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Worksheet n°3: Multiple time-scale analysis and amplitude equations
1/ Direct numerical simulation of cylinder flow at Re=100

We solve the unsteady Navier-Stokes equations in perturbative form (w :=wy,+ w) around a

_1:

cylinder flow at Re = v 100. The initial condition is the real part of a small amplitude unstable

global mode.
1
Bow + Ny, w + Lw = —EN(W, w)

w(0) = aRe(W)

with :

u
_ _ 1 0 _ u1 ° Vuz +u2 * Vu1 _
W_<v>,B—(O 0),N(wl,w2)—( 0 ),NWOW— N (wg, w),

(35 )

The base-flow and the global mode are defined by:
1
EN(W(),W()) + LWO =0

ABW + (M, + L)W =0
In DNS/Mesh:
FreeFem++ mesh.edp
In DNS/BF:
FreeFem++ init.edp
FreeFem++ newton.edp
In DNS/Eigs:
FreeFem++ eigen.edp
In DNS/DNS:
FreeFem++ init.edp  // generate initial condition from small amplitude global mode
FreeFem++ dns.edp  // launch DNS simulation
Octave plotlinlog(‘out_0.txt’,1,2,1) // represent energy as a function of time in fig 1
Octave plotlinlin(‘out_0.txt’,1,4,2) // represent v velocity as a function of time

2/ Van der Pol Oscillator: multiple time-scale analysis
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The Van der Pol Oscillator corresponds to the following governing equations:

w" + wiw = 26w’ — w?w’
w(0) =w,w'(0) =0

where the ()’ is the time-derivative, w; is the initial condition, w, the frequency and § the instability
strength. Here, we choose: wo, = 10, § = 0.3 and w; = 0.01.

2a/ Numerical time-integration

We integrate in time the above equations. For this,

In VanDerPol:
Octave pkg load all // load external packages for time integration, Fourier analysis, etc.
Octave vdp // integrate in time unforced Van der Pol equations

2b/ One time-scale approach

We try to approximate the solution by considering a small instability strength: § = 8¢, with € < 1
and § = 0(1). We look for an approximation of the solution with an expansion of the form:

w = e%yandy =y + ey, + -
We first try with only one time-scale: y(t) = y,(t) + €y, (t) + -+
The second-order solution is given by:
w = (Ae'®ot +c.c.)

—34% + 12864 . A3 . wo o (1 2iwgty
+ <—ie“"0't + —e3iwot — (264 — A3) (—0 )ie”"ot +c. c.)
8w 8w 4wy

. W
4=5
To represent this solution, in VanDerPol:

Octave clf // clear all figures

Octave vdp // integrate in time unforced Van der Pol equations

Octave vdp_tlr // show first and second order approximations with one time-scale
2¢c/ Two time-scales approach
The two time-scale first-order solution is given by:

w(t) = (Ade'“ot +c.c.)

with:
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W si-Lla
dat 2
Wi
A(0) ==L
="

To represent this solution, in VanDerPol:

Octave clf // clear all figures

Octave vdp // integrate in time unforced Van Der Pol equations

Octave vdp_tlr // show first and second order approximations with one time-scale

Octave vdp_mts // show first and second order approximations with two time-scales
3/ Van der Pol Oscillator with harmonic forcing
We consider the forced Van der Pol oscillator:

w' + wdw = 26w’ —w?w' + E cos wyt,

where wf and E are respectively the forcing frequency and the forcing amplitude. Here, we choose:
wr = 25 and E = 600. The first-order two time-scale solution is given by:

~ E
w(t) = 2Acos(wot + ¢) +—5——coswyt
0)0 - (l)f

with:

di
dt

5 1 E
4\w§ — wf

To represent this solution, in VanDerPol:
Octave clf // clear all figures
Octave vdpf  //integrate in time unforced Van Der Pol equations

Vary the forcing amplitude E from 0 to 600 and observe in each case the resulting frequency
spectrum.

4/ Forced Navier-Stokes equations

We consider the Navier-Stokes equation in perturbative form (w:= wy + w) with a forcing term
acting on the momentum equations:

~ 1 o
BOw + Ny w + Lw = M (wo + w) — EN(W, w) + (Ee'stf + c.c).

Here:
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u
v=(2) 2= (S0 ) ae= (D)

The viscosity v has been replaced by v = v, — &, where v, is the critical viscosity which achieves
marginal stability of the linear dynamics Re, = v.1 = 46.6.

The base-flow is given by:

1
EN(WO,WO )+ Lwy =0,

while E and wy correspond respectively to the forcing amplitude and forcing frequency. The forcing
structure f (acting solely on the momentum equations, so that Bf = f) is also given.

In the following, we consider a slightly supercritical regime (the Reynolds number is slightly above
the critical Reynolds number):

60=¢€6,eK1,56§=0(0),

and a small- amplitude forcing, which scales as:

~ 1
E=¢€2E,E = 0(1).

We look for an approximation of the solution under the form:
1 1
w = €2 (yo(t,‘c = et) + e2y1(t, T = et) + ely, (t, T = et) + )
2
The second-order solution is given by:

w = (Ae'®cty, +c.c) + (Ee*rtyy + c.c) + Swgs + (A%e?@cty,, +cc.)+ |A|2yA,; + |E‘|2yEE
+ (AEei(“’C“"f)tyAE + c. c.) + (Agei(’*’C'“’f)tyAg + c. c.) + -

With :
lwcByy + Ny ya + Ly, =0
iwsByg + Ny, Vg + Lyg = f
NwoYs + Lys = My
2w BYga + Ny Yaa + LYaa = —%N(YA')’A)
NwoYai + LYag = =N Ya, Va)
NwoYeg + Lygg = =N (g, V&)
2i(we + wp)Byag + My Yag + LY ag = =N Va, Vi)
2i(we — wf)BYag + Ny Vag + LYag = —N(Va Vi )

4



denis.sipp@onera.fr MEC651-Amplitude equations
And:
—— = 164 — ud|A|* — nA|E|*
where:

A=< Fy, My, > =< 34, N(Va,¥5)

U=<3a, Na,yaz) + N Vs Yaa) >

T =<34,NWaYeg) +* N5 Yag ) + N Ve, Yag) >
—iw:BYy + Ny Ja + LJa = 0
< yA:B}’A > =1

4a/ In AmplEg/Mesh:

FreeFem++ mesh.edp // generate mesh

In AmplEq/BF:
FreeFem++ init.edp // generate initial guess for Newton iterations
FreeFem++ newton.edp // Newton iteration

In AmplEqg/Eigs:

FreeFem++ eigen.edp // compute global mode
FreeFem++ eigenadj.edp // compute adjoint global mode
FreeFem++ norm.edp // generate scaled adjoint global mode

In AmplEq/WNL:

FreeFem++ udelta.edp // generate modification of base-flow due to increase in Reynolds
number

FreeFem++ uAA.edp // generate second harmonic due to interaction of global mode with
himself

FreeFem++ uAAb.edp // generate zero-harmonic due to interaction of global mode with
adjoint of himself

FreeFem++ lambda.edp // compute A coefficient of Stuart-Landau equation
FreeFem++ mu.edp // compute u coefficient of Suart-Landau equation
FreeFem++ forcing.edp // define external forcing (spatial structure anf frequency)
FreeFem++ uE.edp // coumpute response due to external forcing
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FreeFem++ uAE.edp // compute AE-harmonic due to interaction of response to
external forcing with global mode

4b/ Complete program uAEb.edp to compute the AE harmonic due to the interaction of the global
mode with the adjoint of the response due to external forcing.

4c/ Complete program uEEb.edp to compute the zero-harmonic due to the interaction of the
external forcing response with the conjugate of himself.

4d/ Complete program pi.edp to compute the 7 coefficient.

5/ Forced Direct numerical simulation

We integrate in time the forced Navier-Stokes equations at Re = v~! = 100:
1 -
Bow + N, w + Lw = —EN(W, w) + (Ee'rtf + c.c)

where:

In DNS/DNS:
FreeFem++ dnsf.edp  // launch forced DNS simulation
Octave plotlinlog(‘out_4000.txt’,1,2,1) // represent energy as a function of time in fig 1
Octave plotlinlin(‘out_4000.txt’,1,4,2) // represent v velocity as a function of time in fig 2

Octave spectrum // compare spectrum with and without control



