denis.sipp@onera.fr MEC651-Adjoints

Worksheet n°1: mesh, base-flow, global modes, adjoint global modes

0/ Very short reminder on finite elements

Let us solve the following problem:

$$u - (\partial_{xx}u + \partial_{yy}u) = f$$
$$u = d \text{ on } \Gamma_d$$
$$au + b\partial_n u = c \text{ on } \Gamma_m$$

We consider test functions \check{u} satisfying $\check{u}=0$ on Γ_d . After multiplying the governing equation by the test-function, we take an integral over the complete domain:

$$\iint \widecheck{u} \Big(u - (\partial_{xx} u + \partial_{yy} u \Big) dx dy = \iint \widecheck{u} f dx dy$$

Integrating by parts, we obtain:

$$\iint (\check{u}u + \partial_x \check{u}\partial_x u + \partial_y \check{u}\partial_y u) dx dy - \int (\check{u}n_x \partial_x u + \check{u}n_y \partial_y u) ds = \iint \check{u}f dx dy$$

The boundary term is zero on Γ_d because of $\check{u}=0$. Therefore, taking into account the boundary condition on Γ_m , we have:

$$\iint \left(\check{u}u + \partial_x \check{u}\partial_x u + \partial_y \check{u}\partial_y u \right) dx dy - \int_{\Gamma_m} \check{u} \left(c - \frac{a}{b}u \right) ds = \iint \check{u} f dx dy$$

Rearranging:

$$\iint \big(\check{u}u+\partial_x\check{u}\partial_xu+\partial_y\check{u}\partial_yu\big)dxdy+\int_{\Gamma_m}\frac{a}{b}\check{u}uds=\iint\check{u}fdxdy+\int_{\Gamma_m}\check{u}cds$$

Using for example P2 elements for u and \check{u} , we obtain the following discretized form (taking into account that u=d on Γ_d):

$$Au = b$$

1/ Generate mesh

In folder Mesh:

FreeFem++ mesh.edp

2/ Base-flow

The base-flow is solution of the following non-linear equation:

$$\frac{1}{2}\mathcal{N}(w_0, w_0) + \mathcal{L}w_0 = 0, \quad \mathcal{N}(w_1, w_2) = \begin{pmatrix} u_1 \cdot \nabla u_2 + u_2 \cdot \nabla u_1 \\ 0 \end{pmatrix}, \quad \mathcal{L} = \begin{pmatrix} -\nu\Delta() & \nabla() \\ -\nabla \cdot () & 0 \end{pmatrix}$$

with the following boundary conditions:

$$(u_0 = 1, v_0 = 0) \text{ on } \Gamma_{in}$$

$$(u_0 = 0, v_0 = 0) \text{ on } \Gamma_{wall}$$

$$\left(-p_0 n_x + v \left(n_x \partial_x u_0 + n_y \partial_y u_0\right) = 0, -p_0 n_y + v \left(n_x \partial_x v_0 + n_y \partial_y v_0\right) = 0\right) \text{ on } \Gamma_{out}$$

$$\left(\partial_y u_0 = 0, v_0 = 0\right) \text{ on } \Gamma_{lat}$$

The Newton iteration is based on successive solutions of:

$$(\mathcal{N}_w + \mathcal{L})\delta w = -\frac{1}{2}\mathcal{N}(w, w) - \mathcal{L}w \text{ where } \mathcal{N}_w \delta w = \begin{pmatrix} \delta u \cdot \nabla u + u \cdot \nabla \delta u \\ 0 \end{pmatrix}$$

with boundary conditions such that $w + \delta w$ satisfy the above mentioned boundary conditions.

Hence:

$$\delta u \partial_x u + \delta v \partial_y u + u \partial_x \delta u + v \partial_y \delta u + \partial_x \delta p - v (\partial_{xx} \delta u + \partial_{yy} \delta u)$$

$$= -u \partial_x u - v \partial_y u - \partial_x p + v (\partial_{xx} u + \partial_{yy} u)$$

$$\delta u \partial_x v + \delta v \partial_y v + u \partial_x \delta v + v \partial_y \delta v + \partial_y \delta p - v (\partial_{xx} \delta v + \partial_{yy} \delta v)$$

$$= -u \partial_x v - v \partial_y v - \partial_y p + v (\partial_{xx} v + \partial_{yy} v)$$

$$-\partial_x \delta u - \partial_y \delta v = \partial_x u + \partial_y v$$

with:

$$(\delta u = 1 - u, \delta v = -v) \text{ on } \Gamma_{in}$$

$$(\delta u = -u, \delta v = -v) \text{ on } \Gamma_{wall}$$

$$(-\delta p n_x + v (n_x \partial_x \delta u + n_y \partial_y \delta u) = p n_x - v (n_x \partial_x u + n_y \partial_y u), -\delta p n_y + v (n_x \partial_x \delta v + n_y \partial_y \delta v)$$

$$= p n_y - v (n_x \partial_x v + n_y \partial_y v) \text{ on } \Gamma_{out})$$

$$(\partial_y \delta u = -\partial_y u, \delta v = -v) \text{ on } \Gamma_{lat}$$

Show that the weak form of these equations is (with \check{w} as the test-function satisfying $\check{u}=\check{v}=0$ on Γ_{in} and Γ_{wall} and $\check{v}=0$ on Γ_{lat})

$$\iint \left(\check{u} \left(\delta u \partial_x u + \delta v \partial_y u + u \partial_x \delta u + v \partial_y \delta u \right) + \check{v} \left(\delta u \partial_x v + \delta v \partial_y v + u \partial_x \delta v + v \partial_y \delta v \right) - \delta p (\partial_x \check{u} + \partial_y \check{v}) \right. \\
\left. + v \left(\partial_x \check{u} \partial_x \delta u + \partial_y \check{u} \partial_y \delta u + \partial_x \check{v} \partial_x \delta v + \partial_y \check{v} \partial_y \delta v \right) - \check{p} (\partial_x \delta u \right. \\
\left. + \partial_y \delta v \right) \left(\partial_x \check{u} \partial_x d v \right) \\
\left. - \check{v} \left(u \partial_x u + v \partial_y u \right) - \check{v} \left(u \partial_x v + v \partial_y v \right) + p \left(\partial_x \check{u} + \partial_y \check{v} \right) \right. \\
\left. - v \left(\partial_x \check{u} \partial_x u + \partial_y \check{u} \partial_y u + \partial_x \check{v} \partial_x v + \partial_y \check{v} \partial_y v \right) + \check{p} (\partial_x u + \partial_y v) \right) dx dy$$

 $After\ discretization\ (taking\ into\ account\ all\ the\ Dirichlet\ boundary-conditions),\ we\ obtain:$

$$A\delta w = b$$

In folder BF:

3/ Global modes

The global modes are the structures such that:

$$\lambda \mathcal{B} \widehat{w} + (\mathcal{N}_{w_0} + \mathcal{L}) \widehat{w} = 0, \quad \mathcal{B} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

where $(\mathcal{N}_{w_0} + \mathcal{L})$ is the linearized Navier-Stokes operator:

$$(\mathcal{N}_{w_0} + \mathcal{L}) \hat{w} = \begin{pmatrix} \hat{u} \partial_x u_0 + \hat{v} \partial_y u_0 + u_0 \partial_x \hat{u} + v_0 \partial_y \hat{u} + \partial_x \hat{p} - \nu (\partial_{xx} \hat{u} + \partial_{yy} \hat{u}) \\ \hat{u} \partial_x v_0 + \hat{v} \partial_y v_0 + u_0 \partial_x \hat{v} + v_0 \partial_y \hat{v} + \partial_y \hat{p} - \nu (\partial_{xx} \hat{v} + \partial_{yy} \hat{v}) \\ - (\partial_x \hat{u} + \partial_y \hat{v}) \end{pmatrix}$$

 $(\mathcal{N}_{w_0} + \mathcal{L})$ acts on a subspace of functions \widehat{w} satisfying the following boundary conditions $\widehat{(*)}$

$$(\hat{u} = 0, \hat{v} = 0) \text{ on } \Gamma_{in} \text{ and } \Gamma_{wall}$$

$$(-\hat{p}n_x + \nu(n_x\partial_x\hat{u} + n_y\partial_y\hat{u}) = 0, -\hat{p}n_y + \nu(n_x\partial_x\hat{v} + n_y\partial_y\hat{v}) = 0) \text{ on } \Gamma_{out}$$

$$(\partial_y\hat{u} = 0, \hat{v} = 0) \text{ on } \Gamma_{lat}$$

Show that the weak form of these equations is (with \check{w} as the test-function satisfying $\check{u}=\check{v}=0$ on Γ_{in} and Γ_{wall} and $\check{v}=0$ on Γ_{lat}):

$$\begin{split} \iint \left(\widecheck{u} \left(-\widehat{u} \partial_x u_0 - \widehat{v} \partial_y u_0 - u_0 \partial_x \widehat{u} - v_0 \partial_y \widehat{u} \right) + (\partial_x \widecheck{u}) \widehat{p} - \nu \left(\partial_x \widecheck{u} \partial_x \widehat{u} + \partial_y \widecheck{u} \partial_y \widehat{u} \right) + \widecheck{v} \left(-\widehat{u} \partial_x v_0 - \widehat{v} \partial_y v_0 - u_0 \partial_x \widehat{v} - v_0 \partial_y \widehat{v} \right) \\ + \left(\partial_y \widecheck{v} \right) \widehat{p} - \nu \left(\partial_x \widecheck{v} \partial_x \widehat{v} + \partial_y \widecheck{v} \partial_y \widehat{v} \right) + \widecheck{p} \left(\partial_x \widehat{u} + \partial_y \widehat{v} \right) \right) dx dy = \lambda \iint \left(\widecheck{u} \widehat{u} + \widecheck{v} \widehat{v} \right) dx dy \end{split}$$

With a finite element-discretization:

$$A\widehat{w} = \lambda B\widehat{w}$$

In folder Eigs:

FreeFem++ eigen.edp:

4/ Definition of adjoint operator.

The adjoint operator $(\widetilde{\mathcal{N}}_{w_0} + \widetilde{\mathcal{L}})$ is the operator satisfying for all \widehat{w} and \widetilde{w} the following relations:

$$<\widetilde{w},(\mathcal{N}_{w_0}+\mathcal{L})\widehat{w}>=<(\widetilde{\mathcal{N}}_{w_0}+\widetilde{\mathcal{L}})\widetilde{w},\widehat{w}>$$

Here \widehat{w} is in the subspace satisfying the boundary conditions $\widehat{(*)}$.

Determine the adjoint operator $(\widetilde{\mathcal{N}}_{w_0} + \widetilde{\mathcal{L}})$ and the boundary conditions $(\widetilde{*})$ that \widetilde{w} satisfies.

Solution:

$$\begin{split} \big(\widetilde{\mathcal{N}}_{w_0} + \widetilde{\mathcal{L}}\big)\widetilde{w} &= \begin{pmatrix} -u_0\partial_x\widetilde{u} - v_0\partial_y\widetilde{u} + \widetilde{u}\partial_xu_0 + \widetilde{v}\partial_xv_0 + \partial_x\widetilde{p} - v\big(\partial_{xx}\widetilde{u} + \partial_{yy}\widetilde{u}\big) \\ -u_0\partial_x\widetilde{v} - v_0\partial_y\widetilde{v} + \widetilde{u}\partial_yu_0 + \widetilde{v}\partial_yv_0 + \partial_y\widetilde{p} - v\big(\partial_{xx}\widetilde{v} + \partial_{yy}\widetilde{v}\big) \\ -\big(\partial_x\widetilde{u} + \partial_y\widetilde{v}\big) \end{pmatrix} \\ (\widetilde{u} = 0, \widetilde{v} = 0) \text{ on } \Gamma_{in} \text{ and } \Gamma_{wall} \\ \big(-\widetilde{p}n_x + v\partial_x\widetilde{u}n_x + v\partial_y\widetilde{u}n_y = -\widetilde{u}u_0n_x - \widetilde{u}v_0n_y, -\widetilde{p}n_y + v\partial_x\widetilde{v}n_x + v\partial_y\widetilde{v}n_y \\ &= -\widetilde{v}u_0n_x - \widetilde{v}v_0n_y \big) \text{ on } \Gamma_{out} \\ \big(\partial_y\widetilde{u} = 0, \widetilde{v} = 0\big) \text{ on } \Gamma_{lat} \end{split}$$

5/ The adjoint global modes are solution of the following eigen-problem:

$$\lambda \mathcal{B}\widetilde{w} + \left(\widetilde{\mathcal{N}_{w_0}} + \widetilde{\mathcal{L}}\right)\widetilde{w} = 0$$

with the above mentioned boundary conditions.

Show that the weak form of these equations is:

$$\begin{split} \iint \left(\widecheck{u} \big(u_0 \partial_x \widetilde{u} + v_0 \partial_y \widetilde{u} - \widecheck{u} \partial_x u_0 - \widecheck{v} \partial_x v_0 \big) + (\partial_x \widecheck{u}) \widetilde{p} - v \big(\partial_x \widecheck{u} \partial_x \widetilde{u} + \partial_y \widecheck{u} \partial_y \widetilde{u} \big) + \widecheck{v} \big(u_0 \partial_x \widetilde{v} + v_0 \partial_y \widetilde{v} - \widecheck{u} \partial_y u_0 - \widecheck{v} \partial_y v_0 \big) \\ + \big(\partial_y \widecheck{v} \big) \widetilde{p} - v \big(\partial_x \widecheck{v} \partial_x \widetilde{v} + \partial_y \widecheck{v} \partial_y \widetilde{v} \big) + \widecheck{p} \big(\partial_x \widetilde{u} + \partial_y \widetilde{v} \big) \bigg) dx dy \\ - \int_{\Gamma_{out}} \widecheck{u} \big(\widecheck{u} u_0 n_x + \widecheck{u} v_0 n_y \big) ds - \int_{\Gamma_{out}} \widecheck{v} \big(\widecheck{v} u_0 n_x + \widecheck{v} v_0 n_y \big) ds = \lambda \iint \big(\widecheck{u} \widetilde{u} + \widecheck{v} \widecheck{v} \big) dx dy \end{split}$$

After discretization, we obtain:

$$\widetilde{A}\widetilde{w} = \lambda B\widetilde{w}$$

Complete program eigenadj.edp (look for ??? in this file) to compute the adjoint global modes.

6/ Compute the angle between the direct and adjoint global modes to evaluate the non-normality of the mode. Check bi-orthogonality of direct and adjoint global modes.

7/ Modify program eigen.edp to solve the eigen-problem:

$$A^*\widetilde{w}' = \mu B\widetilde{w}'$$

where A^* designates the transconjugate of matrix A. Compare \widetilde{w}' and \widetilde{w} .

Show that: $(\mu^* - \lambda)\widetilde{w}'^*B\widehat{w} = 0$. Interpret the results.

8/ DNS simulations. We consider the Navier-Stokes equations in perturbative form: $w(t) = w_0 + w'(t)$:

$$\begin{cases} \partial_t u' + u' \cdot \nabla u_0 + u_0 \cdot \nabla u' + u' \cdot \nabla u' & = -\nabla p' + \nu \Delta u' \\ \nabla \cdot u' & = 0 \end{cases}$$

A first –order semi-implicit discretization in time yields:

$$\begin{cases} \frac{u^{n+1}-u^n}{\Delta t} + u^{n+1} \cdot \nabla u_0 + u_0 \cdot \nabla u^{n+1} + u^n \cdot \nabla u^n &= -\nabla p^{n+1} + v\Delta u^{n+1} \\ \nabla \cdot u^{n+1} &= 0 \end{cases}$$

This may be re-arranged into:

$$\begin{cases} \frac{u^{n+1}}{\Delta t} + u^{n+1} \cdot \nabla u_0 + u_0 \cdot \nabla u^{n+1} + \nabla p^{n+1} - \nu \Delta u^{n+1} &= \frac{u^n}{\Delta t} - u^n \cdot \nabla u^n \\ \nabla \cdot u^{n+1} &= 0 \end{cases}$$

Show that the weak form with \check{w} as the test-function is:

$$\begin{split} \iint \left(\widecheck{u} \left(\frac{u^{n+1}}{\Delta t} + u^{n+1} \, \partial_x u_0 + v^{n+1} \partial_y u_0 + u_0 \partial_x u^{n+1} + v_0 \partial_y u^{n+1} \right) - (\partial_x \widecheck{u}) p^{n+1} + v \left(\partial_x \widecheck{u} \partial_x u^{n+1} + \partial_y \widecheck{u} \partial_y u^{n+1} \right) \\ + \widecheck{v} \left(\frac{v^{n+1}}{\Delta t} + u^{n+1} \partial_x v_0 + v^{n+1} \partial_y v_0 + u_0 \partial_x v^{n+1} + v_0 \partial_y v^{n+1} \right) - \left(\partial_y \widecheck{v} \right) p^{n+1} \\ + v \left(\partial_x \widecheck{v} \partial_x v^{n+1} + \partial_y \widecheck{v} \partial_y v^{n+1} \right) + \widecheck{p} \left(\partial_x u^{n+1} + \partial_y v^{n+1} \right) \right) dx dy \\ = \iint \left(\underbrace{\widecheck{u} u^n}_{\Delta t} - \widecheck{u} (u^n \cdot \nabla u^n) + \underbrace{\widecheck{v} v^n}_{\Delta t} - \widecheck{v} (v^n \cdot \nabla v^n) \right) dx dy \end{split}$$

After spatial discretization, we obtain:

$$Aw^{n+1} = b$$

In folder DNS,

FreeFem++ init.edp // Initial condition = real part of unit energy eigenvector in ../Eigs
FreeFem++ dns.edp // Launch linearized DNS simulation
Octave plotlinlog('out_0.txt',1,2,1) // plot perturbation energy as a function of time
Octave plotlinlin('out_0.txt',1,3,1) // plot u-velocity in wake as a function of time
FreeFem++ plotUvvp.edp // Plot flowfield after 100 time steps

9/ Perform a linearized DNS simulation with a unit energy adjoint flowfield as initial condition. Compare perturbation energy as a function of time with results obtained in 8/ Relate this result to the angle computed in 6/

10/ Perform a non-linear simulation to observe saturation.

11/ Vary the Reynolds number, find critical Reynolds number with stability analyses and observe saturation amplitudes with non-linear simulations as a function of Reynolds number in the range 40 < Re < 100.