Exam

We consider the Ginzburg-Landau equation:

$$\partial_t w = Lw + cw|w|^2 + f(x,t)$$

where

$$L = -U\partial_x + \mu(x) + \gamma \partial_{xx},$$

$$\mu(x) = i\omega_0 + \mu_0 - \mu_2 \frac{x^2}{2}.$$

Here $U, \gamma, \omega_0, \mu_0, \mu_2$ and c are positive real constants. The state w(x,t) is a complex variable on $-\infty < x < +\infty$ such that $|w| \to 0$ as $x \to \pm \infty$. The function f(x,t) is a given external (complex valued) forcing. In the following, $< w_1, w_2 >$ is the scalar-product:

$$\langle w_1, w_2 \rangle = \int\limits_{-\infty}^{+\infty} \overline{w_1(x)} w_2(x) dx$$

where $\overline{(\cdot)}$ represents the conjugate.

1/What do the different terms in the Ginzburg Landau equation represent?

2/ Linear dynamics.

In this section, we study the linear dynamics without external forcing. We therefore consider the equation:

$$\partial_t w = Lw$$
.

a/ Show that

$$\phi(x) = n_{\phi} e^{\frac{U}{2\gamma}x - \frac{\chi^2 x^2}{2}}$$
 with $\chi = \left(\frac{\mu_2}{2\gamma}\right)^{\frac{1}{4}}$ and $n_{\phi} = \frac{\sqrt{\chi}}{\frac{1}{\pi^{\frac{1}{4}}e^{\frac{1}{8}V^2}}}$

is an eigenvector of *L*. What is the eigenvalue associated to this eigenvector?

Note that the constant n_ϕ has been selected so that ϕ is unit norm:

$$<\phi,\phi>=1.$$

b/ Show that the flow is unstable if the constant μ_0 is chosen such that:

$$\mu_0 > \mu_c$$
,

where
$$\mu_c = \frac{U^2}{4\gamma} + \sqrt{\frac{\gamma \mu_2}{2}}$$
.

c/ Determine the operator \tilde{L} adjoint to L. We will consider for this the scalar product $\langle \cdot, \cdot \rangle$.

d/ Show that:

$$\psi(x) = n_{\psi}e^{-\frac{U}{2\gamma}x - \frac{\chi^2 x^2}{2}}$$
 with $n_{\psi} = \frac{\sqrt{\chi}}{\frac{1}{\pi^{\frac{1}{4}}e^{\frac{1}{8\gamma^2}y^2}}}$,

is an eigenvector of \tilde{L} . What is the eigenvalue associated to this eigenvector?

Note that the normalization constant n_{ψ} has been chosen so that:

$$<\psi,\psi>=1.$$

Can you qualitatively represent $\phi(x)$ and $\psi(x)$ on a same graph?

e/ We note that:

$$<\psi,\phi>=e^{-rac{1}{4\sqrt{2}}rac{U^{2}}{4\sqrt{2}}rac{3}{2}rac{1}{L^{2}}}$$

What does $<\psi,\phi>$ represent? What is the effect of the advection velocity U and viscosity γ on this coefficient? What is the value of $<\psi,\overline{\phi}>$?

3/ Amplitude equations.

We choose μ_0 in the vicinity of μ_c such that:

$$\mu_0 = \mu_c + \delta'$$

where $\delta' = \epsilon \delta$ with $0 < \epsilon \ll 1$, $\delta = O(1)$.

The operator L may therefore be written as $L = L_c + \epsilon \delta$, where L_c is the operator L obtained for $\delta' = 0$, that is $\mu_0 = \mu_c$.

a/ Show that $(-i\omega_0 I + L_c)\phi = 0$.

b/ We choose a forcing such that:

$$f(x,t) = E'\delta(x - x_f)e^{i\omega_f t}$$

where $E' = \epsilon^{\frac{3}{2}}E$, E = O(1) is the forcing amplitude (positive real) and $\delta(x - x_f)$ is the dirac function at $x = x_f$ (we remind the reader that $\int_{-\infty}^{+\infty} \delta(x - x_f) w(x) dx = w(x_f)$ for any

function w). The forcing frequency ω_f is chosen in the vicinity of the natural frequency ω_0 of the flow:

$$\omega_f = \omega_0 + \Omega'$$

where $\Omega' = \epsilon \Omega$, $\Omega = O(1)$.

We additionally consider that the operator L may be perturbed by an arbitrary perturbation operator $\Delta L' = \epsilon \Delta L$ (which will be defined later). Hence, the full perturbed operator L reads:

$$L = L_c + \epsilon \delta + \epsilon \Delta L.$$

The solution is sought under the form:

$$w=\epsilon^{\frac{1}{2}}w_{\frac{1}{2}}(t,\tau)+\epsilon^{\frac{3}{2}}w_{\frac{3}{2}}(t,\tau)+\cdots$$

where $\tau = \epsilon t$ is a slow time-scale.

What is the equation governing $w_{\frac{1}{2}}$? What is the equation governing $w_{\frac{3}{2}}$?

c/ Show that $w_{\frac{1}{2}}(t,\tau) = A(\tau)e^{i\omega_0t}\phi(x)$ is an acceptable solution for $w_{\frac{1}{2}}$.

Show that the solution $w_{\frac{3}{2}}(t,\tau)$ is bounded only if:

$$\frac{dA}{d\tau} = \delta A + A \frac{\langle \psi, \Delta L \phi \rangle}{\langle \psi, \phi \rangle} + c \frac{\langle \psi, \phi | \phi |^2 \rangle}{\langle \psi, \phi \rangle} A |A|^2 + \frac{\overline{\psi(x_f)}}{\langle \psi, \phi \rangle} E e^{i\Omega \tau}.$$

d/ Considering $B'(t) = \epsilon^{\frac{1}{2}}A(\tau)e^{i\omega_0t}$, show that the leading order solution of the problem is given by:

$$w(x,t) = B'(t)\phi(x)$$

where:

$$\frac{dB'}{dt} = (i\omega_0 + \delta')B' + \frac{\langle \psi, \Delta L'\phi \rangle}{\langle \psi, \phi \rangle}B' + c \frac{\langle \psi, \phi | \phi |^2 \rangle}{\langle \psi, \phi \rangle}B' |B'|^2 + \frac{\overline{\psi(x_f)}}{\langle \psi, \phi \rangle}E' e^{i\omega_f t}$$

4/ Frequency response.

In the case ($\delta' < 0$, $\Delta L' = 0$ and c = 0), show that the transfer function of the flow is:

$$\frac{\hat{B}'}{E'}(\omega_f) = \frac{\overline{\psi(x_f)}}{\langle \psi, \phi \rangle} \frac{1}{i(\omega_f - \omega_0) - \delta'}$$

where:

$$B'=e^{i\omega_f t}\hat{B}'.$$

Represent qualitatively the magnitude of the transfer function $\left|\frac{\hat{B}'}{E'}\right|$ as a function of the forcing frequency ω_f .

Where should the forcing be located (x_f) to obtain the strongest response in magnitude? How does the magnitude of the response evolve as the advection velocity of the system U is increased?

5/ Open-loop control that modifies the stability characteristics of the flow $\mu(x)$

In the case (E' = 0, c = 0), we consider an open-loop control that achieves a modification of L such that:

$$\Delta L' = \delta \mu(x)$$

Show that the eigenvalue of the system (with control) verifies:

$$\lambda = i\omega_0 + \delta' + \frac{1}{\langle \psi, \phi \rangle} \int_{-\infty}^{+\infty} \overline{\psi(x)} \, \delta\mu(x) \phi(x) dx$$

Note that $i\omega_0 + \delta'$ is the eigenvalue of the system without control, the last term therefore being the eigenvalue shift due to the open-loop control.

Where should the open-loop control modify $\mu(x)$ so as to achieve the strongest eigenvalueshift?

6/ Closed-loop control

In the case (E' = 0, c = 0), we consider the following perturbation operator:

$$\Delta L'w = K\delta(x - x_a)w(x_s)$$

Can you comment this expression? In particular, what do x_a , x_s and K represent?

Show that the eigenvalue of the system (with closed-loop control) verifies:

$$\lambda = i\omega_0 + \delta' + \frac{K\overline{\psi}(x_a)\phi(x_s)}{\langle \psi, \phi \rangle}$$

How should the actuator and sensor locations be chosen to maximize the eigenvalue-shift? How should *K* be chosen to render the closed-loop system marginally stable?

MEC651-Exam-2015

7/Open-loop control with harmonic forcing

a/ In the case $\Delta L' = 0$, show that the leading-order solution of the flowfield may be given by:

$$w = C'(t)e^{i\omega_f t}\phi(x)$$

where:

$$\frac{dC'}{dt} = (-i\Omega' + \delta')C' + c \frac{\langle \psi, \phi | \phi |^2 \rangle}{\langle \psi, \phi \rangle} C' |C'|^2 + \frac{\overline{\psi(x_f)}}{\langle \psi, \phi \rangle} E'$$

Hint: note that C' verifies $C' = \epsilon^{\frac{1}{2}} A(\tau) e^{-i\Omega \tau}$

b/ Numerical simulations of the equation governing C' show that there exists a threshold amplitude E'_c , such that:

If
$$E' > E'_c$$
 then $C' \to C'_0$ as $t \to \infty$,

where C'_0 is a complex constant.

What is the frequency of the flowfield in this case? Can you comment this result?

How should the forcing location x_f be chosen to minimize the threshold amplitude E_c ?