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Worksheet n°1 : mesh, base-flow, global modes, adjoint global modes 

0/ Very short reminder on finite elements 

Let us solve the following problem: 

                

          

                

We consider test functions  ̌ satisfying  ̌         . After multiplying the governing equation by the test-function, we take 

an integral over the complete domain: 

  ̌(            )       ̌      

Integrating by parts, we obtain: 

 ( ̌     ̌       ̌   )      ( ̌       ̌     )     ̌      

The boundary term is zero on    because of  ̌   . Therefore, taking into account the boundary condition on   , we have:  

 ( ̌     ̌       ̌   )     ∫  ̌ (  
 

 
 )  

  

   ̌      

Rearranging: 

 ( ̌     ̌       ̌   )     ∫
 

 
 ̌   

  

   ̌      ∫  ̌   
  

 

Using for example P2 elements for u and  ̌, we obtain the following discretized form (taking into account that          ): 

     

1/ Generate mesh 

In folder Mesh: 
FreeFem++ mesh.edp 

 
2/ Base-flow 

The base-flow is solution of the following non-linear equation: 

 

 
                            (

             

 
)        (

        
      

* 

with the following boundary conditions: 

                    

                      

(       (             )           (             )   )          

(           )          
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The Newton iteration is based on successive solutions of: 

          
 

 
                     (

           
 

)   

with boundary conditions such that      satisfy the above mentioned boundary conditions. 

Hence: 

                              (           )

                 (         ) 

                              (           )

                 (         ) 

                   

with: 

                      

                        

        (             )       (           )        (             )

      (           )          

                           

Show that the weak form of these equations is (with  ̌ as the test-function satisfying  ̌   ̌                     and  ̌    

on     ) 

 ( ̌(                       )   ̌(                       )        ̌     ̌  

  (   ̌        ̌        ̌        ̌    )   ̌     

       )       (  ̌(         )   ̌(         )   (   ̌     ̌)

  (   ̌       ̌       ̌       ̌   )   ̌         )     

After discretization (taking into account all the Dirichlet boundary-conditions), we obtain:  

      

In folder BF: 

 vi param.txt   // target Reynolds number, here Re=100 

 FreeFem++ init.edp  // generate initial guess solution, here zero flowfield 

FreeFem++ newton.edp // compute base-flow 

FreeFem++ plotUvvp.edp  // show base-flow at Re=100 

3/ Global modes 

The global modes are the structures such that  
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   ̂  (   
  ) ̂          (

  
  

) 

where (   
  ) is the linearized Navier-Stokes operator: 

(   
  ) ̂  (

 ̂      ̂          ̂       ̂     ̂   (    ̂      ̂)

 ̂      ̂          ̂       ̂     ̂   (    ̂      ̂)

 (   ̂     ̂)

, 

(   
  ) acts on a subspace of functions  ̂ satisfying the following boundary conditions    ̂ 

  ̂     ̂                       

(  ̂    (     ̂       ̂)      ̂    (     ̂       ̂)   )          

(   ̂     ̂   )          

Show that the weak form of these equations is (with  ̌ as the test-function satisfying  ̌   ̌                     and  ̌    
on     ): 

 ( ̌(  ̂      ̂          ̂       ̂)      ̌  ̂   (   ̌   ̂     ̌   ̂)   ̌(  ̂      ̂          ̂       ̂)

 (   ̌) ̂   (   ̌   ̂     ̌   ̂)   ̌(   ̂     ̂))          ̌ ̂   ̌ ̂      

With a finite element-discretization: 

  ̂     ̂ 

In folder Eigs: 

 FreeFem++ eigen.edp: 

4/ Definition of adjoint operator. 

The adjoint operator ( ̃  
  ̃) is the operator satisfying for all  ̂ and  ̃ the following relations: 

   ̃ (   
  ) ̂    ( ̃  

  ̃) ̃  ̂   

Here  ̂ is in the subspace satisfying the boundary conditions    ̂. 

Determine the adjoint operator  ( ̃  
  ̃)and the boundary conditions    ̃ that  ̃ satisfies. 

Solution: 

( ̃  
  ̃) ̃  (

      ̃       ̃   ̃      ̃        ̃   (    ̃      ̃)

      ̃       ̃   ̃      ̃        ̃   (    ̃      ̃)

 (   ̃     ̃)

, 

  ̃     ̃                       

(  ̃       ̃       ̃     ̃      ̃       ̃       ̃       ̃  

   ̃      ̃    )          

(   ̃     ̃   )          
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5/ The adjoint global modes are solution of the following eigen-problem   

   ̃  (   
̃   ̃ ) ̃    

with the above mentioned boundary conditions. 
 
Show that the weak form of these equations is: 

 ( ̌(     ̃       ̃   ̃      ̃    )      ̌  ̃   (   ̌   ̃     ̌   ̃)   ̌(     ̃       ̃   ̃      ̃    )

 (   ̌) ̃   (   ̌   ̃     ̌   ̃)   ̌(   ̃     ̃))     

 ∫  ̌( ̃      ̃    )   ∫  ̌( ̃      ̃    )  
        

     ̌ ̃   ̌ ̃      

After discretization, we obtain:  

 ̃ ̃     ̃ 

Complete program eigenadj.edp (look for ??? in this file)  to compute the adjoint global modes. 

6/ Compute the angle between the direct and adjoint global modes to evaluate the non-normality of 

the mode. Check bi-orthogonality of direct and adjoint global modes. 

7/ Modify program eigen.edp to solve the eigen-problem: 

   ̃     ̃  

where    designates the transconjugate of matrix A. Compare  ̃  and  ̃. 

Show that:        ̃    ̂   . Interpret the results.  

8/ DNS simulations. We consider the Navier-Stokes equations in perturbative form:         

  (t): 

{
   

                                

      
  

A first –order semi-implicit discretization in time yields: 

{
       

  
                                       

        

 

This may be re-arranged into: 

{
    

  
                                

  

  
       

        

 

Show that the weak form with  ̌ as the test-function is: 
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 ( ̌ (
    

  
                         

         
   )      ̌  

     (   ̌   
       ̌   

   )

  ̌ (
    

  
                        

         
   )  (   ̌) 

   

  (   ̌   
       ̌   

   )   ̌(   
       

   )+    

  (
 ̌  

  
  ̌         

 ̌  

  
  ̌        )     

After spatial discretization, we obtain: 
        

 
In folder DNS, 
 FreeFem++ init.edp  // Initial condition = real part of unit energy eigenvector in ../Eigs 
 FreeFem++ dns.edp  // Launch linearized DNS simulation 

Octave plotlinlog(‘out_0.txt’,1,2,1) // plot perturbation energy as a function of time 
 Octave plotlinlin(‘out_0.txt’,1,3,1) // plot u-velocity in wake as a function of time 
 FreeFem++ plotUvvp.edp // Plot flowfield after 100 time steps 
 
9/ Perform a linearized DNS simulation with a unit energy adjoint flowfield  as initial condition. 
Compare perturbation energy as a function of time with results obtained in 8/ Relate this result to 
the angle computed in 6/ 
 
10/ Perform a non-linear simulation to observe saturation. 
 
11/ Vary the Reynolds number, find critical Reynolds number with stability analyses  and observe saturation amplitudes 
with non-linear simulations as a function of Reynolds number in the range            


