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Worksheet n°3: Multiple time-scale analysis and amplitude equations 

1/ Direct numerical simulation of cylinder flow at Re=100  

We solve the unsteady Navier-Stokes equations in perturbative form (𝑤 ≔ 𝑤0 + 𝑤) around a 

cylinder flow at 𝑅𝑒 = 𝜈−1 = 100. The initial condition is the real part of a small amplitude unstable 

global mode. 

ℬ𝜕𝑡𝑤 + 𝒩𝑤0
𝑤 + ℒ𝑤 = −

1

2
𝒩(𝑤, 𝑤) 

𝑤(0) = 𝛼Re(𝑤̂) 

with : 

𝑤 = (

𝑢
𝑣
𝑝

) ,  ℬ = (
1 0
0 0

) ,  𝒩(𝑤1, 𝑤2) = (
𝑢1 ⋅ 𝛻𝑢2 + 𝑢2 ⋅ 𝛻𝑢1

0
) ,  𝒩𝑤0

𝑤 =  𝒩(𝑤0, 𝑤), 

ℒ = (
−𝜈Δ() ∇()
−∇ ⋅ () 0

) 

The base-flow and the global mode are defined by: 

1

2
𝒩(𝑤0, 𝑤0) + ℒ𝑤0 = 0 

𝜆ℬ𝑤̂ + (𝒩𝑤0
+ ℒ)𝑤̂ = 0 

In DNS/Mesh: 

 FreeFem++ mesh.edp 

In DNS/BF: 

 FreeFem++ init.edp 

 FreeFem++ newton.edp 

In DNS/Eigs: 

 FreeFem++ eigen.edp 

In DNS/DNS: 

 FreeFem++ init.edp // generate initial condition from small amplitude global mode 

 FreeFem++ dns.edp // launch DNS simulation 

 Octave plotlinlog(‘out_0.txt’,1,2,1) // represent energy as a function of time in fig 1 

 Octave plotlinlin(‘out_0.txt’,1,4,2) // represent  v velocity as a function of time 

2/ Van der Pol Oscillator: multiple time-scale analysis 
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The Van der Pol Oscillator corresponds to the following governing equations: 

𝑤′′ + 𝜔0
2𝑤 = 2𝛿𝑤′ − 𝑤2𝑤′ 

𝑤(0) = 𝑤𝐼 , 𝑤′(0) = 0  

where the (⋅)′ is the time-derivative, 𝑤𝐼 is the initial condition, 𝜔0 the frequency and 𝛿 the instability 

strength. Here, we choose: 𝜔0 = 10, 𝛿 = 0.3 and 𝑤𝐼 = 0.01. 

2a/ Numerical time-integration 

We integrate in time the above equations. For this, 

In VanDerPol: 

 Octave pkg load all // load external packages for time integration, Fourier analysis, etc. 

Octave vdp  // integrate in time unforced Van der Pol equations  

2b/ One time-scale approach 

We try to approximate the solution by considering a small instability strength: 𝛿 = 𝛿𝜖, with 𝜖 ≪ 1 

and 𝛿 = 𝑂(1).  We look for an approximation of the solution with an expansion of the form: 

𝑤 = 𝜖
1
2𝑦 and 𝑦 = 𝑦0 + 𝜖𝑦1 + ⋯. 

We first try with only one time-scale: 𝑦(𝑡) = 𝑦0(𝑡) + 𝜖𝑦1(𝑡) + ⋯ 

The second-order solution is given by: 

𝑤 = (𝐴̃𝑒𝑖𝜔0𝑡 + c. c. )

+ (
−3𝐴̃3 + 12𝛿𝐴̃

8𝜔0
𝑖𝑒𝑖𝜔0𝑡 +

i𝐴̃3

8𝜔0
𝑒3𝑖𝜔0𝑡 − (2𝛿𝐴̃ − 𝐴̃3) (

1 + 2𝑖𝜔0𝑡

4𝜔0
) 𝑖𝑒𝑖𝜔0𝑡 + c. c. ) 

𝐴̃ =
𝑤𝐼

2
 

To represent this solution, in VanDerPol: 

 Octave clf // clear all figures 

 Octave vdp // integrate in time unforced Van der Pol equations 

 Octave vdp_tlr // show first and second order approximations with one time-scale 

2c/ Two time-scales approach 

The two time-scale first-order solution is given by: 

𝑤(𝑡) = (𝐴̃𝑒𝑖𝜔0𝑡 + c. c. ) 

with: 
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𝑑𝐴̃

𝑑𝑡
= 𝛿𝐴̃ −

1

2
𝐴̃3 

𝐴̃(0) =
𝑤𝐼

2
 

To represent this solution, in VanDerPol: 

 Octave clf // clear all figures 

 Octave vdp // integrate in time unforced Van Der Pol equations 

 Octave vdp_tlr // show first and second order approximations with one time-scale 

 Octave vdp_mts // show first and second order approximations with two time-scales 

3/ Van der Pol Oscillator with harmonic forcing 

We consider the forced Van der Pol oscillator: 

𝑤′′ + 𝜔0
2𝑤 = 2𝛿𝑤′ − 𝑤2𝑤′ + 𝐸̃ cos 𝜔𝑓𝑡, 

where 𝜔𝑓 and 𝐸̃ are respectively the forcing frequency and the forcing amplitude. Here, we choose: 

𝜔𝑓 = 25 and 𝐸̃ = 600. The first-order two time-scale solution is given by: 

𝑤(𝑡) = 2𝐴̃ cos(𝜔0𝑡 + 𝜙) +
𝐸̃

𝜔0
2 − 𝜔𝑓

2 cos 𝜔𝑓𝑡 

with: 

𝑑𝐴̃

𝑑𝑡
= [𝛿 −

1

4
(

𝐸̃

𝜔0
2 − 𝜔𝑓

2)

2

] Ã −
1

2
Ã3 

To represent this solution, in VanDerPol: 

 Octave clf // clear all figures 

 Octave vdpf // integrate in time unforced Van Der Pol equations 

Vary the forcing amplitude 𝐸̃ from 0 to 600 and observe in each case the resulting frequency 

spectrum. 

4/ Forced Navier-Stokes equations 

We consider the Navier-Stokes equation in perturbative form (𝑤: = 𝑤0 + 𝑤) with a forcing term 

acting on the momentum equations: 

ℬ𝜕𝑡𝑤 + 𝒩𝑤0
𝑤 + ℒ𝑤 = 𝛿ℳ(𝑤0 + 𝑤) −

1

2
𝒩(𝑤, 𝑤) + (𝐸̃𝑒𝑖𝜔𝑓𝑡𝑓 + c. c). 

Here: 
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𝑤 = (

𝑢
𝑣
𝑝

) ,  ℒ = (
−𝜈𝑐Δ() ∇()
−∇ ⋅ () 0

) ,  ℳ = (
−Δ 0
0 0

). 

The viscosity 𝜈 has been replaced by 𝜈 = 𝜈𝑐 − 𝛿, where 𝜈𝑐 is the critical viscosity which achieves 

marginal stability of the linear dynamics 𝑅𝑒𝑐 = 𝜈𝑐
−1 = 46.6. 

The base-flow is given by: 

1

2
𝒩(𝑤0, 𝑤0 ) + ℒ𝑤0 = 0, 

while 𝐸̃ and 𝜔𝑓 correspond respectively to the forcing amplitude and forcing frequency. The forcing 

structure 𝑓 (acting solely on the momentum equations, so that ℬ𝑓 = 𝑓) is also given. 

In the following, we consider a slightly supercritical regime (the Reynolds number is slightly above 

the critical Reynolds number): 

𝛿 = 𝜖𝛿,  𝜖 ≪ 1, 𝛿 = 𝑂(1), 

and a small- amplitude forcing, which scales as: 

𝐸̃ = 𝜖
1
2𝐸, 𝐸 = 𝑂(1). 

We look for an approximation of the solution under the form: 

𝑤 = 𝜖
1
2 (𝑦0(𝑡, 𝜏 = 𝜖𝑡) + 𝜖

1
2𝑦1

2

(𝑡, 𝜏 = 𝜖𝑡) + 𝜖1𝑦1(𝑡, 𝜏 = 𝜖𝑡) + ⋯ ) 

The second-order solution is given by: 

𝑤 = (𝐴̃𝑒𝑖𝜔𝑐𝑡𝑦𝐴 + c. c) + (𝐸̃𝑒𝑖𝜔𝑓𝑡𝑦𝐸 + c. c) + 𝛿𝑤𝛿 + (𝐴̃2𝑒2𝑖𝜔𝑐𝑡𝑦𝐴𝐴 + c. c. ) + |𝐴̃|
2

𝑦𝐴𝐴̅ + |𝐸̃|
2

𝑦𝐸𝐸̅

+ (𝐴̃𝐸̃𝑒𝑖(𝜔𝑐+𝜔𝑓)𝑡𝑦𝐴𝐸 + c. c. ) + (𝐴̃𝐸̅̃𝑒𝑖(𝜔𝑐−𝜔𝑓)𝑡𝑦𝐴𝐸̅ + c. c. ) + ⋯ 

With : 

𝑖𝜔𝑐ℬ𝑦𝐴 + 𝒩𝑤0
𝑦𝐴 + ℒ𝑦𝐴 = 0 

𝑖𝜔𝑓ℬ𝑦𝐸 + 𝒩𝑤0
𝑦𝐸 + ℒ𝑦𝐸 = 𝑓 

𝒩𝑤0
𝑦𝛿 + ℒ𝑦𝛿 = ℳ𝑦0 

2𝑖𝜔𝑐ℬ𝑦𝐴𝐴 + 𝒩𝑤0
𝑦𝐴𝐴 + ℒy𝐴𝐴 = −

1

2
𝒩(𝑦𝐴, 𝑦𝐴) 

𝒩𝑤0
𝑦𝐴𝐴̅ + ℒ𝑦𝐴𝐴̅ = −𝒩(𝑦𝐴, 𝑦̅𝐴) 

𝒩𝑤0
𝑦𝐸𝐸̅ + ℒ𝑦𝐸𝐸̅ = −𝒩(𝑦𝐸 , 𝑦̅𝐸) 

2𝑖(𝜔𝑐 + 𝜔𝑓)ℬ𝑦𝐴𝐸 + 𝒩𝑤0
𝑦𝐴𝐸 + ℒy𝐴𝐸 = −𝒩(𝑦𝐴, 𝑦𝐸) 

2𝑖(𝜔𝑐 − 𝜔𝑓)ℬ𝑦𝐴𝐸̅ + 𝒩𝑤0
𝑦𝐴𝐸̅ + ℒ𝑦𝐴𝐸̅ = −𝒩(𝑦𝐴, 𝑦̅𝐸  ) 
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And: 

𝑑𝐴̃

𝑑𝑡
= 𝜆𝛿𝐴̃ − 𝜇𝐴̃|𝐴̃|

2
− 𝜋𝐴̃|𝐸̃|

2
 

where: 

𝜆 =< 𝑦̃𝐴,  ℳ𝑦𝐴 > −< 𝑦̃𝐴, 𝒩(𝑦𝐴, 𝑦𝛿) 

𝜇 =< 𝑦̃𝐴, 𝒩(𝑦𝐴, 𝑦𝐴𝐴̅) + 𝒩(𝑦̅𝐴, 𝑦𝐴𝐴) > 

𝜋 =< 𝑦̃𝐴, 𝒩(𝑦𝐴, 𝑦𝐸𝐸̅) + 𝒩(𝑦𝐸̅ , 𝑦𝐴𝐸  ) + 𝒩(𝑦𝐸 ,  𝑦𝐴𝐸̅) > 

−𝑖𝜔𝑐ℬ𝑦̃𝐴 + 𝒩̃𝑤0
𝑦̃𝐴 + ℒ̃𝑦̃𝐴 = 0 

< 𝑦̃𝐴, ℬ𝑦𝐴 >  = 1 

4a/ In AmplEq/Mesh: 

 FreeFem++ mesh.edp  // generate mesh 

In AmplEq/BF: 

 FreeFem++ init.edp  // generate initial guess for Newton iterations 

 FreeFem++ newton.edp // Newton iteration 

In AmplEq/Eigs: 

 FreeFem++ eigen.edp  // compute global mode 

FreeFem++ eigenadj.edp // compute adjoint global mode 

FreeFem++ norm.edp  // generate scaled adjoint global mode 

In AmplEq/WNL: 

FreeFem++ udelta.edp  // generate modification of base-flow due to increase in Reynolds 

number 

FreeFem++ uAA.edp // generate second harmonic due to interaction of global mode with 

himself 

FreeFem++ uAAb.edp // generate zero-harmonic due to interaction of global mode with 

adjoint of himself 

 FreeFem++ lambda.edp  // compute 𝜆 coefficient of Stuart-Landau equation  

 FreeFem++ mu.edp  // compute 𝜇 coefficient of Suart-Landau equation 

FreeFem++ forcing.edp // define external forcing (spatial structure anf frequency) 

FreeFem++ uE.edp   // coumpute response due to external forcing 
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FreeFem++ uAE.edp  // compute AE-harmonic due to interaction of response to 

external forcing with global mode 

4b/ Complete program  uAEb.edp to compute the 𝐴𝐸̅ harmonic due to the interaction of the global 

mode with the adjoint of the response due to external forcing. 

4c/ Complete program uEEb.edp to compute the zero-harmonic due to the interaction of the 

external forcing response with the conjugate of himself. 

4d/ Complete program  pi.edp to compute the  𝜋 coefficient. 

 

5/ Forced Direct numerical simulation 

We integrate in time the forced Navier-Stokes equations at 𝑅𝑒 = 𝜈−1 = 100: 

ℬ𝜕𝑡𝑤 + 𝒩𝑤0
𝑤 + ℒ𝑤 = −

1

2
𝒩(𝑤, 𝑤) + (𝐸̃𝑒𝑖𝜔𝑓𝑡𝑓 + c. c) 

where: 

𝑤 = (

𝑢
𝑣
𝑝

) ,  ℒ = (
−𝜈 Δ() ∇()
−∇ ⋅ () 0

) 

In DNS/DNS: 

 FreeFem++ dnsf.edp // launch forced DNS simulation 

 Octave plotlinlog(‘out_4000.txt’,1,2,1) // represent energy as a function of time in fig 1 

 Octave plotlinlin(‘out_4000.txt’,1,4,2) // represent  v velocity as a function of time in fig 2 

 Octave spectrum // compare spectrum with and without control 


