Exam

We consider the Kuramoto-Sivashinski equation:

$$\partial_t w + w \partial_x w = -\eta \partial_{xx} w - \mu \partial_{xxxx} w + f(x, t) \tag{*}$$

where w(x,t) and f(x,t) are (periodic in space) real-valued functions such that w(x+L,t)=w(x,t) and f(x+L,t)=f(x,t). In the following, $k=2\pi/L$ designates the wavenumber based on a given spatial period L. η and μ are positive real constants. In the following, $< w_1, w_2 >$ is the scalar-product:

$$< w_1, w_2 > = \frac{1}{L} \int_{0}^{L} \overline{w_1(x)} w_2(x) dx$$

where $\overline{(\cdot)}$ represents the conjugate of a complex number.

Note that question n°9 can be done independently of the questions 1 to 8.

1/ What do the different terms in the Kuramoto-Sivashinski equation represent? (1 point)

2/ In the case f(x,t) = 0, show that w = U with U as a real constant is a fixed point of the governing equations. (0.5 point)

3/ In this section, we assume f(x,t) = 0 and study the linear dynamics around the fixed point w = U. We therefore consider w(x,t) = U + w'(x,t) with the amplitude of w'(x,t) being small.

- a) Write the equation governing w'(x,t) under the form $\partial_t w' = \mathcal{L}w'$. What are the eigenvalues λ_n and eigenvectors \widehat{w}_n of \mathcal{L} ? Note that both quantities (eigenvalues and eigenvectors) are complex. In particular, what is the eigenvalue related to the eigenvector $\widehat{w}(x) = e^{ikx}$? (2 points)
- b) Show that the flow is marginally stable for $\eta = \eta_c = \mu k^2$. What is the frequency ω_c of this mode? Represent schematically the eigenvalue spectrum for η slightly above η_c . (2 points)

4/ Adjoint global mode

- a) Using the scalar product <-,->, determine the operator $\tilde{\mathcal{L}}$ adjoint to $\mathcal{L}.$ (2 points)
- b) Show that $\widetilde{w}(x) = e^{ikx}$ is an eigenvector of $\widetilde{\mathcal{L}}$. What is the eigenvalue associated to this eigenvector? Note that the normalization constant has been chosen so that: $\langle \widetilde{w}, \widehat{w} \rangle = 1$. (1 point)
- c) Is the system non-normal? (0.5 point)

5/ Amplitude equations in the case of near-resonant forcing (9 points)

We choose η in the vicinity of η_c such that:

$$\eta = \eta_c + \delta'$$

where $\delta' = \epsilon \delta$ with $0 < \epsilon \ll 1$, $\delta = O(1)$. We choose a forcing such that:

$$f(x,t) = (E'f(x)e^{i\omega_f t} + \text{c.c.})$$

where $E'=\epsilon^{\frac{3}{2}}E$, E=O(1) is the forcing amplitude (positive real). The forcing frequency ω_f is chosen in the vicinity of the natural frequency ω_c of the flow:

$$\omega_f = \omega_c + \Omega'$$

where $\Omega' = \epsilon \Omega$, $\Omega = O(1)$.

The solution of the Kuramoto-Sivashinski equation is sought under the form:

$$w = U + \epsilon^{\frac{1}{2}} w_{\frac{1}{2}}(t,\tau) + \epsilon w_{1}(t,\tau) + \epsilon^{\frac{3}{2}} w_{\frac{3}{2}}(t,\tau) + \cdots$$

where $\tau = \epsilon t$ is a slow time-scale.

- a)
- What are the equations governing $w_{\frac{1}{2}}, w_1$ and $w_{\frac{3}{2}}$? (3 points) Show that $w_{\frac{1}{2}}(t,\tau) = \left(A(\tau)e^{i\omega_c t}\widehat{w}(x) + \text{c.c.}\right)$ is an acceptable solution for $w_{\frac{1}{2}}$. (1 b) point)
- c) Determine an exact solution for w_1 . (3 points)
- Show that the solution $w_{\frac{3}{2}}(t,\tau)$ is bounded only if: d)

$$\frac{dA}{d\tau} = \alpha \delta A - \beta A |A|^2 + \gamma E e^{i\Omega \tau}$$

with α, β and γ three complex constants. What are the analytical expressions of these constants?

Comment on the signs of α and β . Comment on γ . (3 points)

6) Considering $B'(t) = e^{\frac{1}{2}}A(\tau)e^{i\omega_c t}$, we assume (do not show this result) that the leading order solution of the problem may be rewritten as:

$$w(x,t) = U + (B'(t)\widehat{w}(x) + \text{c.c.})$$

where:

$$\frac{dB'}{dt} = (i\omega_c + \alpha\delta')B' - \beta B'|B'|^2 + \gamma E'e^{i\omega_f t}.$$

In the case E'=0, represent schematically the bifurcation diagram (|B'| as a function of δ'). In particular, provide all amplitudes |B'| of various states as a function of δ' . What is the frequency of the flowfield in each state? (2 points)

7/Open-loop control with harmonic forcing

a) Show that the leading-order solution of the flowfield may be given by:

$$w = U + (C'(t)e^{i\omega_f t}\widehat{w}(x) + \text{c.c.})$$

where:

$$\frac{dC'}{dt} = (-i\Omega' + \alpha\delta')C' - \beta C'|C'|^2 + \gamma E'$$

Hint: consider the amplitude equation governing B'(t) and note that C' verifies $C' = B'e^{-i\omega_{\rm f}t}$. (1 point)

b) Numerical simulations of the equation governing C' show that there exists a threshold amplitude E'_c , such that:

If
$$E' > E'_c$$
 then $C' \to C'_0$ as $t \to \infty$,

where C'_0 is a complex constant.

What is the frequency of the flowfield in this case? Can you comment this result?

How should the forcing be chosen to minimize the threshold amplitude E_c ? (2 points)

8/ Amplitude equations in the case of non-resonant forcing. We now choose a forcing such that:

$$f(x,t) = (E'f(x)e^{i\omega_f t} + \text{c.c.})$$

where the forcing frequency ω_{f} is chosen not close to the natural frequency ω_{c} of the flow.

Briefly (do not make any computations, look at the results in your course!) explain the changes to be made with respect to question 5: in particular, what scaling should be chosen for the forcing amplitude E' and what amplitude equation do you expect? (2 points)

9/Optimal control

In the following, we consider the following space-time scalar-product (T is a given time):

$$\{w_1, w_2\} = \int_0^T \langle w_1, w_2 \rangle dt$$

We consider the objective functional:

$$\mathcal{J}'(f) = \mathcal{J}(w(f), f)$$

with
$$\mathcal{J}(w, f) = (1 - \alpha)\{w(x, t), w(x, t)\} + \alpha \langle w(x, t = T), w(x, t = T) \rangle + l^2\{f(x, t), f(x, t)\}.$$

Here $0 \le \alpha \le 1$ and l^2 are two tunable parameters and w(f) represents the solution of equation (*), while $f(0 \le x \le L, 0 \le t \le T)$ is the spatio-temporal control function that appears in this equation. The initial condition of (*) is fixed as $w(x, t = 0) = w_I$.

- a) What do the two parameters α and l^2 represent? (1 point)
- b) We consider the Lagrangian:

$$\mathcal{L}(w,\widetilde{w},f) = \mathcal{J}(w,f) - \{\widetilde{w}, \partial_t w + w \partial_x w + \eta \partial_{xx} w + \mu \partial_{xxx} w - f\}$$

- i) Determine $\frac{\partial \mathcal{L}}{\partial \widetilde{w}}$ such that: $\lim_{\epsilon \to 0} \frac{\left(\mathcal{L}(w, \widetilde{w} + \epsilon \delta \widetilde{w}, f) \mathcal{L}(w, \widetilde{w}, f)\right)}{\epsilon} = \left\{\frac{\partial \mathcal{L}}{\partial \widetilde{w}}, \delta \widetilde{w}\right\}$ (1 point)
- ii) Determine $\frac{\partial \mathcal{L}}{\partial w}$ such that: $\lim_{\epsilon \to 0} \frac{\left(\mathcal{L}(w + \epsilon \delta w, \widetilde{w}, f) \mathcal{L}(w, \widetilde{w}, f)\right)}{\epsilon} = \left\{\frac{\partial \mathcal{L}}{\partial w}, \delta w\right\}$ (4 points)
- iii) Determine $\frac{\partial \mathcal{L}}{\partial f}$ such that: $\lim_{\epsilon \to 0} \frac{\left(\mathcal{L}(w, \widetilde{w}, f + \epsilon \delta f) \mathcal{L}(w, \widetilde{w}, f)\right)}{\epsilon} = \left\{\frac{\partial \mathcal{L}}{\partial f}, \delta f\right\}$ (2 points)
- c) Determine the equations to be solved to obtain dJ'/df. (1 point)
- d) Explain how you could use $d\mathcal{J}'/df$ in a closed-loop framework if you assume that you know w at all positions and all times (you are God!). (1 point)