of a cylindrical leading edge 
followed by two plane surfaces connected at the trailing 
edge, which has a thickness of 0.15 cm. The diameter of 
the cylinder is equal to the width of the airfoil so that the 
junction between the cylinder and planar surfaces is half a 
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diameter aft of the leading edge. At a zero angle of attack 
and a chord-based Reynolds number greater than approxi-
mately Re = 10,000, the flow separates at the transition 
point between the cylinder and the plane surfaces and the 
time-averaged flow reveals recirculation bubbles that form 
on both sides of the airfoil (Wallace and McKeon 2012). 
The critical Reynolds number, which coincides with the 
onset of von-Karman vortex shedding, is measured experi-
mentally to be approximately 2000. Furthermore, the shear 
layers which form around the separation bubbles are con-
vectively unstable, giving rise to the formation of Kelvin–
Helmholtz vortices. These two instabilities ensure dynam-
ics which are reminiscent of the behavior of separated 
flows at far higher Reynolds numbers (Prasad and William-
son 1997). Consequently, this configuration is an attractive 
choice for studying the capability of data assimilation to 
capture the flow dynamics around aerodynamic geometries.

Experiments are conducted in a free-surface water facil-
ity (see Wallace and McKeon 2012). The test section meas-
ures 1.6 m in length, 0.46 m in width and 0.5 m in height 
and the airfoil is mounted vertically so that its span is par-
allel to the test section height. The flow is conditioned by 
a perforated plate, a honey-comb mesh, three turbulence-
reducing screens and a 4-to-1 fifth-order-polynomial con-
traction (Gharib 1983). The free-stream velocity is 8.1 cm/s 
and the free-stream turbulence intensity is less than 0.1% 
at the centerline. The water temperature is 23 ◦C, which 
results in a chord-based Reynolds number of Re = 13,500.

A LaVision time-resolved 2D-PIV setup is used consist-
ing of two Photron Fastcam APX-RS high-speed cameras 
with 50 mm focal length Nikon lenses and 1:1.2 aperture. 
The cameras are synchronized with a high-speed controller 
and sample the flow at a frame rate of 83 Hz. The camera 
resolution is 1024× 1024 pixels and the cameras are cali-
brated at 5.25 px/mm. The snapshot frequency is selected 
to guarantee a particle displacement between 5 and 7 pix-
els between any two consecutive snapshots. The seeding 
particles are hollow glass spheres (reference 110P8 with 
an average diameter of 11.7 µm and a specific gravity 
of 1.1) and the seeding density is about 0.1 particles per 
square pixel. The particles are illuminated by a 2 mm-thick 
laser sheet provided by a Photonics DM20-527 solid-state 

laser. In an effort to avoid large uncertainty near the illumi-
nated profile due to surface reflection, the image intensity 
is calibrated using white-image subtraction (normalization 
of the image intensity using the average light distribution) 
and background-image subtraction. The white and back-
ground images are taken before each run and averaged over 
100 snapshots. The camera view, shown in Fig. 2, encom-
passes the flow from 6.5 cm upstream of the leading edge 
to 10.5 cm downstream of the trailing edge with a 15% 
overlap to include a large area of mean flow and fluctuation 
measurements. Finally, 10,240 instantaneous flow fields are 
captured over 5 runs (2048 snapshots per run), which rep-
resents approximately 35 complete vortex shedding cycles.

The computation of velocity vectors is performed using 
the software package DaVis provided by LaVision. A 
standard cross-correlation technique via Fast Fourier Trans-
formation (see Adrian 1991) is applied to each sequential 
image with a window size reduced from 32× 32 px2 to 
16× 16 px2 over three passes, a 50% overlap, and a 2 :1 
elliptic weight (see Kompenhans et al. 2007). Finally, the 
data are post-processed and single missing vectors are 
interpolated using an average of all the non-zero neigh-
borhood vectors. A median filter, as described by Wester-
weel and Scarano (2005), is used for outlier detection. This 
results in a total of 8424 two-dimensional velocity vectors 
per instantaneous flow field and a resolution of 2.65 mm/
vector. The snapshots are then averaged to obtain the mean 
velocity field and Reynolds stresses.

The mean velocity field containing all the measure-
ment vectors is used as a reference to evaluate the quality 
of the assimilated velocity fields. To investigate the mini-
mum experimental data necessary for successful mean flow 
reconstruction, the experimental data are artificially lim-
ited to include fewer measurement points. Truncating the 
field of view or omitting vectors from the full data set can 
be accomplished without repeating the experiment or data 
post-processing as explained in Sect. 4.

Fig. 1  Cross-sectional sketch of the idealized airfoil profile (Gonza-
lez et al. 2010)

Fig. 2  Experimental setup of the flow around an idealized airfoil 
showing the spatial coverage of the flow by the cameras. The dimen-
sions are normalized by the diameter of the cylinder
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3  Data assimilation framework

The primary elements of the data assimilation framework 
are similar to those outlined in Foures et al. (2014), and 
so only an abridged version is presented here. There are, 
nevertheless, several modifications that shall be discussed 
in the following section to account for a mean velocity 
data set that comes from experiments instead of a time-
averaged DNS and a Reynolds number that is two orders 
of magnitude higher than the Reynolds number used 
in Foures et al. (2014). This section outlines the govern-
ing equations which serve as a computational model for 
the flow, a fitting criterion which quantifies the progress 
of the data assimilation procedure, and the adjoint equa-
tions which reveal gradient information that is subse-
quently incorporated into the optimization procedure.

3.1  Computational model

The measured mean flow is obtained from 2D PIV data 
and is assumed to satisfy the 2D incompressible RANS 
equations given by 

The forcing term f on the right-hand side of Eq. (1a) is 
an unknown momentum forcing which is data-driven 
whereas for ordinary RANS simulations it is solved for 
using a turbulence model. It corresponds to the diver-
gence of the Reynolds stress tensor, defined as

where u′ and v′ denote the streamwise and transverse 
fluctuating velocity components, respectively. Out-of-
plane velocities are not captured by the experiment which 
means enforcing Eq. (1b) may not strictly be true at 
every point in the domain. Non-zero three-dimensional 
mean flow effects are compensated for by the momen-
tum forcing term (for a better treatment of 3D effects, see 
conclusion).

This algorithm is formulated on velocity-only meas-
urements, so only a partial recovery of the pressure is 
possible by data assimilation of the mean velocity field. 
Upon further inspection of Eq. (1a), it is noted that the 
forcing term f can be decomposed into the following

(1a)u · ∇u+∇p−
1

Re
∇2

u = f

(1b)∇ · u = 0.

(2)f = −∇ · R, with Rij = u′iu
′
j,

(3)
f = ∇φ

︸︷︷︸

fi

+ ∇ × ψ
︸ ︷︷ ︸

fs

where fi and fs represent the irrotational part and sole-
noidal part of f, respectively. As explained in greater 
detail by Foures et al. (2014), the recovered forcing is 
divergence-free; therefore, only the solenoidal part can 
be captured. Furthermore, boundary conditions need to 
be specified for this decomposition to be unique. This 
involves enforcing ∇φ · n = 0 and fs · n = 0 on the airfoil 
walls where n is the outward normal. The model given by 
Eq. (1) can now be recast as follows:

where p′ = p− φ. Despite the limitation that the pressure 
field cannot be reconstructed in its entirety, it is still pos-
sible to reconstruct the mean velocity field using experi-
mental data to correctly model fs. The portion of f which 
is not captured is lumped in with the pressure term.

3.2  Fitting criterion

The goal of the data assimilation algorithm is to determine 
the solenoidal forcing fs which best matches the mean 
velocity fields from the simulation and experiment. To 
determine this forcing, it is first necessary to calculate the 
discrepancy between the measured flow uexp and the sim-
ulated flow u. The discrepancy velocity field is computed 
using

Note that �u is a two-dimensional vector containing both 
streamwise and transverse discrepancy velocity measure-
ments for each mesh point. This computation is not trivial 
since the experimental and numerical data are defined on 
different points. A detailed explanation for how to compute 
this field is given in the next section. For now, it is assumed 
that the discrepancy field has the same spatial resolution 
as the numerical field and that it is possible to perform the 
above operation using techniques which do not involve 
interpolation.

The L2-norm of the discrepancy field yields a scalar 
function called the fitting criterion, which quantifies the 
distance between the numerical simulation and the meas-
ured mean velocity. It is calculated using the following 
operation:

where N denotes the number of points on the mesh and the 
index j denotes the jth point on the mesh.

(4a)u · ∇u+∇p′ −
1

Re
∇2

u = fs

(4b)∇ · u = 0,

(5)�u = uexp − u.

(6)E(u) =
1

2

N∑

j=1

∥
∥�uj

∥
∥2,
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3.3  Cost functional and adjoint equations

Similar to 3D-Var (see Lewis et al. 2006), an objec-
tive functional using a variational formulation yields 
an iterative optimization scheme that minimizes the fit-
ting criterion. The final result is an optimal match of the 
model-predicted data u and the measured data uexp. An 
augmented Lagrangian is formed consisting of the objec-
tive functional (the fitting criterion) and the constraints 
(the model equations) which are enforced in a weak form 
by Lagrange multipliers or adjoint variables. For readers 
familiar with optimal control, the augmented Lagrangian 
can also be thought of as a least-squares cost functional 
which penalizes the difference between the computed 
state, which in this case is u, and the observed state, uexp. 
The cost functional is written as follows:

The scalar product denoted by 〈., .〉 is associated with the 
Euclidian norm for vector and scalar fields on the domain 
�.

To minimize the functional, first-order variational 
derivatives are taken with respect to each independ-
ent variable and set equal to zero. Differentiation with 
respect to the adjoint variables u† and p† yields the direct 
equations given by Eq. (4) while differentiation with 
respect to the direct variables produces the adjoint equa-
tions given below: 

The right-hand term of Eq. (8a) is discussed in the fol-
lowing section as it pertains to the smoothing procedure 
needed to recover adjoint solutions on the higher dimen-
sional subspace of the simulation.

Finally, the variational derivative with respect to the 
forcing fs yields

which is the steepest descent direction towards the optimal-
ity condition. It can also be interpreted as the sensitivity of 
the fitting criterion to the forcing vector. An initial guess is 
necessary to begin the optimization procedure and compute 
the first descent direction. Since the forcing must be diver-
gence-free and the Reynolds stresses must vanish on the 
airfoil surface, a natural initial guess is fs = 0. The solution 
to Eq. (8) then provides u†, which is the direction in which 

(7)

L(fs,u, u
†
, p′, p†) = E(u)−

〈

u
†
,u · ∇u+∇p′

−
1

Re
∇2

u− fs

〉

−
〈

p†,∇ · u
〉

.

(8a)−u · ∇u
† + u

† · ∇u
T −∇p† −

1

Re
∇2

u
† =

δE

δu

(8b)∇ · u† = 0.

(9)∇fs
E = u

†,

the guess to the forcing is updated. This can be stated math-
ematically by the following equation:

where fn=0 denotes the initial guess. This method is known 
as the simple gradient descent method which, while effec-
tive, has shown to be prone to zigzagging since the new 
search direction is always orthogonal to the previous search 
direction (see Bewley et al. 2001). To avoid this problem, 
a conjugate-gradient approach using the Polak–Ribière for-
mula (see Polak and Ribière 1969) is adopted as well as a 
line-search algorithm to determine αn for each new descent 
direction.

As seen from Eq. (10), the forcing is a linear combina-
tion of adjoint velocity fields which, from Eq. (8b), must 
be divergence-free. This reinforces the validity of the ini-
tial guess and justifies the earlier statement that only the 
solenoidal component of the forcing can be captured by the 
data assimilation algorithm.

4  Practical implementation of the algorithm

This section explains the numerical and computational 
details for solving the equations outlined in Sect. 3. It is 
here that the modifications to the procedure by Foures et al. 
(2014) are introduced.

4.1  Numerical methods

Both the numerical and experimental data have been non-
dimensionalized to yield a unit input velocity and a unit 
cylindrical diameter of the idealized airfoil. The direct and 
adjoint equations are solved using the finite-element soft-
ware FreeFem++ (see http://www.freefem.org) to gener-
ate a two-dimensional triangular mesh. The computational 
domain � spans −20 ≤ x ≤ 35, −12.5 ≤ y ≤ 12.5 with the 
cylinder at the leading edge of the airfoil being centered at 
the origin as it is in the PIV domain shown in Fig. 2. The 
mesh density, which is controlled by specifying the num-
ber of divisions along a boundary, increases from the outer 
boundaries towards the airfoil surface. The equations are 
spatially discretized using quadratic basis functions for the 
velocity and linear basis functions for the pressure result-
ing in approximately 580,000 degrees of freedom for both 
velocity and pressure.

FreeFem++ solves the direct and adjoint equations in 
weak form which can be obtained by dotting the equations 
with a test function and integrating by parts to remove sec-
ond derivative terms. The direct equations are solved using 
a Newton–Raphson method while the adjoint equations 
are linear in u† and can be solved efficiently without an 
iterative method. The boundary conditions for Eq. (4) are 

(10)fn+1 = fn + αnu
†
n,

http://www.freefem.org
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no-slip on the airfoil surface, uniform velocity at the inlet, 
symmetry condition ∂yu = 0, v = 0 on the upper and lower 
boundaries, and outflow condition −p′n + Re−1∇u · n = 0 
where n is the normal unit vector pointing out of the 
domain. The adjoint boundary conditions, which are deter-
mined via integration by parts are u† = 0 at the inlet and on 
the airfoil surface, symmetry condition ∂yu† = 0, v† = 0 , 
and Re−1∂xu

† + p† = −uu†, Re−1∂xv
† = −uv† at the 

outlet.
The boundary conditions, along with the governing 

equations, serve as constraints for the optimization proce-
dure and are not a free parameter. The reader is referred 
to Gronskis et al. (2013) for an example of data assimila-
tion where the inflow boundary condition for cylinder flow 
is a tunable parameter of the underlying model equations.

4.2  Smoothing procedure and choosing experimental 
points

It was assumed in the previous section that the resolu-
tions of the experimental and numerical velocity fields are 
identical when computing the discrepancy velocity field. 
This is not the case since the experimental velocity field 
is defined on a coarse, uniform Cartesian grid while the 
numerical velocity field is continuous and approximated 
with quadratic basis functions. To obtain a discrete repre-
sentation of the numerical velocity field, the values of the 
velocity defined on the vertices and midpoints of the finite-
element triangles can be outputted from the finite-element 
code. A smoothing procedure is used to cope with the dif-
ference in resolution when forcing the adjoint RANS equa-
tions. For convenience, the points where experimental 
measurements exist shall be referred to as grid points while 
the points where numerical measurements are taken shall 
be referred to as mesh points.The smoothing procedure 
begins by dividing the domain into cells as seen in Fig. 3 
where the red dot denotes the center of each cell and the 
blue vector the associated PIV measurement. Mesh points 
are sorted into the cells whose boundaries are delineated 
by the grey lines in Fig. 3. This means that for a given cell, 

there is a unique experimental measurement and multiple 
numerical measurements. The fitting criterion in Eq. (6) 
can now be recast in terms of a new scalar product defined 
in the experimental measurement space:

where the subscript M represents the number of measures 
in the inner product defined by

The numerical measurements are projected down to the 
measurement space using a smoothing function or opera-
tor P:

For this configuration, P was chosen to be an area average 
of the numerical measurements in a given cell. For the jth 
cell, therefore, P can be written as

where

and 
∫

�j
d� is the area of a cell.

The forcing term of Eq. (8a) can be derived by sub-
stituting Eq. (13) into Eq. (11) and taking the variational 
derivative with respect to u. After simplifying the expan-
sion, one obtains

and so δE
δu

, therefore, reads

(11)E(u) =
1

2
��u,�u�M ,

(12)��u1,�u2�M =
M∑

j=1

�u1,j�u2,j.

(13)�u = uexp − Pu.

(14)Pju =
∫

�

u(x)φj(x)d�,

(15)φj(x) =

{
1∫

�j
d�

in �j

0 outside of �j,

(16)

〈
δE

δu
, δu

〉

= �uexp − Pu,−Pδu�M = �P†(Pu− uexp), δu�,

Fig. 3  Subdivision of the domain into cells delineated by grey lines. 
The center of each cell is indicated by a red point which corresponds 
to the spatial location of a PIV measurement shown by a blue vector. 
Only a limited section of the total field of view is shown. In (a) one 

out of every five PIV vectors in both the streamwise and transverse 
directions appear for clarity while (b) displays the density of vectors 
in the CFD mesh



Exp Fluids  (2017) 58:61  

1 3

Page 7 of 17  61 

The adjoint operator of P satisfies

For the P chosen in this study, the adjoint operator acting 
on �u can be shown to be

and so the final expression for the forcing term of 
Eq. (8a) reduces to the following expression:

It should be noted that this calculation need not include 
every PIV vector in the experimental data set. It is possi-
ble to artificially lower the resolution by omitting one out 
of two vectors in both the x and y directions, for exam-
ple, which would increase the area of each cell by a fac-
tor of four. It is also possible to change the weight of a 
cell to increase its relative importance or turn it off com-
pletely to artificially decrease the PIV window. A second 
projection operator S could be introduced into Eq. (13) 
to account for artificially reducing the number of experi-
mental measurements:

If S is the identity, then all experimental data are used to 
compute the fitting criterion and drive the data assimila-
tion process. This will be referred to as the full-field case. 
The modifications to the previous derivations for δE

δu
 are 

minor even though it will change the measurement space 
in Eq. (12) as the effect of S can be incorporated into 
φj(x) of the original smoothing function P.

The smoothing procedure can be interpreted as a way 
to compute the pseudo-inverse of the projection opera-
tor P. For this setup, the numerical data must be pro-
jected down onto the experimental data subspace by P 
to compute the discrepancy field but the adjoint solu-
tion needs to be forced by a quantity defined on the same 
subspace as the original numerical data. The method 
outlined in the previous paragraph is one way to per-
form this pseudo-inverse operation. Alternatives, which 
were not implemented in this study, include enforcing 
global smoothness constraints or including regularization 
terms in Eq. (7). Failure to include the smoothing pro-
cedure results in forcing the adjoint equations by Dirac 
delta functions located at the center of each cell and the 

(17)
δE

δu
= P

†(Pu− uexp).

(18)
〈

P
†�u, δu

〉

= ��u,Pδu�M for all �u and δu.

(19)P
†�u =

M∑

j=1

�ujφj(x),

(20)
δE

δu
=

M∑

j=1

(Pju− uj,exp)φj(x).

(21)�u = S(uexp − Pu).

resulting forcing fields are no longer smooth. The algo-
rithm, furthermore, will only attempt to match the veloci-
ties at discrete points where the PIV vectors are located, 
and this can lead to spurious recirculation bubbles or 
other unphysical flow structures appearing in the assimi-
lated flow field between measurement points.

An additional complication with the experimental 
setup is being able to obtain PIV measurements on both 
sides of the airfoil. The laser sheet can only illuminate 
one side of the body, which casts a shadow on the oppo-
site side. Since the airfoil is symmetric and oriented at 
a zero angle of attack, this problem can be overcome by 
computing the discrepancy velocity field for cells above 
the centerline only and then reflecting the measurements 
to the cells below the centerline. A non-symmetric airfoil 
or an airfoil at a non-zero angle of attack would require 
experimental flow measurements on both sides of the 
body (see Suzuki et al. 2009a, b). The streamwise dis-
crepancy velocity is unaltered while the direction of the 
transverse discrepancy velocity is reversed after perform-
ing this reflection. Both the smoothing procedure, which 
needs to be applied to all cases in this article, and the dis-
crepancy field reflection account for two of the modifica-
tions referred to in Sect. 3.

4.3  Adjoint looping

The block diagram in Fig. 4 illustrates the adjoint loop-
ing procedure used to iteratively update the forcing fs. 
The process is terminated once the new steepest descent 
direction no longer results in a reduction of the fitting cri-
terion. The data assimilation begins with an initial guess 
f0 = 0, which is used to solve the RANS equations given 
by Eq. (4). Next, the discrepancy field is computed using 

Fig. 4  A block diagram representation of the adjoint looping proce-
dure used to determine the optimal forcing fs which will minimize the 
fitting criterion. The steps and quantities in black are in the subspace 
of the numerical data, while blue indicates the subspace of the experi-
ment and brown represents the subspace of fewer measurements after 
applying the projection operator S
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Eq. (21) once the relevant projection operators have been 
applied to u and uexp, and these values are smoothed 
over all mesh points in a grid cell as explained earlier. 
Finally, the adjoint equations are solved to find the steep-
est descent direction that updates the forcing.

A problem that arises in this procedure is finding a 
base flow solution, or a solution to the steady Navier–
Stokes equations with zero forcing, at the experimental 
Reynolds number. This is due to the fact that the criti-
cal Reynolds number, or the Reynolds number at which 
the base flow undergoes a supercritical Hopf bifurcation 
and becomes unstable, tends to be rather low (for this 
geometry it is O(103)). The base flows at higher Reynolds 
numbers, as a result, tend to be unphysical and require 
exceedingly high numerical precision to compute (Sipp 
et al. 2010).

The third modification that is necessary to account for 
a relatively high Reynolds number is to conduct the data 
assimilation process starting at a lower Reynolds num-
ber. A Reynolds number of Re = 2500 is chosen since it 
is possible to compute a base flow solution for the ide-
alized airfoil. Once the fitting criterion is minimized for 
Re = 2500, the Reynolds number is increased in incre-
ments of approximately 2500 to reach the experimental 
Reynolds number of Re=13,500. The choice of these 
parameters does not have an impact on the results as long 
as the Reynolds number is not increased too quickly.

5  Results and discussion

The data assimilation procedure is conducted for the ide-
alized airfoil using the time-averaged PIV data set. The 
resolution and domain size are artificially altered through 

the use of projection operators to determine the mini-
mum number of measurements for successful mean flow 
reconstruction.

5.1  Base flow and PIV results

Before introducing the results of the data assimilation algo-
rithm, it is useful to compare the time-averaged PIV flow 
with the base flow solution at Re = 2500, which is used as 
an initial guess to the optimization. Figure 5 includes con-
tour plots of the streamwise velocity for both the mean flow 
and the base flow as well as contour plots of vorticity over-
laid with streamlines of the flow. Note that experimental 
data below the airfoil are not available since the laser sheet 
does not illuminate both sides of the airfoil.

The most significant difference between the two fields is 
the streamwise length of the recirculation bubble, which for 
the base flow extends multiple chord lengths downstream 
of the airfoil. This is consistent with the observation that 
recirculation bubble lengths for base flows around closed 
bodies tend to scale linearly with the Reynolds number 
even when the flows become unstable as reported by Ziel-
inska et al. (1997) for the cylinder wake.

5.2  Full‑field information

The data assimilation procedure is first conducted using 
full-field knowledge or setting S equal to the identity matrix 
in Eq. (21). This is referred to as Case A. Figure 6 compares 
the mean flow with the data-assimilated flow in a fashion 
similar to the comparison between the mean and base flows.

Overall, very good agreement is observed between 
both mean velocity fields, particularly when comparing 
the contours of the streamwise velocity. The size, stream-
wise position, and shape of the recirculation bubble are 

Fig. 5  Base flow: a comparison between the mean flow (left) 
obtained from PIV and the base flow for Re = 2500 (right) around 
the idealized airfoil. The flows are visualized by contours of the 

streamwise velocity (top) and vorticity (bottom). The black contour 
in (a) and (b) corresponds to u = 0 and streamlines are included in 
(c) and (d)
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also captured quite well although there is a slight discrep-
ancy with the center of the bubble. It is difficult to deter-
mine this location from the PIV data due to the lack of 
spatial resolution in the transverse direction. The u = 0 
contour does not, however, match near the front of the 
bubble and this discrepancy is discussed in Sect. 6.

To quantify how well the data assimilation recovers 
the mean flow, the L2-difference is computed between the 
PIV velocity field uexp and the assimilated flow u interpo-
lated onto the PIV grid, which will be referred to as uint. 
This difference is then normalized by the L2-norm of the 
PIV velocity field and is referred to as the experimental 
mismatch. It can be written as

R is computed on the domain x ∈ [−1.5, 6]; y ∈ [0, 2]. 
This definition is constant across all cases studied even if 
the experimental data are artificially limited.

Another quantity of interest is the decrease of the cost 
function for each case investigated. A bad cost function is 
one which leads to a large decrease in the fitting criterion 
without reducing the experimental mismatch. To deter-
mine the success of a given cost function, its final value 
Eend is normalized by the initial value computed using 
the base flow E0. This ratio can be compared to the cor-
responding decrease of the experimental mismatch

where R0 is computed using the base flow. The square 
root of the cost function ratio is necessary since Er is based 
on � · �2 while Rr is based on � · �. If Er << Rr, the cost 

(22)R =
∥
∥uexp − uint

∥
∥

∥
∥uexp

∥
∥

.

(23)Rr =
Rend

R0
, Er =

√

Eend

E0
,

function is not effectively reducing the mean velocity field 
discrepancy.

For the full-field case (Case A), the cost functional 
decreases by Er = 40.1% and the experimental mismatch 
is Rend = 6.76%, down from an initial value of 26.1% 
when the experimental mismatch is calculated with 
respect to the base flow (Rr = 25.9%). These results are 
summarized in Table 1. It is worth noting that the initial 
mismatch is misleadingly low since the PIV data does not 
extend far downstream (x ≤ 6) and the base flow is at a 
Reynolds number lower than that of the experiment. The 
real base flow, which is very difficult to compute, would 
be even more unphysical than the current one. The region 
of the flow behind the airfoil is where the largest discrep-
ancies are concentrated since the recirculation region is 
overestimated by the base flow.

The last result for the full-field information case is 
to compare the forcing of the assimilated flow with that 
of the experiment. Since the algorithm can only capture 
the solenoidal part of the forcing, the curl of the forcing 
field ∇ × f is presented in Fig. 7 instead of fx and fy indi-
vidually. Computing this quantity from the experiment, 
however, requires two spatial derivatives of the Reynolds 

Fig. 6  Case A results: a comparison between the mean flow (left) 
obtained from PIV and the data-assimilated flow (right) around the 
idealized airfoil. The flows are visualized by contours of the stream-

wise velocity (top) and vorticity (bottom). The black contour in (a) 
and (b) corresponds to u = 0 and streamlines are included in (c) and 
(d).

Table 1  Summary of the data assimilation results

Case Description Number of meas. 
points

Rend Rr Er

A Full field 3669 6.76% 25.9% 40.1%

B Half resolution 934 8.17% 31.3% 36.1%

C Third resolu-
tion

416 11.5% 44.1% 47.2%

D Small field 1765 7.73% 26.1% 48.6%

E Half small 465 8.79% 33.7% 39.9%
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stresses. A circular averaging or ‘disk’ filter in Matlab 
was used to smooth out the Reynolds stresses before 
computing gradients. No smoothing was necessary for 
the assimilated forcing.

There is good agreement between the structure of the 
forcing fields (note that it is actually the curl which has 
been reproduced in Fig. 7 but it shall be referred to as 
forcing for convenience) and the magnitudes of the peaks 
in the shear layer. It should be noted that complete agree-
ment is not expected since the PIV data are not ideal and 
there is underlying noise in the measurements. The assimi-
lation is also able to reconstruct the forcing at the leading 
edge of the airfoil, information which is not available from 
the experimental data since there are too few PIV meas-
urements to resolve the high Reynolds stress gradients in 
this region. It is striking to observe how clean the assimi-
lated forcing looks in comparison to the experimental one. 
The results reinforce how one of the primary motivations 
of data assimilation is to remove noise and produce more 
highly resolved flow quantities. Assimilated fields are par-
ticularly useful at reproducing fields which need to be dif-
ferentiated since experimental derivatives tend to amplify 
the underlying noise in a measurement.

5.3  Minimum PIV resolution

The full-field assimilation procedure uses 3669 PIV vec-
tors. Using the projection operator S, it is possible to 
investigate the effect of decreasing the full-field resolution 
and its impact on the assimilated flow fields. Three differ-
ent resolutions are tested by removing points in both the 
streamwise and transverse directions in a fixed pattern. To 
obtain an experimental field with half the resolution of the 
original one, for example, every other point is removed in 
both the streamwise and transverse directions. This process 
is repeated to obtain data sets with one third of the original 
resolution as well as one fourth of the original resolution.

Results for the assimilated flows at the lower resolutions 
are presented below in Fig. 8 for the one-half and one-third 
case (Case B and Case C, respectively). The one-fourth res-
olution case failed to converge at higher Reynolds numbers, 
so the results have been omitted.

The experimental mismatch calculations are summarized 
in Table 1. It is evident that there is a noticeable decrease 
in the assimilated flow field quality for the one-third case 
in comparison to the one-half case. The recirculation bubble 
is not smooth and the velocity contours have significantly 
deviated from the mean. This is largely due to the fact that 
the cell size over which the smoothing procedure is applied 
is nine times larger than it was in the full-field case. As a 
result, the range of velocities in a given cell can be quite 
large, particularly when the cell encompasses measure-
ments above the shear layer where the velocity is close to 
the free stream and below the shear layer where it is close to 
zero. Nevertheless, the one-third case correctly reproduces 
the main features of the mean field, particularly the length 
and height of the recirculation bubble. It is also manages to 
recover an acceptable approximation of the forcing field as 
shown in Fig. 9.

It is important to note that the discrepancy field calcu-
lated by Eq. (21) is not smooth since all the mesh points 
in a given cell have the same value. This field becomes 
decreasingly smooth as the resolution of the PIV data 
decreases since the cell size over which the averaging 
operator applies increases. Despite how discontinuous 
this smoothing may be, the solution to the adjoint equa-
tions, and consequently the recovered forcing field, is quite 
smooth as seen in Fig. 9. It is worth noting, however, that 
the one-third case does not accurately locate the maximum 
contours of the forcing. The maximum positive contour 
in the forcing field, for example, is located further down-
stream when compared to the full-field and one-half cases.

5.4  Minimum field of view

Another way to reduce the number of experimental meas-
urements is to truncate the PIV field of view. In the interest 
of brevity, only the smallest field of view for which there 
was no major sacrifice in data assimilation quality is pre-
sented. The domain was limited such that PIV points out-
side the range −1.5 < x < 6.0, 0 < y < 1.5 were excluded. 
The results are quantified in Table 1 as Case D.

The trends observed in Table 1 are consistent with intui-
tion—the more experimental measurements available, 

Fig. 7  Case A results: a comparison between curl of the forcing ∇ × f for the experimental velocity field (left) and assimilated velocity field 
(right)
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the closer the assimilated flow field is to the experiment. 
A promising result, however, is that decreasing the resolu-
tion or field of view of the reference data set does not sig-
nificantly affect the assimilated flow field quality up to a 
point. As mentioned earlier, there is a significant difference 
between the one-half and one-third resolution cases. It is 
difficult to know a priori how much resolution is needed 
as this depends largely on the flow structures in the mean 
flow. The one-third resolution case struggles to resolve the 
shear layer while the one-fourth resolution case (not shown 
due to convergence problems) used grid cells which were 
too large to resolve the mean recirculation bubble. Predic-
tive tools, which can identify the location and size of these 
features, would be helpful to determine the experimental 
measurements which are necessary; they will be the subject 
of future work.

To reduce the number of measurements further, it is pos-
sible to combine the two approaches mentioned so far by 
truncating the field of view and reducing the resolution of 

the reference data. Combining the small domain with the 
half resolution case decreases the number of points by 
approximately a factor of ten and is referred to as Case E. A 
comparison of the assimilated flow using the approach with 
the mean flow is presented in Fig. 10. The forcing fields are 
also displayed in Fig. 11 to demonstrate that reduction in 
points by a factor of approximately ten has only a minimal 
impact on the results.

Data assimilation works well within the current 
framework and reproduces smooth velocity and forcing 
fields. There are, however, limitations to this analysis 
that are worth mentioning. To begin with, the algorithm 
needs several hundred spatial measurements for success-
ful mean flow reconstruction. It is certainly possible to 
devise projection operators which divide the experimen-
tal data into variable cell sizes so that regions of the flow 
with high velocity gradients are more highly resolved 
than other regions. Experimental data, especially from 
PIV, is typically not collected on non-uniform grids so 

Fig. 8  Case B and C results: the projected (experimental) mean flows 
are shown by (a) and (c) for the one-half resolution case (Case B) and 
(e) and (g) for the one-third resolution case (Case C). The correspond-

ing assimilated flows are (b) and (d) for the one-half resolution case 
and (f) and (h) for the one-third resolution case. The flows are visual-
ized by contours of the streamwise velocity and vorticity
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this study limits the approach to projection operators 
which could be reproduced by simply altering the experi-
mental parameters. There are also temporal averaging 
requirements since a sufficient number of measurements 
is needed to obtain converged statistics. For bluff bodies, 
this might require some a priori knowledge of the shed-
ding frequency, while for wall-bounded turbulent flows it 
is necessary to determine uτ and the eddy turnover time.

6  Residual discrepancy

An assessment of the remaining discrepancy between the 
experimental and assimilated mean velocity fields is dis-
cussed in this section. The influence of three-dimension-
ality of the flow is considered as well as elements of the 
data assimilation framework.

6.1  Three dimensionality

To quantify three-dimensional effects, the divergence of 
the experimental velocity is calculated. If the 2D continu-
ity equation is not satisfied then this constraint may not be 
appropriate. The same calculation is performed for the data-
assimilated flow field from Case A which is constrained to 
be divergence-free in 2D. This field is interpolated onto the 
PIV grid to determine what the permissible range of values 
would be for a flow field obeying the 2D continuity equa-
tion. Figure 12 compares ∇ · u for the experiment and the 
assimilation.

The plots indicate that ∇ · u is nearly zero everywhere 
except near the leading edge. Since ∇ · u is also high for 
the data-assimilated field at the leading edge it is reason-
able to suggest that the grid resolution is not sufficient to 
capture the large velocity gradients in this region of the 
flow.

As mentioned earlier, 3D effects would be compensated 
for by the unknown momentum forcing term fs. It is clear 
from Sect. 5 that fs does not deviate significantly from the 
experiment. This means it is not being corrupted by span-
wise velocity gradients which have been assumed to be 
zero. From these two observations, the role of 3D effects is 
negligible and does not play a significant role in the resid-
ual discrepancy.

Fig. 9  Case B and C results: a comparison between the curl of the 
forcing ∇ × f for all three resolutions. The full-field assimilated forc-
ing (a) is reproduced from Fig. 7 to compare against the forcing from 
the one-half resolution case (b) and the one-third resolution case (c)

Fig. 10  Case E results: a comparison between the projected (experi-
mental) mean flow (left) obtained from PIV and the data-assimilated 
flow (right) around the idealized airfoil. The flows are visualized by 

contours of the streamwise velocity (top) and vorticity (bottom). The 
black contour in (a) and (b) corresponds to u = 0 and streamlines are 
included in (c) and (d)
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6.2  Model simplifications

There are two modeling simplifications in the data assimi-
lation framework: boundary conditions and the coordinate 
system mapping between the experiment and the simula-
tion. The boundary conditions for the simulation are very 
general and do not take into account the blockage ratio, 
which for this experimental configuration is approximately 
7%. The PIV domain, furthermore, does not extend suf-
ficiently far in the transverse direction to observe effects 
from the wall. Since there is excellent agreement between 
the assimilation and experiment outside the recirculation 
bubble of the airfoil, the effects of the boundary conditions 
and blockage ratio are negligible.

The most significant source of the residual discrepancy, 
as seen in Fig. 13, is the mapping between the experiment 
and the simulation. The largest contribution comes from 
several points along the leading edge of the airfoil while 
there are smaller contributions in parts of the recirculation 

bubble as well as the airfoil boundary near the trailing 
edge. There are two reasons to account for these results. 
First, it is difficult to precisely determine the airfoil loca-
tion from the PIV data and second, there are imperfections 
in the airfoil shape which is modeled as a cylinder followed 
by a wedge of half angle 7.5◦. Consequently, great care is 
taken to approximate the location and shape of the airfoil 
to minimize the uncertainty that arises from the mapping.

6.3  Choice of cost function

This study considers simple cost functions where the objec-
tive is to minimize the discrepancy at all PIV points sub-
ject to the incompressible RANS equations. No regulariza-
tion parameters are introduced and all the PIV vectors are 
weighted equally. While effective, the major drawback to 
such an approach is that low-velocity regions of the flow 
are treated as less important. The discrepancy between the 
velocity in the recirculation bubble, for example, is low 

Fig. 11  Case E results: a comparison between the curl of the forcing ∇ × f for the experimental velocity field (left) and the assimilated velocity 
field (right). Note that the projection operator has not been applied to the experimental forcing since this would exacerbate the level of noise

Fig. 12  Contours of ∇ · u computed for the experiment (left) and the data-assimilated field (right) which is constrained to satisfy the 2D conti-
nuity equation

Fig. 13  Residual discrepancy between the experimental and assimi-
lated mean velocity fields for Case A. The left-hand side quantifies 
the magnitude of the velocity discrepancy while the right-hand side 

shows the u = 0 contour for the experiment (black, solid line) and 
assimilation (blue, dotted line) overlaid with contours of ∇ · u
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even for the base flow case. Consequently, the procedure is 
biased towards high-speed regions of the flow and it tries to 
correct these regions first.

The right-hand plot of Fig. 13 compares the u = 0 con-
tour of Case A with its counterpart from the PIV data. The 
plot also includes contours of ∇ · u to emphasize that three 
dimensionality is not the leading cause of the discrepancy. 
There are small deviations along the entire contour which 
could be addressed by modifying the cost function to 
penalize these discrepancies to a higher degree.

7  Measurement uncertainty

It is useful to give estimates of various sources of uncer-
tainity in the experiment to quantify the precision of data 
entering the data assimilation algorithm. This section 
identifies these sources and offers a suggestion for incor-
porating them into the framework. Measurements with 
higher uncertainty are deemed less trustworthy and the 
data assimilation algorithm would take this into account 
by converging to the experimental measurement within the 
uncertainty bound instead of the exact experimental value.

The uncertainty can be decomposed into several com-
ponents, each associated with a particular aspect of the 
experimental setup, data acquisition, or data processing. 
These include experimental setup assumptions (Esetup), 
the sequential-correlation computations of the PIV veloc-
ity vectors (EPIV), the mapping from the experimental to 
the numerical coordinate system (Emap), and the variance 
error from the averaging procedure (Evar). The combined 
measurement error E is taken to be the sum of these com-
ponents, i.e.,

Two notations are adopted: E denotes the relative uncer-
tainty, while δuexp stands for the absolute uncertainty of the 
assimilated velocity uexp; consequently,

expresses the link between relative and absolute 
uncertainty.

7.1  Experimental setup

There are many possible sources of error due to factors 
related to the experimental setup that could influence a 
PIV measurement. Adrian and Westerweel (2011) men-
tion factors such as calibration, timing errors, parti-
cle slip, and the optical setup. For this particular flow, 

(24)E = Esetup + EPIV + Emap + Evar.

(25)E =
δuexp

uexp
,

only the optical setup and calibration are considered as 
sources of experimental error and their contributions to 
the overall uncertainty are estimated.

The extraction of velocity vector fields using PIV 
assumes that both the laser sheet and the calibration plate 
are exactly coincident with the streamwise-transverse 
velocity plane. With a laser sheet measuring approxi-
mately 1 mm in thickness and three airfoil chords in 
length, the error in parallelism is estimated to be on the 
order of 20 arc minutes (0.33◦). A non-aligned laser sheet 
poses a problem if a significant number of particles trav-
erse from an illuminated area to a non-illuminated one (or 
vice versa) between two consecutive camera snapshots. 
Particles in this flow move up to 0.8 mm between two 
images (based on the free-stream velocity). Additionally, 
about 99% of the particles in the free stream are illumi-
nated by the laser sheet during two successive snapshots. 
For the smallest correlation window (16× 16 pixels), 
there are thus between 10 and 25 particles, resulting in a 
10% to 25% probability for one particle to leave (or enter 
into) the illuminated region and to influence the sharp-
ness of the correlation peak. These estimates show that 
errors stemming from misalignment of the laser sheet are 
expected to be very small based on the results of Wieneke 
(2015), who quantified the error in pixels due to out-of-
plane motion, and negligible in view of other sources of 
error, as detailed below.

The calibration plate, on the other hand, may also be 
tilted by up to 20 arc minutes with respect to the stream-
wise–spanwise plane. This angle uncertainty translates 
directly into a 0.01% measurement uncertainty and so a 
total error of about 0.01% in the measured velocity should 
be attributed to misalignment factors in the experimental 
setup.

The cameras are calibrated using a calibration plate 
placed at the laser sheet location. This plate consists of 
a grid of known dimensions which translates between 
the camera-sensors’ coordinate system and the physi-
cal domain. Typically, this mapping has a finite number 
of degrees of freedom (e.g., a pinhole model with eight 
parameters) and is computed using a least-squares fit. 
The non-zero RMS error, i.e., the residual of this fit, is 
the uncertainty associated with camera calibration. In this 
study, this uncertainty is between 0.45 and 0.5 pixels for 
both cameras. Thus, when the velocity is evaluated based 
on the position of the correlation peak, it must be kept in 
mind that the position of this peak is known, on average, 
up to half a pixel. Based on the sources outlined in this 
section and the size of the correlation window, the instan-
taneous velocity is estimated to be within an uncertainty 
bound of 2% so δuset−up = 0.02u.
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7.2  PIV correlation peak position

The bias error stemming from the PIV correlation com-
putations is a source of uncertainty that can be readily 
estimated. Even though the displacement of the correla-
tion peak can be induced by a variety of physical phe-
nomena, only effects due to particle size and velocity 
variations within the interrogation window will be con-
sidered for simplicity. The bias ǫ of the correlation peak 
(in pixels) can be expressed explicitly for the case of sim-
ple shear and under the assumption of a Gaussian corre-
lation function. With an interrogation window of dimen-
sion DI, image magnification M, time interval �t between 
images, and particles of identical diameter dτ (see West-
erweel 2008), then

The local variation of the velocity field |�u| is approxi-
mated as

where L is a typical dimension of the interrogation vol-
ume. FI(sD) is the in-plane loss of correlation function, 
which depends on sD, the position of the correlation peak 
within the interrogation window. FI(sD) can be written as

The velocity bias error δuPIV due to PIV correlation 
peaks may be expressed in terms of the correlation peak 
displacement, leading to the quantification of the PIV-
measurement uncertainty as

Due to Eq. (27), this uncertainty varies spatially, since 
it depends on the velocity gradients. Wilson and Smith 
(2013) point out that the presence of shear, or large 
velocity gradients, broadens the correlation peak and 
leads to non-uniform particle image densities. The result-
ing effect on the mean uncertainty for this experiment, 
therefore, can be greater than 0.1 pixels. The contribution 
for this source of uncertainty on the instantaneous veloc-
ity is included in the calculation performed in Eq. (31).

(26)
ǫ

DI

=
1

FI(sD)

(

d2τ

8D2
I

+
(M|�u|�t)2
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I

)

.
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FI (sD) =
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�

for |sx| < DI , |sy| < DI ,

0 otherwise.

(29)δuPIV =
ǫ

M �t
.

7.3  Coordinate system bias

As mentioned in Sect. 6, the mapping from the experimental 
to the numerical coordinate system is not perfect. The center 
of the airfoil is estimated in the calibrated plane using the 
background snapshot in which the airfoil is illuminated. This 
error will change the velocity at a given point, depending on 
the velocity gradient. Measurement points near the leading 
edge where gradients are highest would be considered less 
trustworthy. Assuming the associated error δumap is of the 
order of the velocity gradient multiplied by the position error 
Ce, the resulting uncertainty is approximated as

Ce is set to a value of 0.02 since there are approximately 50 
vectors along the chord of the airfoil and the position of the 
airfoil is accurate to within one vector.

7.4  Variance error during averaging

The mean velocity is computed by taking the average over 
all measurement snapshots. Because of a limited number 
of snapshots, an error arises which can be estimated by 
considering the convergence of the mean quantities. Sciac-
chitano and Wieneke (2016) derive the uncertainty of the 
mean velocity as

where σu contains the true velocity fluctuations and the 
measurement errors and N is the number of samples. This 
expression does not take into account the systematic uncer-
tainties mentioned earlier. These are included when com-
bining all measurement uncertainties using the method out-
lined by Wilson and Smith (2013).

7.5  Combined measurement uncertainties

The combined measurement uncertainties are propagated 
into the mean using Eq. (31) from Sciacchitano and Wieneke 
(2016). The combined uncertainty for the mean streamwise 
velocity u is greater than v as seen in Fig. 14. The largest 
uncertainties, which are below 0.04, are concentrated near 
the cylindrical leading edge where the velocity gradients are 
highest. It should be noted that the relative uncertainty, which 
has not been plotted since points where the mean velocity is 
close to zero overwhelm the contours, is highest in the reverse 
flow region. While the absolute uncertainty is close to zero in 
this region, the relative uncertainty can exceed 50%.

(30)δumap = �∇u�Ce.

(31)Evar =
σu√
N
,
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Although it was not implemented for this particular 
study, the uncertainty bounds on the data could, in the 
future, be incorporated into the fitting criterion. Defining a 
general, real-valued function N that accounts for measure-
ment uncertainty, the fitting criterion can be recast as

In addition, it is assumed that the total measurement error 
(from all known sources) can be bounded by E. The deriva-
tive of N with respect to measurement discrepancies can 
then be defined as

With this definition, the function N is constant for all meas-
urement discrepancies �u if |�u| ≤ E. The modified fitting 
criterion in Eq. (32) will direct the algorithm to produce a 
solution that matches the measurements up to their uncer-
tainties. Eq. (33) is a hard-bound approach to account for 
uncertainty in the data assimilation. Alternatives include 
the implementation of a soft-bound expression for the fit-
ting criterion or a standard Tikhonov regularization approach 
combined with weight functions proportional to uncertainty 
bounds (see Bukshtynov et al. 2011; Flemming 2011). The 
modified fitting criterion impacts the optimization algorithm, 
and consequently the following adjustment needs to be made

Since N only appears as its derivative, it seems more suit-
able to define N by its derivative, as in Eq. (33). The above 
expression would replace the right-hand side of Eq. (8a) 
during the optimization procedure to account for measure-
ment uncertainty.

8  Conclusions

The data assimilation framework based on Foures et al. 
(2014) is extended to recover the mean flow and unknown 

(32)E(u(fs)) = N(�u).

(33)

N
′(x) =







x + E for x < −E

0 for |x| ≤ E

x − E for E < x

and N(0) = 0.

(34)
δE

δu
= N

′(�u).

momentum forcing around an idealized airfoil at a Reynolds 
number of Re=13,500. The experimental data set originates 
from time-resolved PIV data on a uniform Cartesian grid 
with a spatial resolution far lower than that of the numeri-
cal simulation. It is possible, nevertheless, to compute an 
assimilated flow field which is in very good agreement with 
the experiment. The recovered forcing field is also in good 
agreement with the experimental forcing and contains dra-
matically less noise since the experimental forcing is com-
puted by differentiating Reynolds stress fields.

Three modifications to the original framework are nec-
essary for practical implementation of the algorithm. First, 
it is necessary to use a smoothing procedure to ensure that 
the adjoint equations are being forced at all mesh points 
instead of just those which lie closest to the experimental 
grid points. Second, discrepancy velocity measurements 
are computed above the centerline only and are reflected to 
account for the shadow cast by the airfoil. Finally, it is nec-
essary to begin with a base flow computed at a lower Reyn-
olds number than that of the experiment due to the difficulty 
of computing a base flow at Reynolds numbers much higher 
than the critical one. Once the data assimilation process is 
complete for a lower Reynolds number, it can be incremen-
tally increased until it matches the experimental conditions.

As expected, the full-field case where all PIV vectors are 
used to guide the mean flow reconstruction yields the best 
reconstructed fields. It is encouraging, nevertheless, that 
truncating the PIV field of view or decreasing the resolu-
tion does not significantly impact the quality of the results. 
Improved smoothing procedures or weighting measurement 
points where important mean flow features such as the recir-
culation bubble are present in the flow could help reduce the 
number of necessary points further. As alluded to in Sect. 5, 
future work is necessary for a priori guidance on where it 
is important to obtain experimental measurements and how 
well in space they should be resolved. The quality of the 
results could also be improved by implementing bounds on 
how close the numerical values match the experiment via the 
fitting criterion to account for measurement uncertainty.

One of two future considerations is to account for 
the out-of-plane velocities which are not captured in 
the measurements or the processed data. While the 2D 

Fig. 14  Absolute uncertainty of the experimental PIV measurements normalized by the unit inlet velocity. The uncertainty of the mean stream-
wise velocity σu is plotted on the left while the transverse velocity counterpart σv is plotted on the right
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incompressible RANS equations seem justified for this 
flow, an algorithm in the future could account for out-of-
plane velocity gradients by introducing an additional com-
pliance parameter d = −∂zw = ∂xu+ ∂yv and replacing 
the divergence-related term in Eq. (6) by �p†,∇ · ū− d�. 
For 2D flow (d = 0) this expression reverts back to the pre-
vious augmented Lagrangian given by Eq. (6). The second 
would be to compare the predictions of a RANS simulation 
with a turbulence model to the experiment and assimilated 
results. The degree of success is dependent on the model 
chosen so there is not a unique comparison between tradi-
tional RANS and the approach outlined in this study.

Progress on some of the suggested extensions is currently 
underway to improve the algorithm for mean flow recon-
struction. Even with the relatively simple approach outlined 
in this paper both the reconstructed mean velocity field 
and forcing fields agree quite closely and are dramatically 
smoother than their experimental counterparts. The original 
experimental data set, furthermore, contains more informa-
tion than necessary to reproduce the main flow features. 
Future work would be to extend the framework to three-
dimensional flow fields which are typically more limited by 
a laser’s ability to illuminate a control volume. Data assimi-
lation could thus be a worthwhile tool for the experimental-
ist to recover more information about the measured flow.
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