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For moderate-to-high Reynolds numbers, aerofoils are known to produce substantial
levels of acoustic radiation, known as tonal noise, which arises from a complex
interplay between laminar boundary-layer instabilities, trailing-edge acoustic scattering
and upstream receptivity of the boundary layers on both aerofoil surfaces. The
resulting acoustic spectrum is commonly characterised by distinct equally spaced
peaks encompassing the frequency range of convectively amplified instability waves
in the pressure-surface boundary layer. In this work, we assess the receptivity and
sensitivity of the flow by means of global stability theory and adjoint methods which
are discussed in light of the spatial structure of the adjoint global modes, as well
as the wavemaker region. It is found that for the frequency range corresponding to
acoustic tones the direct global modes capture the growth of instability waves on the
suction surface and the near wake together with acoustic radiation into the far field.
Conversely, it is shown that the corresponding adjoint global modes, which capture
the most receptive region in the flow to external perturbations, have compact spatial
support in the pressure surface boundary layer, upstream of the separated flow region.
Furthermore, we find that the relative spatial amplitude of the adjoint modes is higher
for those modes whose real frequencies correspond to the acoustic peaks. Finally,
analysis of the wavemaker region points at the pressure surface near 30 % of the
chord as the preferred zone for the placement of actuators for flow control of tonal
noise.
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1. Introduction

Fluid systems that are governed by multiple physical processes often exhibit
instabilities that are composed of a complex interplay of many or all prevailing
amplification and propagation mechanisms. Tonal noise about an aerofoil falls into
this category, as convective hydrodynamic instabilities in both the pressure- and
suction-boundary layers interact with acoustic waves radiating upstream from the
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trailing edge, which in turn retrigger the boundary layer instabilities, and in doing
so sustain distinct pressure sound levels and select discrete frequencies via subtle
feedback loops. Due to their very nature, the analysis of such instabilities requires
a global (rather than local) point of view, since neither component in isolation –
hydrodynamic or acoustic – can fully capture the tonal noise mechanism. An analysis
of this type has been reported in Fosas de Pando, Schmid & Sipp (2014) where the
full global spectrum has been presented. The results of this study, including the global
spectrum of the mean-flow-based linear operator, has shown that only a rather small
number of global modes has a significant acoustic footprint to explain experimentally
observed sound pressure levels and frequencies. The same study could identify and
classify the shape and structure of flow patterns responsible for noise generation.

Equally important for a full understanding of tonal aerofoil noise is the quest
for the origin of the acoustically active instabilities; in other words, we seek flow
field structures (in type and location) that most efficiently trigger and sustain the
noise-generating global modes. Adjoint methodology (Hill 1995; Luchini & Bottaro
2014) will be used to furnish sensitivity information for these modes, and a pointwise
superposition of local sensitivity measures (contained in the adjoint structure) and
local amplification rates (contained in the direct/modal structure) will point towards
positions in the flow field that act as so-called wavemakers. These positions optimally
exploit both the responsiveness and the growth of global structures, and hence can be
thought of as the source or origin of a global instability. Analyses of this type, also
referred to as structural stability (see, e.g. Giannetti & Luchini 2007; Marquet, Sipp &
Jacquin 2008), have previously been applied to flows with simpler transport processes,
where respective regions of amplification and sensitivity are convectively linked
(Bottaro, Corbett & Luchini 2003; Chomaz 2005). Here, a more complex situation
has to be addressed since flow information can be transported hydrodynamically and
acoustically, and the full feedback loop consists of both components.

The tonal noise phenomenon on aerofoils, the focus of this study, has been
investigated both experimentally and numerically over the past decades, starting
with the experimental work of Paterson et al. (1973) which led to an empirical
expression for the dominant tonal frequency as a function of the Reynolds number.
This was followed by an identification of multiple frequency peaks (see, e.g. Arbey
& Bataille 1983) and a resulting ladder structure as the free-stream velocity is varied.
The multi-peak structure has been confirmed in further experiments as well as in
numerical simulations by, for instance, Desquesnes, Terracol & Sagaut (2007), Jones
& Sandberg (2011), Fosas de Pando et al. (2014) and has been linked to feedback
loops consisting of boundary layer instabilities and acoustic radiation. Simplified
theoretical models – relying on a phase condition between local spatial growth,
acoustic scattering on the trailing edge and a receptivity process at a prescribed
location – have been proposed by Kingan & Pearse (2009), which reproduced
well the observed frequencies for the tonal noise problem. A recent experimental
study (Pröbsting, Serpieri & Scarano 2014) has presented detailed time-resolved
particle-image-velocimetry (PIV) measurements of acoustic sources near the trailing
edge of the aerofoil, reporting that vortical structures, emanating from boundary layer
instabilities, pass the trailing edge at the frequency of the dominant tone. Even though
these vortical structures have been identified as one component of the tonal-noise
generation mechanism, a full closed-loop analysis was beyond the experimental
measurements. In the same study, a crucial involvement of the pressure side has also
been suggested. Already early experimental work (Paterson et al. 1973) has similarly
highlighted a characteristic sensitivity of acoustic tones on the details of aerofoil’s
pressure-surface boundary layer.
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The goal of the current study is then to use numerical simulations and adjoint
techniques to extract, isolate and quantitatively describe the regions and structures of
the flow that are principally responsible for the production of tonal noise. It aims at
providing evidence and support for previous models, empiricisms and measurements.
While the identification of noise-generating structures near the trailing edge has been
the subject of various previous investigations, the current study shall not focus on
this issue, but rather concentrate on the full (global) feedback loop consisting of
multiple hydrodynamic instabilities, noise generation and propagation, and boundary
layer receptivities to acoustic forcing. The article is organised as follows. After a
description of the flow configuration and the numerical set-up (§ 2), which also
contains a brief introduction to the adjoint analysis and the wavemaker argument, the
global spectrum will be dissected (in § 3) into acoustically active modes (responsible
for the acoustic tones) and the rather quiet high-frequency and low-frequency modes.
Each type will be analysed as to its degree of sensitivity and its wavemaker location,
and appropriate means for the passive or active manipulation of these modes will
be suggested. The conclusions in § 4 give a summary and a complete structural
description of tonal noise generation in flow about an aerofoil.

2. Flow configuration and numerical set-up
We take a numerical approach to the receptivity and sensitivity analysis of aerofoil

tonal noise, consisting of a modal decomposition of the linearised governing equation,
together with an accompanying analysis of the adjoint operator. A brief introduction
to the principles of this type of analysis is given below.

2.1. Compressible Navier–Stokes numerical solver
We base our analysis on numerical simulations of the compressible Navier–Stokes
equations on curvilinear structured grids using a pseudo-characteristics formulation
(Sesterhenn 2000). After proper non-dimensionalisation, the governing equations are
discretised in space using high-order compact schemes: a fifth-order compact-upwind
low-dissipative scheme (Adams & Shariff 1996) for the advective terms, and a
third-order centred scheme (Lele 1992) for the diffusive terms. Characteristics-based
boundary conditions (Poinsot & Lele 1992; Lodato, Domingo & Vervisch 2008)
are implemented, and non-reflecting inlet and outlet conditions at the computational
domain are augmented by sponge layers to further attenuate spurious reflections
(Bodony 2006). At this point, the governing equations consist of a system of ordinary
differential equations of the form

dv

dt
=F(v), (2.1)

which has to be integrated in time. In the above expression, F(v) denotes the nonlinear
function representing the spatially discretised governing equations, and v stands for a
composite vector containing the dependent flow variables (pressure p, entropy s and
velocity vector u) at every grid point. For further details on the numerical solver, the
reader is referred to Fosas de Pando et al. (2014).

2.2. Evaluation of the linearised operators
Our study focuses on the dynamics of infinitesimally small perturbations superimposed
on a reference flow field. To this end, we set v(t) = v + v′(t) in (2.1) and, upon
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linearisation, arrive at

dv′(t)
dt
= A(v)v′(t), with A(v)= ∂F

∂v

∣∣∣∣
v

, (2.2)

where A(v) is referred to as the direct operator. In what follows, we will concentrate
on the perturbation dynamics and omit the primes.

While the analysis of the direct operator provides pertinent information on the
flow dynamics and instability mechanisms, even more valuable information can
be obtained by accessing the associated adjoint operator, denoted by A∗. This
operator is defined by the duality relation 〈w, Av〉 = 〈A∗w, v〉, where the inner
product reads 〈w, v〉 = wHMv with M as a Hermitian, positive definite weight
matrix. Throughout this study, we choose the inner product 〈w, v〉 based on
the small-perturbation energy norm derived in Chu (1965) and Hanifi, Schmid &
Henningson (1996) for compressible flows.

We stress that we consider the discrete adjoint, i.e. the adjoint of the discretised
equations; for this reason, the above duality relation is satisfied up to machine
precision. Based on this fundamental relationship and our specific choice of inner
product, the operator A∗ can be easily expressed in terms of the transconjugate
of the direct operator AH given by A∗ = M−1AHM . The numerical implementation
of both linear operators A and A∗ can conveniently be performed in matrix-free
form using the methodology described in Fosas de Pando, Sipp & Schmid (2012);
in this reference, algorithms are described for the evaluation of the matrix-vector
products A(v)v and A∗(v)w, directly from the implementation of the right-hand side
in (2.1). This form of access to the linear operators is preferred over explicit storage
of the direct operator A, since, for typical numbers of degrees of freedom and our
choice of spatial discretisation, storage requirements well exceed typical memory
resources.

2.3. Direct and adjoint global modes and computational details
We next turn our attention to the eigenvalue spectra of the direct operator A and
its adjoint A∗. Starting from a modal decomposition for the perturbations in the
form vk exp (−iωkt), we arrive at the eigenvalue problem given by

−iωkvk = Avk, (2.3)

with vk as the direct global mode and ωk =ωr,k + iωi,k as the corresponding complex
global frequency. Analogously, for each direct global mode, the associated adjoint
global mode wk is given by the eigenvalue problem

iω∗k wk = A∗wk, (2.4)

with ω∗k =ωr,k− iωi,k, i.e. the complex conjugate eigenvalue of the direct problem (2.3).
From the duality relationship, it is readily deduced that direct modes vk and adjoint
modes wl are mutually bi-orthogonal unless k= l. The direct and adjoint global modes
are defined up to a multiplicative constant; hereinafter, all direct modes are normalised
according to ‖vk‖2 = 1, and the associated adjoint global modes are rescaled such
that 〈wk, vk〉 = 1. Numerically, the large-scale eigenvalue problems (2.3) and (2.4)
are solved using the open-source software SLEPc (Hernández, Román & Vidal 2005)
interfaced to our compressible simulation code. More specifically, a Krylov–Schur
technique has been applied to the evolution operators exp(1tA) and exp(1tA∗),
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which represent the time advancement over one time step 1t by the direct or adjoint
operator, respectively. The Krylov subspace is spanned by 2048 vectors, and the time
step has been chosen as 1t= 0.015. Once a number of direct-adjoint eigenpairs has
been computed, the degree of convergence is measured using the relative residuals
given by ‖Avk + iωkvk‖2/‖ωkvk‖2 and ‖A∗wk − iω∗k wk‖2/‖ω∗k wk‖2. In contrast to Fosas
de Pando et al. (2014), we do not employ a harmonic extraction technique, which
yields lower relative residuals.

2.4. Wavemaker analysis
The direct global modes and the corresponding adjoint modes determine the structural
sensitivity of the linearised operator A (Hill 1992; Bottaro et al. 2003; Chomaz 2005;
Giannetti & Luchini 2007; Marquet et al. 2008). The sensitivity of the eigenvalues
to perturbations in the operator A can be assessed by considering the perturbed
eigenvalue problem (A + δA)(vk + δvk) = −i(ωk + δωk)(vk + δvk) and retaining only
first-order terms. By computing the inner product of either side of the equation with
the adjoint mode, we obtain −iδωk = 〈wk, δAvk〉. This latter expression indicates
that the effect of a unitary proportional feedback between flow variables at different
locations on any eigenvalue can be quantified by the scalar product between the
adjoint at the output location and the direct global mode at the input location. We
note that in general the feedback affects many eigenvalues of the matrix A. For the
case of a diagonal operator perturbation δA, we restrict ourselves to a local feedback
between each individual component at its given location. This approach leads to
the concept of a wavemaker: the structural sensitivity of the flow to local (in-place)
feedback quantified by the entrywise (Hadamard) product of the direct global mode
and the corresponding adjoint global mode at a given location.

2.5. Flow configuration and parameters
We reconsider the flow case analysed in Fosas de Pando et al. (2014) but, for the
sake of completeness, provide a brief summary of the flow configuration and selected
parameters. We compute the compressible flow about a NACA 0012 aerofoil section,
at a two-degree angle of attack, with a sharp trailing edge. The chord-based Reynolds
number Rec is taken as 2 × 105 and the Mach number M is 0.4. The specific heat
ratio γ and the Prandtl number Pr have been chosen as 1.4 and 0.71, respectively.
Two-dimensional nonlinear simulations reveal that the flow reaches a quasi-periodic
state characterised by vortices shedding into the wake and by a pressure spectrum
in the far-field that is dominated by distinct tones at equally-spaced frequencies. The
corresponding non-dimensional values for the dominant angular frequencies are ω ≈
37.02, ω≈ 39.47, ω≈ 41.93 and ω≈ 44.38.

Proceeding with our analysis, the compressible Navier–Stokes equations are then
linearised around the time-averaged flow field, depicted in figure 1 by the mean
streamwise velocity component. This mean flow presents spatially-growing boundary
layers on both aerofoil surfaces, with flow separation on both sides: the boundary
layer detaches on the suction surface between xs ≈ 0.405 and xr ≈ 0.686 with a
maximum reverse flow of 7 %, while on the pressure surface the mean flow detaches
between xs ≈ 0.728 and xr ≈ 0.977 with a maximum reverse flow of 10 %.

3. Receptivity and sensitivity analysis
A study of the receptivity and sensitivity of tonal noise generation around an

aerofoil must commence with the analysis of the global spectrum. Specifically, we
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FIGURE 1. (Colour online) Mean flow considered in the present study, visualised by
the streamwise velocity component. The boundary layer on the suction surface detaches
between xs ≈ 0.405 and xr ≈ 0.686, while the pressure-surface boundary layer detaches
between xs≈ 0.728 and xr ≈ 0.977. The reader is referred to Fosas de Pando et al. (2014)
for further details on the mean-flow characteristics.

will classify the modal structures according to their frequencies and the dominance
of their physical components, and particular attention shall be directed towards the
pressure component (or their dilatation field) as it indicates the acoustic footprint of
the associated modal structure. In a second step then, the corresponding adjoint modes
are computed which will furnish valuable information about the region of strongest
sensitivity of the flow to a particular modal structure and the region of strongest
localised (in-place) feedback; this latter analysis will point towards the spatial origin
of a particular instability mechanism and guide possible (active or passive) control
efforts.

3.1. Features of the global spectrum
We present in figure 2 the global spectrum of the linearised compressible Navier–
Stokes operator A, where each direct global mode v is represented in the complex
plane by its associated complex frequency or eigenfrequency ω= ωr + iωi, where ωr
is the angular frequency and ωi is the temporal growth-rate. Following the outline
of the previous section, the associated adjoint global mode is denoted by w and its
eigenfrequency is −ω∗ = −ωr + iωi. Since the linearised Navier–Stokes operator A
is real, the spectrum is symmetric with respect to the vertical axis (ωr = 0). It thus
suffices to focus on the features of the global modes in the right half-plane, for
positive angular frequencies.

The eigenvalues are coloured according to their relative residual value, following
the iterative computation of the spectrum by a Krylov–Schur subspace technique.
Only eigenvalues above an angular frequency of ωr ≈ 10 could be identified with an
acceptable relative residual value; eigenvalues below this frequency will be neglected
in our analysis.

A first inspection of figure 2 confirms that the operator A is stable, since all
eigenvalues are contained in the lower half of the complex plane ωi < 0. No isolated
branches of global modes can be observed in the spectrum. This suggests that the
features of the direct and adjoint global modes vary, at least in principle, in a
continuous manner. The shape of the spectrum suggests a division of the modes into
three subgroups, each representing a different physical perturbation mechanism. The
main group (labelled M in figure 2) contains the least stable eigenvalues and thus
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FIGURE 2. (Colour online) Global spectrum of the tonal noise problem in the complex
frequency plane. The eigenvalues are coloured according to the size of the relative residual
with respect to the operator A. The spectrum is divided into least stable modes (labelled
M), low-frequency modes (labelled L) and high-frequency modes (labelled H).

captures the most dominant features of the flow. Lower-frequency modes (labelled L)
and higher-frequency modes (labelled H) emanate from this main group and describe
distinct perturbation dynamics (see more details below).

3.2. Leading modes: the coupled dynamics of the separation bubbles
In figure 3 we provide a more detailed view of the spectrum for the subdomain M
comprising the leading, least stable, global modes. The leading global modes consist
of multiple local maxima of growth rate for varying frequency, centred around the
maximum growth-rate peak at ωr ≈ 43.91 and ωi ≈−0.29. The frequency difference
between consecutive maxima is nearly constant and equal to 1ωr ≈ 2.44, and the
temporal growth rate for the local maxima is approximately ωi ≈ −0.29. Between
the peaks, the frequency difference of neighbouring eigenvalues is 1ωr ≈ 0.34, and
their minimum growth-rate is approximately ωi≈−0.60. These spectral features (also
reported in Fosas de Pando et al. 2014) have been found to be in good agreement
with numerical simulations and experiments.

The corresponding least stable mode, associated with M1 in figure 3, is shown in
figure 4(a). It is visualised by the pressure and reveals a complex spatial structure that
emphasises a distinct disturbance wavepacket downstream of both separation bubbles,
a vortex street shedding into the wake and a pronounced acoustic wave radiating from
the aerofoil’s trailing edge. The inset, showing the streamwise velocity component,
displays the modal features near the trailing edge, where a wavepacket structure
on the suction side links, via the trailing edge, to a more compact disturbance
stemming from the pressure side. As we will demonstrate below, this link between
the pressure-side and suction-side dynamics is a quintessential characteristic of the
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FIGURE 3. (Colour online) Zoomed view of the global spectrum showing the least stable
(or leading) global modes. The modes M1–M4 are considered in more detail, and the
corresponding eigenvalues are ωM1 ≈43.91−0.29i, ωM2 ≈44.63−0.61i, ωM3 ≈45.59−0.59i
and ωM4 ≈ 46.25− 0.34i. The relative residuals for the displayed modes fall below 10−5.

tonal-noise phenomenon. It is equally important to note that the acoustic wave reaches
both the pressure- and suction-side boundary layer where it retriggers a respective
boundary-layer instability; this feature has been illustrated in Fosas de Pando et al.
(2014) by following an impulse response. The global mode M1 thus represents in
one structure the various components of the double feedback loop: boundary-layer
instability → acoustic wave → reseeding mechanism.

The description of the perturbation dynamics only in terms of global modes is
incomplete if no further thoughts are given to the processes by which an initial
perturbation (or, equivalently, a given forcing) projects onto the various direct global
modes. In more physical terms, such a projection is linked to receptivity mechanisms.
As was argued earlier, the adjoint global modes represent a powerful theoretical
concept to assess receptivity mechanisms of the flow: within the limitation of
linear disturbance analysis, an arbitrary perturbation can be expressed as a linear
combination of global modes u = ∑j ajvj. In order to obtain the coefficients ai,
we take the inner product on both sides with the corresponding adjoint global
mode wi. By invoking the bi-orthogonality condition, and noting that we have
chosen the adjoint global modes such that 〈wi, vi〉 = 1, we arrive at ai = 〈wi, u〉.
From an optimisation point of view, the adjoint global mode corresponds to the
perturbation that produces the largest projection onto the corresponding direct mode,
and its norm ‖wi‖ constitutes a useful measure to evaluate overall receptivity. More
physically, the adjoint mode corresponding to M1 will pinpoint the location, structure
and flow components where the double feedback loop (via the pressure and suction
side) that sustains M1 is most easily excited or otherwise manipulated.

Figure 4(b) displays the adjoint mode that corresponds to the direct mode M1,
visualised by the adjoint streamwise velocity u∗. Within the domain depicted in this
figure, the adjoint mode is spatially localised in the boundary layer on the pressure
side between approximately 20 % and 50 % of the chord (see inset). The amplitude
of the adjoint mode, with the normalisation convention introduced above, confirms a
significant amount of receptivity of the structure displayed in figure 4(a) to localised
perturbations in the pressure-side boundary layer. The receptivity anywhere else,
including the suction-side boundary layer, is orders of magnitude less. These results
suggest that in order to break the feedback loop that maintains the least stable mode
(and its associated acoustic foot print) a minimal effort is required if control is
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FIGURE 4. (Colour online) (a) Spatial structure of the global mode labelled M1, visualised
by the real part of the associated near-field pressure levels, and the real part of the
streamwise velocity levels in the vicinity of the aerofoil surface (inset). The mode has
been normalised by the maximum value of the velocity field in the near wake 1 < x <
1.2. (b) Spatial structure of the associated adjoint global mode (labelled M1 in figure 3),
visualised by the magnitude of the streamwise velocity levels, and the real part in the
insets.

applied at the location where the corresponding adjoint is maximal, i.e. at 30 % of
the chord on the pressure side.

A clearer picture of the least stable M-modes emerges when considering the direct
and adjoint global modes corresponding to M1–M4 in figure 3. In figure 5(a,b), we
depict the streamwise velocity peak along the aerofoil chord on the suction and
pressure surfaces of the aerofoil, respectively, for the four modes M1–M4. All four
modes display a similar behaviour: on the suction side, up to 60 % of the chord, we
observe a significant rise, after which the peak streamwise velocity steadily decreases
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FIGURE 5. (Colour online) Evolution of the streamwise velocity peak along the aerofoil
chord (a) on the suction surface and (b) on the pressure surface of the aerofoil for the
leading modes labelled M1–M4 in figure 3. (c,d) Same for the adjoint streamwise velocity
peak. (e, f ) Same for the direct mode, adjoint mode and wavemaker corresponding to M1.
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towards the trailing edge; on the pressure side, we have a continual rise in the peak
velocity, which becomes even more pronounced as the trailing edge is approached.
The corresponding adjoint modes are displayed in figure 5(c,d), visualised by the
adjoint streamwise velocity magnitude |u∗| in the suction- and pressure-side boundary
layers, respectively. Recalling the normalisation convention of the adjoint modes,
the magnitude of u∗ is a meaningful measure to compare the relative receptivity of
different direct modes. As was the case for the direct modes, the spatial distribution
of the four adjoint global modes for M1–M4 is very similar: the support of the adjoint
mode is highly localised on the pressure-surface boundary layer, between the leading
edge and upstream of the separation point, i.e. 0.2 < x < 0.5, with the maximum
value at approximately 109. Among the four modes considered, M1 and M4 show
nearly the same receptivity, while M2 and M3 display an order of magnitude less.
Some receptivity is also observed in the free-stream (not shown) in the region where
the base flow convects perturbations to the pressure-surface boundary layer, i.e. near
the stagnation line. We note that the levels of receptivity on the suction surface are
nearly 103 times smaller than the corresponding receptivity measures on the pressure
surface.

The difference in spatial support between the direct global modes and their adjoint
equivalents is striking and has implications for the understanding of the underlying
physical phenomena. It is well-known that in convectively unstable shear flows, a
common manifestation of the non-normality of the Navier–Stokes operator is the
spatial separation between the direct and adjoint global modes in the downstream and
upstream direction (Chomaz 2005), respectively. The direct global modes typically
display exponential growth in the convectively unstable region, and if the flow is
stable downstream, their amplitudes reach nearly a constant value in that region.
Conversely, from a global point of view, the adjoint modes show increased spatial
support in the region where a localised perturbation yields a large projection onto the
direct global mode. From a local point of view, the adjoint modes show the highest
value where a localised pointwise perturbation undergoes maximum amplification by
means of the instability mechanisms present in the flow.

In our case, however, the direct global mode is concentrated on the suction surface
and in the near wake, whereas the adjoint global mode is predominantly located on
the pressure surface. Paradoxically, the perturbation that causes the largest growth
of a global mode with spatial support on the suction surface is not convectively
linked to the location on the pressure surface that causes maximum receptivity. As
a consequence, the spatial structure of the adjoint mode suggests a different route
for the excitation of the instabilities in the flow via (i) the growth of instabilities
by convective mechanisms on the pressure surface, (ii) the scattering of an acoustic
wave at the trailing edge, and (iii) the receptivity at the leading edge, where the
suction-surface boundary layer displays convective instabilities. This receptivity
mechanism prevails over the direct growth of instabilities on the suction surface
as the total spatial growth along the pressure surface is larger than the analogous
growth on the suction surface. This observation is supported by previous experiments
(Nash, Lowson & McAlpine 1999) and numerical calculations (Desquesnes et al.
2007): the frequency of the dominant tone in the spectrum coincides with the most
amplified frequency along the pressure surface based on local stability theory.

Besides, not all modes appear to be equally receptive. We depict the magnitude of
the adjoint mode on the suction surface, figure 5(c), and on the pressure surface,
figure 5(d). It can be observed that the receptivity on the pressure surface to
streamwise velocity perturbations is higher for the modes at the peaks in growth
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rate, M1 and M4, than for modes M2 and M3. As discussed before, the frequencies of
the modes M1 and M4 are in excellent agreement with the frequencies that appear in
the acoustic spectrum of the nonlinear numerical simulation.

The occurrence of multiple peaks in the sound spectrum cannot solely be explained
by the convective instability properties of the boundary layer: the range of frequencies
where the boundary layer displays convective growth is larger than the frequency
difference between the peaks. In this respect, it is suggested that global effects
further discretise the components that are most amplified.

3.2.1. Wavemaker analysis and structural sensitivity
In figure 5(e, f ) we display the peak amplitude of the wavemaker of the leading

mode M1 (together with the respective contribution of the direct and adjoint modes)
along the suction- and pressure-side boundary layer, respectively. We observe that the
spatial support of the wavemaker is closer to the adjoint than to the direct mode, since
the compactness of the adjoint is more pronounced than that of the direct mode.

This fact suggests that the individual leading eigenfrequency is more sensitive to
operator perturbations A on the pressure surface of the aerofoil (and, in particular,
upstream of the separation point) than in the rest of the domain. A first indication
of the wavemaker location on the pressure surface has been reported in the previous
numerical study of Desquesnes et al. (2007), where they state: ‘The computation
of the amplification ratio for different chordwise stations and the same x0 [distance
from the leading edge] shows that the most amplified frequency is constant and equal
to 845 Hz from x/c=0.7 to x/c=0.96. The tone noise frequency is therefore selected
before the boundary-layer separation.’ In this respect, the wavemaker describes
the localised region in the flow that imposes its dynamics on the remaining flow.
The results presented here are therefore in good agreement with both numerical
and experimental studies; we can quote Paterson et al. (1973) who report: ‘A
boundary-layer trip wire was found to have no effect on the tone when placed
at various chordwise positions on the suction surface of this airfoil but caused the
tone to disappear when placed forward of 80 % chord on the pressure surface.’

The above observations, describing the sensitivity of the flow to changes in the base
flow, are in excellent agreement with the spatial location of the wavemaker. However,
it is less clear whether a link between the triggering of the pressure-surface boundary
layer and the small operator perturbations (considered above) can be established and
whether this link can be made responsible for the vanishing of tonal-noise effects.

Another implication is related to the choice of base flow. Although the instantaneous
flow and the mean flow are not steady solutions of the Navier–Stokes equations, the
time residual at the pressure-surface boundary layer upstream of the separation bubble
is very small. This indicates that the modes of interest exhibit sufficient robustness,
provided that the pressure-surface boundary layer remains unaltered.

3.3. High-frequency modes: suction-surface shear-layer instabilities
We next consider in figure 6 the range of high frequencies of the global spectrum
(with respect to the leading eigenfrequencies). A rather continuous branch is observed,
and for our analysis four representative global modes are selected and identified, to
assess the parameterisation along the high-frequency branch.

The direct mode H4, depicted in figure 7(a) in terms of the pressure, is singled out
and shown to display features that are concentrated in the detached area of the suction-
side boundary layer, together with its effect on the shear layer past the reattachment
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FIGURE 6. (Colour online) Global spectrum displaying high frequencies ω > 45;
the modes labelled H1–H4 will be analysed further. Their associated eigenfrequencies
are: ωH1 = 60.06− 0.85i, ωH2 = 69.90− 0.92i, ωH3 = 80.17− 1.00i, and ωH4 = 89.97− 1.05i.
The residual associated with the iterative eigenvalue solver is smaller than 5× 10−3.

point. A wavepacket pattern with a distinct spatial wavenumber is observed, with its
maximum near 60 % of the chord and a steadily diminishing amplitude as it sheds
towards the trailing edge and into the aerofoil’s wake. An involvement of instability
features from the pressure-side boundary layer is not observed. We thus conclude
that high-frequency modes, such as H4, describe the Kelvin-Helmholtz-like instabilities
induced by the separated suction-side boundary layer.

Only a very small amount of acoustic radiation is present in this mode, far less
than the acoustic footprint of any of the leading modes: the high-frequency vortex-
shedding dynamics of the suction-side separation bubble is a very minor contributor
to the tonal-noise sound pressure levels.

Again, the corresponding adjoint mode provides information about the receptivity
of this instability and its origin. The adjoint H4-mode is displayed in figure 7(b),
visualised by the adjoint streamwise velocity. The insets clearly show non-zero
adjoint amplitude at both the pressure and suction side of the aerofoil; the suction
side amplitudes are, however, orders of magnitude larger, indicating a preferred
receptivity location near the upper leading edge (10 % chord) of the aerofoil. On the
pressure side, the region of maximum receptivity is at approximately 50 % of the
chord.

A more complete analysis of the high-frequency modes and their structural
connection to the leading modes of the previous section consists of a comparison of
several (direct and adjoint) modes along the high-frequency branch in terms of their
amplitudes and localisation along the pressure and suction side of the aerofoil. To this
end, we investigate four selected high-frequency modes, labelled H1–H4 in figure 6,
and display their streamwise velocity amplitudes in the suction- and pressure-side
boundary layer. On the suction side (see figure 8a), the modal structure remains
very similar as we move from H1 to H4: a strong exponential rise in amplitude
towards a peak near 60 % of the chord, followed by an exponential decay towards
the trailing edge. On the pressure side (see figure 8b), however, we observe markedly
larger differences. While the high-frequency modes H1 and H2 (which are closest in
frequency to the leading modes) are characterised by a steady and pronounced rise in
amplitude towards the trailing edge, this rise is absent in the higher-frequency modes
H3 and H4. In effect, towards the lower edge of the high-frequency branch, the direct
modes still resemble the leading modes in shape, i.e. a dominant localised structure
on the suction side, coupled to an even more localised counterpart near the pressure
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FIGURE 7. (Colour online) Direct and adjoint global mode corresponding to H4 indicated
in figure 6, visualised by the real part of the pressure field (a) and absolute value of
the adjoint streamwise velocity (b). The insets, showing the real part of the streamwise
velocity, give more details of the respective flow fields.

side’s trailing edge. As we progress towards higher frequencies, only the suction-side
structures remains; the pressure-side amplitudes are considerably smaller along the
entire chord. This observation is in accordance with the structure of H4 (figure 7a),
where only features near the suction-side separation bubble and its wake have been
detected.

The analysis of the adjoint modes confirms the above findings. On the suction
side (see figure 8c), we observe an amplitude evolution for H1 reminiscent of the
leading modes (compare to figure 5c). As higher frequencies are approached, however,
the maximum amplitudes decay by two orders of magnitude, while preserving the
approximate dependence on the chordwise coordinate direction. More importantly, this
decay in amplitude for higher-frequency modes is more pronounced on the pressure
side (see figure 8d), where H1 still displays a receptivity of 109, comparable to the
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FIGURE 8. (Colour online) Evolution of the streamwise velocity peak along the aerofoil
chord (a) on the suction surface and (b) on the pressure surface of the aerofoil for the
high-frequency modes labelled H1–H4 in figure 6. (c,d) Same for the adjoint streamwise
velocity peak. (e, f ) Same for the direct mode, adjoint mode and wavemaker corresponding
to H4.
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FIGURE 9. (Colour online) Low-frequency modes in the spectrum. The modes labelled
L1–L4 are depicted in figure 10, and the corresponding eigenvalues are ωL1 = 29.98− 0.63i,
ωL2 = 20.15− 0.70i, ωL3 = 10.12− 0.65i and ωL4 = 0.001− 0.19i.

value for the leading modes, while H4 shows a receptivity measure more than four
orders of magnitude smaller. In other words, higher-frequency modes increasingly
become unreceptive to perturbations on the pressure side of the aerofoil. It should be
stressed again that the choice of normalisation allows direct comparison of the direct
and adjoint modal structures.

The wavemaker analysis of the highest-frequency mode H4 is depicted in
figure 8(e, f ) for the suction and pressure side, respectively. Few distinguishing features
can be found in these amplitude curves, indicating the absence of a strong selection
principle for localisation of the receptivity measure in the case of high-frequency
modes.

3.4. Low-frequency modes: separation-bubble flapping and reattached flow dynamics
The global modes at lower frequencies (compared to the leading modes) capture the
dynamics of the unsteady separation bubbles together with the induced flow dynamics
in the reattachment zone. The low-frequency part of the spectrum, displayed in
figure 9, shows a continuous branch reaching up to the quasi-steady (ωr ≈ 0) regime.
Along this branch, we select four representative modes, labelled L1 through L4, which
we will analyse in more detail to determine the qualitative changes in the modal
structures and their receptivity as we approach the lower-frequency limit.

The shape of mode L3, visualised by pressure, is displayed in figure 10(a). It shows
flow features concentrated on the separated region of the suction-side boundary layer.
Due to the low frequency, large-scale spatial structures are encountered. They describe
the ‘breathing’ unsteadiness of the separation bubble, coupled to the remainder of
the complex flow dynamics which even includes a weak but non-negligible acoustic
component. The inset shows more details, such as the link via the trailing edge to the
separated flow region on the pressure surface: a vortical element near the very end of
the pressure surface – an essential part of the pressure-surface dynamics – is clearly
visible.

The corresponding adjoint mode (figure 10b) shows non-zero features on both the
pressure and the suction side of the aerofoil. Either structure is characterised by
low-wavenumber elements due to the low temporal frequency. While the suction-side
structure is concentrated near 20 % of the chord, the pressure-side structure is localised
near the half-chord. In terms of amplitude, the two adjoint structures are nearly equal
(approximately 104 using our standard normalisation), suggesting that triggering this
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FIGURE 10. (Colour online) Direct and adjoint global modes corresponding to L3
indicated in figure 9, showing streamwise velocity (a) and adjoint streamwise velocity (b).
The insets give more details of the respective flow fields.

particular mode L3 is equally effective by perturbations in either of the two general
locations identified by the adjoint mode.

As before, more insight can be gained by evaluating the direct and adjoint
streamwise velocity along the pressure and suction side for each of the four selected
modes L1,...,4. Figure 11(a,b) presents the results for the direct modes, where panel
(a) shows localisation of the modal structure on the suction surface in the second
half of the aerofoil, nearly independent of the frequency, except for the quasi-steady
case L4. On the pressure surface (panel b), similar tendencies are observed: modes
L1,...,3 exhibit nearly identical behaviour, reflecting the presence of a strong separation
bubble near the trailing edge. Again, the quasi-steady mode L4 shows a markedly
different shape.
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FIGURE 11. (Colour online) Evolution of the streamwise velocity peak along the aerofoil
chord (a) on the suction surface and (b) on the pressure surface of the aerofoil for the
low-frequency modes labelled L1–L4 in figure 9. (c,d) Same for the adjoint streamwise
velocity peak. (e, f ) Same for the direct mode, adjoint mode and wavemaker corresponding
to L3.
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Figure 11(c,d) displays the adjoint modes L1,...,4 evaluated along the suction and
pressure surface of the aerofoil, respectively. The suction surface depicts a dominant
receptivity measure (quantified by the adjoint streamwise velocity) near the upstream
half of the aerofoil, which is rather pronounced for L1, closest in frequency to
the leading modes, and gradually diminishes in amplitude (without too strong a
change in shape) as the frequency is lowered. In this respect, the curve for adjoint
mode L1 should be compared to the one for adjoint mode M1 (from figure 5c):
similarities are clearly present. The same can be said about the analogous results
for the pressure surface (figure 11d). For L1 we nearly recover the receptivity curves
of the leading modes (see 5d), although at lower maximum amplitude. Moreover,
the low-frequency modes L1,2 inherit from the leading modes their preference of the
pressure surface (over the suction surface) regarding the most effective manner of
triggering the associated global direct modes. This preference is more conspicuous for
the leading modes (with more than two orders of magnitude in receptivity measure
maxx |u∗| between the two surfaces); nonetheless, it is also present (with one order
of magnitude between the two surfaces) for the low-frequency modes L1,2. As the
frequency is further lowered, such as for mode L3, the partiality in receptivity of
the pressure surface vanishes, and mode L3 is as easily triggered (and manipulated)
from the pressure as from the suction surface. This result can be inferred from
figure 11(c,d).

Finally, the wavemaker analysis (see figure 11e, f ) for the low-frequency mode
L2 shows that both surfaces of the aerofoil are nearly equally structurally stable. In
addition, similar to the high-frequency modes, there is little that distinguishes specific
regions on either airfoil surface as far as structural stability is concerned.

4. Summary and conclusions

A complete and global analysis of the compressible flow about a NACA-0012
aerofoil at a 2◦ angle of attack, a chord-based Reynolds number of 2 × 105 and a
Mach number of 0.4 has been presented, with emphasis on extracting the dominant
physical mechanisms underlying the generation of tonal noise. This flow configuration
was chosen to match typical mean flow characteristics described in the experimental
work of Paterson et al. (1973), Nash et al. (1999) and the numerical simulations of
Desquesnes et al. (2007). The modal structures span a rather wide frequency range,
but only a few modes (in the leading M-category) contain a significant acoustic
component to account for the observed sound pressure levels as well as the observed
frequencies. An analysis of the adjoint modal structures gives insight into receptivity
and sensitivity measures for the associated direct counterparts, and a pointwise
superposition of direct and adjoint modes identifies the wavemaker region of maximal
structural instability. It should be stressed that the details of noise generation near the
trailing edge – the subject of a large body of literature – are of less importance in
our study, since they only represent one component of a global feedback loop; rather,
it is the details of the complete feedback loop, and the role of its components, that
we are interested in.

In the case of the acoustically active M-modes this type of analysis revealed that
tonal noise is most easily triggered, or manipulated, at the pressure side of the
aerofoil, more specifically near 35 % of the chord. This finding corroborates previous
observations, including the early investigations of Paterson et al. (1973) as well as the
numerical simulations of Desquesnes et al. (2007) and Fosas de Pando et al. (2014).
It identifies the most sensitive part of the hydrodynamic-acoustic feedback loop and

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2016.736
Downloaded from https:/www.cambridge.org/core. ONERA ISP Chatillon, on 29 Apr 2017 at 11:38:37, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.736
https:/www.cambridge.org/core


790 M. Fosas de Pando, P. J. Schmid and D. Sipp

suggests the placement of actuators or surface elements on the aerofoil’s upstream
pressure side for an active or passive strategy to weaken or suppress acoustic tones.

With the direct M-modes appearing predominantly on the suction side of the aerofoil
and the associated adjoint modes showing compact support on the pressure side, it
is worth pointing out that these two structures are not convectively connected. This
is in contrast to previous studies where the upstream sensitivity and the downstream
amplification are solely joined by an advective process via the base or mean flow. In
our present case, a link between the input and output structures for the M-modes is
established by the acoustic waves, which form an integral part of the feedback loop.
Ascribing the generation of tonal noise solely to boundary layer instabilities would
amount to an incomplete description of the overall mechanism.

For completeness, modes with lower and higher frequency (compared to the
M-branch) have also been included in our analysis. Either type shows rather negligible
acoustic radiation, and, according to their adjoint counterparts, they can be most easily
manipulated from the suction side (in case of high-frequency modes) or equally from
the suction and pressure side (for the low-frequency modes). As the frequency
range of the leading M-modes is approached, however, the aerofoil’s pressure side
increasingly dominates the receptivity of either modes.

Lastly, the present analysis of the tonal noise problem using adjoint techniques
showcases a tool which provides valuable insight into instability mechanisms that
entail a complex interplay of multiple physical processes. The same analysis would,
for example, also be appropriate for thermoacoustic or combustion systems where
hydrodynamic, acoustic and reactive instabilities co-exist and interact in a non-trivial
manner. Similar to the present study, a global stability and receptivity analysis
would capture pertinent feedback loops and suggest means of disrupting them most
efficiently.
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