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State feedback 
Physical system 

Reduced-order model of dynamics: 
𝑤 = 𝐴𝑤 + 𝐵𝑢 

Input: 𝑢 
Output: 𝑤 

𝑤 = 𝐴𝑤 + 𝐵𝑢 
u 𝑤 
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State feedback 
Controller 

The controller is a system that takes the state 𝑤 and provides a control law 𝑢: 
𝑢 = 𝐾𝑤 + 𝑣 

Inputs: the state 𝑤 and the actuator noise 𝑣  
Output: the control law 𝑢 

𝐾 

𝑤 𝑢 

𝑣 
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State feedback 
Closed-loop system 

𝑤 = 𝐴𝑤 + 𝐵𝑢 

K 
v 𝑤 

u 
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State feedback 
Stability 

Governing equation with state feedback: 

 
𝑤 = 𝐴𝑤 + 𝐵𝑢

𝑢 = 𝐾𝑤 + 𝑣 (Noisy actuator)
 

Input: actuator noise 𝑣. 
 
Hence: 

𝑤 = 𝐴𝑤 + 𝐵𝐾𝑤 + 𝐵𝑣 = 𝐴 + 𝐵𝐾 𝑤 + 𝐵𝑣 
 
K  is chosen so that 𝑨 + 𝑩𝑲 is stable.  

𝑤 𝑡 =  𝑒 𝐴+𝐵𝐾 𝑡−𝜏 𝐵𝑣 𝜏 𝑑𝜏
𝑡

0
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State feedback 
Performance 

If performance is assessed by the measurement 𝑦 = 𝐶𝑤, then: 

𝑦 𝑡 =  𝐶𝑒 𝐴+𝐵𝐾 𝑡−𝜏 𝐵𝑣 𝜏 𝑑𝜏.
𝑡

0

 

In presence of white-noise 𝑣, the standard deviation of 𝑦, 𝐸 𝑦2 , is proportional to 

the 2-norm of the closed-loop impulse function: Zcl t
2
=  𝑍𝑐𝑙 𝑡 2𝑑𝑡 

∞

0
, 

where Zcl t = 𝐶𝑒 𝐴+𝐵𝐾 𝑡𝐵. 
 
Standard deviation of an output signal. Let us consider a stable system: 

𝑤 = 𝐴′𝑤 + 𝐵′𝑣 
𝑦 = 𝐶′𝑤 

If 𝑣 is white-noise characterized by a PSD (Power Spectral Density) 𝑆, then 
the standard deviation of the output 𝑦 is equal to: 

𝐸 𝑦2 = 𝑍′ t 2 𝑆 

where 𝑍′ 𝑡 = 𝐶′𝑒𝐴
′𝑡𝐵′ is the impulse response of the system. 
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State feedback 
Performance 

Link between PSD, sampling time and variance of white noise : If Δ𝑡 is the sampling 
time, then the variance of the white-noise is: 

𝐸 𝑣2 =
𝑆

Δ𝑡
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1

2Δ𝑡
 

- 
1

2Δ𝑡
 

𝑓 

PSD 

Variance of signal is green area (Parseval) 
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Observer feedback 
Physical system 

In fluid systems, state feedback is not realistic since 𝑤 is unknown. Can we 
apply 𝐾 on an estimate 𝑤𝑒 of 𝑤 (using the measurement 𝑦) ?  
 
Reduced-order model of input-output dynamics 

 
𝑤 = 𝐴𝑤 + 𝐵𝑢
𝑦 = 𝐶𝑤 + 𝑔

 

Inputs: (𝑢, 𝑔) 
Output: 𝑦 

𝑤 = 𝐴𝑤 + 𝐵𝑢 
u y 

𝑔 
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𝐶 

𝑦 𝑡 =  𝐶𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏
𝑡

0

+ 𝑔(𝑡) 



Observer feedback 
Compensator 

The compensator is a system that takes the measurement 𝑦 and provides a control law 
𝑢. The controller  may be represented as a linear input-output system: 

 
𝑤 𝑒 = 𝐴𝑒𝑤𝑒 − 𝐿𝑦
𝑢 = 𝐾𝑤𝑒 + 𝑣

 

Inputs: the measurement 𝑦 and the actuator noise 𝑣  
Output: the control law 𝑢 

𝑤 𝑒 = 𝐴𝑒𝑤𝑒 − 𝐿𝑦 
𝑦 

𝑢 𝑡 = − 𝐾𝑒𝐴𝑒 𝑡−𝜏 𝐿𝑦 𝜏 𝑑𝜏
𝑡

0

+ 𝑣(𝑡) 

𝑢 

𝑣 
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Observer feedback 
Dynamic observer 

How to choose 𝐴𝑒 and 𝐿? 
Equation governing system with control input: 

 

𝑤 = 𝐴𝑤 + 𝐵𝑢
𝑢 = 𝐾𝑤𝑒 + 𝑣 (Noisy actuator) 
𝑦 = 𝐶𝑤 + 𝑔 (Noisy sensor)

 

Hence: 
𝑤 = 𝐴𝑤 + 𝐵𝐾𝑤𝑒 + 𝐵𝑣 

 
Governing equation of dynamic observer: We replace unknown term 𝐵𝑣 by a forcing 
term −𝐿 𝑦 − 𝑦𝑒   proportional to the measurement error: 
 

𝑤 𝑒 = 𝐴𝑤𝑒 + 𝐵𝐾𝑤𝑒 − 𝐿 𝑦 − 𝑦𝑒  
𝑦𝑒 = 𝐶𝑤𝑒 

 
Hence: 

𝑤 𝑒 = 𝐴 + 𝐵𝐾 + 𝐿𝐶 𝑤𝑒 − 𝐿𝑦 
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Observer feedback 
Dynamic observer 
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The error 𝑒 = 𝑤 − 𝑤𝑒 in the state reconstruction is governed by: 
 

𝑒 = 𝑤 − 𝑤 𝑒 = 𝐴𝑤 + 𝐵𝐾𝑤𝑒 + 𝐵𝑣 − 𝐴𝑤𝑒 − 𝐵𝐾𝑤𝑒 + 𝐿 𝐶𝑤 + 𝑔 − 𝐶𝑤𝑒

= 𝐴 + 𝐿𝐶 𝑒 + 𝐵 𝐿
𝑣
𝑔  

 
We choose L  so that 𝑨 + 𝑳𝑪 is stable.  

𝑒 𝑡 =  𝑒 𝐴+𝐿𝐶 𝑡−𝜏 𝐵𝑣 𝜏 + 𝐿𝑔 𝜏 𝑑𝜏
𝑡

0

 

 
Hence, error 𝑒 is weak in presence of noises 𝑣 and 𝑔. 



Observer feedback 
Closed-loop system 

v 𝑦 

𝑔 u 
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𝑤 𝑒 = 𝐴 + 𝐵𝐾 + 𝐿𝐶
𝐴𝑒

𝑤𝑒 − 𝐿𝑦 
𝐾 

𝑤 = 𝐴𝑤 + 𝐵𝑢 𝐶 



Observer feedback 
Closed-loop system 

The full coupled system is governed by: 
𝑤 = 𝐴𝑤 + 𝐵𝑢 (System dynamics)

 𝑤 𝑒 = 𝐴 + 𝐵𝐾 + 𝐿𝐶 𝑤𝑒 − 𝐿𝑦 (Estimator dynamics)
𝑢 = 𝐾𝑤𝑒 + 𝑣 (Noisy actuator)

𝑦 = 𝐶𝑤 + 𝑔 (Noisy measurement)

 

 
Inputs: actuator noise 𝑣, measurement noise 𝑔 
Outputs: measurement 𝑦, actuator signal 𝑢  
 
In matrix form: 

𝑤
𝑤𝑒

 
=

𝐴 𝐵𝐾
−𝐿𝐶 𝐴 + 𝐵𝐾 + 𝐿𝐶

𝐴𝑐𝑙

𝑤
𝑤𝑒

+
𝐵 0
0 −𝐿

𝑣
𝑔  

𝑢
𝑦 =

0 𝐾
𝐶 0

𝑤
𝑤𝑒

+
𝑣
𝑔  
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Observer feedback 
Stability 

The dynamics of the coupled system can be analysed by introducing 𝑒 = 𝑤 − 𝑤𝑒: 
 

 
𝑤 = 𝐴𝑤 + 𝐵𝐾𝑤𝑒 + 𝐵𝑣 = 𝐴𝑤 + 𝐵𝐾 𝑤 − 𝑒 + 𝐵𝑣 = 𝐴 + 𝐵𝐾 𝑤 − 𝐵𝐾𝑒 + 𝐵𝑣

𝑒 = 𝐴 + 𝐿𝐶 𝑒 + 𝐵𝑣 + 𝐿𝑔
 

 
Hence: 
 

𝑤
𝑒
 
=

𝐴 + 𝐵𝐾 −𝐵𝐾
0 𝐴 + 𝐿𝐶

𝑤
𝑒

+
𝐵 0
𝐵 𝐿

𝑣
𝑔  

𝑢
𝑦 =

𝐾 −𝐾
𝐶 0

𝑤
𝑒

+
𝑣
𝑔  

 
Eigenvalues of coupled system are those of 𝐴 + 𝐵𝐾 and 𝐴 + 𝐿𝐶, which by design of 𝐾 
and 𝐿, exhibit negative real parts. 
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Observer feedback 
Stability 
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The compensator is given by: 
𝑤 𝑒 = 𝐴 + 𝐵𝐾 + 𝐿𝐶 𝑤𝑒 − 𝐿𝑦 

𝑢 = 𝐾𝑤𝑒 + 𝑣 
 
Note that 𝐴 + 𝐵𝐾 + 𝐿𝐶 is not necessarily stable. Only 𝐴 + 𝐵𝐾 and 𝐴 + 𝐿𝐶 are stable. 



Observer feedback 
Performance 

The performance of the compensator is best when the 2-norm of the closed-loop 
impulse response is weak. For example, from 𝑣  to 𝑦, this impulse response is: 
 

𝑍𝑐𝑙 𝑡 = 𝐶 0 exp
𝐴 𝐵𝐾

−𝐿𝐶 𝐴 + 𝐵𝐾 + 𝐿𝐶
𝑡

𝐵
0
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Laplace transform 

Laplace transform: 

𝑓 𝑠 =  𝑒−𝑠𝑡𝑓 𝑡 𝑑𝑡
∞

0

 

with 𝑠 = 𝜎 + 𝑖𝜔. 𝑓 𝑠  can be evaluated only if ℜ(𝑠) is sufficiently large. 
 
Laplace transform is analogous to Fourier transform, but also holds for unbounded 
functions.   
 
Inverse Laplace –transform: 

𝑓 𝑡 =
1

2𝜋𝑖
lim
Ω→∞

 𝑒𝑠𝑡𝑓 𝑠 𝑑𝑠
𝛾+𝑖Ω

𝛾−𝑖Ω

 

where 𝛾 is chosen to the right of all poles of 𝑓 (𝑠) (causality condition). 

MEC651 denis.sipp@onera.fr Feedback control 20 



Laplace transform 

Some useful properties: 

1/𝑎𝑓 + 𝑏𝑔 = 𝑎𝑓 + 𝑏𝑔  

2/𝑓′ (𝑠) =  𝑒−𝑠𝑡𝑓′(𝑡)𝑑𝑡
+∞

0
= 𝑒−𝑠𝑡𝑓(𝑡) 0

∞ −  −𝑠𝑒−𝑠𝑡𝑓 𝑡 𝑑𝑡
∞

0
= 𝑓 (𝑠) − 𝑓 0  

3/ 𝐻(𝑡)𝑒𝑎𝑡 (𝑠) =  𝑒−𝑠𝑡𝑒𝑎𝑡𝑑𝑡
∞

0
=

1

𝑎−𝑠
𝑒 𝑎−𝑠 𝑡

0

∞
=

1

𝑠−𝑎
 for 𝑠𝑟 > 𝑎𝑟 

𝐻(𝑡) is the Heaviside step function 

4/𝑓 ∗ 𝑔 𝑠 = 𝑓 𝑠 𝑔 𝑠 , 𝑓 ∗ 𝑔 𝑡 =  𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏
𝑡

0
 

5/ If 𝑔 𝑡 = 0 for 0 ≤ 𝑡 < 𝜏 and 𝑔 𝑡 = 𝑓(𝑡 − 𝜏) for 𝑡 ≥ 𝜏: 

𝑔 𝑠 =  𝑒−𝑠𝑡𝑔 𝑡 𝑑𝑡
∞

0

=  𝑒−𝑠𝑡𝑔 𝑡 𝑑𝑡
∞

𝜏

=  𝑒−𝑠𝑡𝑓 𝑡 − 𝜏 𝑑𝑡
∞

𝜏

= 𝑒−𝑠𝜏 𝑒−𝑠𝑡′𝑓 𝑡′ 𝑑𝑡′
∞

0

= 𝑒−𝑠𝜏𝑓 𝑠 ⇒ arg𝑔 (𝑖𝜔) = arg 𝑓 − 𝜏𝜔 
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Frequency space 
Physical system 

Performing a Laplace-transform of the governing equations: 

 
𝑤 = 𝐴𝑤 + 𝐵𝑢

𝑦 = 𝐶𝑤 + 𝑔 (Noisy sensor
 

 
Yields: 

 
𝑠𝑤 − 𝑤 0 = 𝐴𝑤 + 𝐵𝑢 

𝑦 = 𝐶𝑤 + 𝑔 
 

Hence: 
𝑠𝐼 − 𝐴 𝑤 = 𝑤 0 + 𝐵𝑢  

⇒ 𝑦 = 𝐶 𝑠𝐼 − 𝐴 −1𝑤 0 + 𝐶 𝑠𝐼 − 𝐴 −1𝐵𝑢 + 𝑔  
 
With 𝑤 0 = 0: 

𝑦 = 𝑃 𝑠 𝑢 + 𝑔  
where: 

𝑃 𝑠 = 𝐶 𝑠𝐼 − 𝐴 −1𝐵 
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Frequency space 
Physical system 

𝑃(𝑠) 
u y 

𝑔 
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𝑃 𝑠 = 𝐶 𝑠𝐼 − 𝐴 −1𝐵 



Frequency space 
Physical system 

The bode plot of 𝑃 𝑠  presents |𝑃 𝑖𝜔 | and arg 𝑃(𝑖𝜔) as a function of frequency 𝜔. 
 
Introducing the adjugate adj(), the transfer function can be rewritten as: 

𝑃(𝑠) =
𝐶adj 𝑠𝐼 − 𝐴 𝐵

det (𝑠𝐼 − 𝐴)
=
num(s)

den(s)
 

 
The poles of 𝑃(𝑠) are defined as the zeros of den(s) and correspond to the eigenvalues 
of 𝐴: 𝐴𝑤 = 𝑠𝑤 ⇒ det 𝑠𝐼 − 𝐴 = 0. 
 
The zeros of 𝑃(𝑠) are the zeros of num(𝑠). 
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Adjugate 

Theorem: 

𝐴−1 =
1

det 𝐴
adj 𝐴  

where adj 𝐴  is the transpose of the matrix of co-factors. For a matrix of order 𝑛, the 
cofactor 𝐴𝑖,𝑗 is defined as the determinant of the square matrix of order (n-1) 

obtained from 𝐴 by removing the row number 𝑖 and the column number 𝑗 multiplied 
by −1 𝑖+𝑗. 
 
Example: 

𝑎 𝑏
𝑐 𝑑

−1

=
1

𝑎𝑑 − 𝑏𝑐
𝑑 −𝑐
−𝑏 𝑎

∗

=
1

𝑎𝑑 − 𝑏𝑐
𝑑 −𝑏
−𝑐 𝑎
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Frequency space 
Compensator 

Taking the Laplace tranform of the equations governing the compenstator: 
𝑤 𝑒 = 𝐴 + 𝐵𝐾 + 𝐿𝐶 𝑤𝑒 − 𝐿𝑦 

𝑢 = 𝐾𝑤𝑒 + 𝑣 
we obtain: 

𝑠𝑤 𝑒 − 𝑤𝑒 0 = 𝐴 + 𝐵𝐾 + 𝐿𝐶 𝑤 𝑒 − 𝐿𝑦  
𝑢 = 𝐾𝑤 𝑒 + 𝑣  

Hence, eliminating 𝑤 𝑒 and setting 𝑤𝑒 0 = 0: 
𝑢 = 𝐾 𝑠 𝑦 + 𝑣  

where: 

𝐾 𝑠 = −𝐾 𝑠𝐼 − 𝐴 + 𝐵𝐾 + 𝐿𝐶
−1
𝐿 
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Frequency space 
Compensator 

𝐾(𝑠) 

𝑦 𝑢 

𝑣 
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𝐾 𝑠 = −𝐾 𝑠𝐼 − 𝐴 + 𝐵𝐾 + 𝐿𝐶
−1
𝐿 



Frequency space 
Closed-loop system 

P(s) 

K(s) 
v 𝑦 

𝑔 u 
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Frequency space 
Stability 

Closed-loop system is governed by (considering zero initial conditions): 
𝑦 = 𝑃 𝑠 𝑢 + 𝑔  
𝑢 = 𝐾 𝑠 𝑦 + 𝑣  

If we eliminate 𝑢 , we have: 
𝑦 = 𝑃 𝑠 𝐾 𝑠 𝑦 + 𝑃 𝑠 𝑣 + 𝑔  

 
The closed-loop transfer-functions from (𝑔, 𝑣 ) to (𝑦, 𝑢) may be obtained from: 
 

𝑦 =
𝑃 𝑠

1 − 𝑃 𝑠 𝐾 𝑠

𝑇𝑦𝑣
𝑐𝑙 𝑠

𝑣 +
1

1 − 𝑃 𝑠 𝐾 𝑠

𝑇𝑦𝑔
𝑐𝑙 𝑠

𝑔  

𝑢 =
1

1 − 𝑃 𝑠 𝐾 𝑠

𝑇𝑢𝑣
𝑐𝑙 𝑠

𝑣 +
𝐾(𝑠)

1 − 𝑃 𝑠 𝐾 𝑠

𝑇𝑢𝑔
𝑐𝑙 𝑠

𝑔  

The stability of the closed-loop system is assessed by scrutinizing the poles of the 
closed-loop transfer-functions. The compensator 𝐾(𝑠) is designed to stabilize all of 
them! 
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Frequency space 
Stability 

Theorem: 
The poles of all closed-loop transfer-functions correspond to the zeros of 
1 − 𝑃 𝑠 𝐾 𝑠 .  
 
Proof: 

Poles of 𝑇𝑦𝑣
𝑐𝑙 𝑠 =

𝑃 𝑠

1−𝑃 𝑠 𝐾 𝑠
: the poles of 𝑃(𝑠) in the numerator are cancelled by 

the poles of 𝑃(𝑠) in the denominator. Note also, that the poles of 𝐾(𝑠) in the 
denominator become zeros of the Transfer-function. 
 

Poles of 𝑇𝑦𝑔
𝑐𝑙 𝑠 = 𝑇𝑢𝑣

𝑐𝑙 𝑠 =
1

1−𝑃 𝑠 𝐾 𝑠
. The poles of 𝑃 𝑠  and 𝐾(𝑠) become zeros 

of the transfer-function. 
 

Poles of 𝑇𝑢𝑔
𝑐𝑙 𝑠 =

𝐾 𝑠

1−𝑃 𝑠 𝐾 𝑠
: the poles of 𝐾(𝑠) in the numerator are cancelled 

by the poles of 𝐾(𝑠) in the denominator. Note also, that the poles of 𝑃(𝑠) in the 
denominator become zeros of the Transfer-function. 
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Frequency space 
Performance 

If the closed-loop system is stable, then the performance achieved by the compensator 
is given by the closed-loop transfer functions from 𝑣 and 𝑔 to 𝑦: 

𝑇𝑦𝑣
𝑐𝑙 =

𝑃(𝑠)

1 − 𝑃 𝑠 𝐾 𝑠
 

𝑇𝑦𝑔
𝑐𝑙 =

1

1 − 𝑃 𝑠 𝐾 𝑠
 

 
The control-cost and the operating conditions of the compensator are given by the 
closed-loop transfer functions from 𝑣 and 𝑔 to u = 𝐾 𝑠 𝑦 + 𝑣 ∶ 

𝑇𝑢𝑣
𝑐𝑙 (𝑠) =

1

1 − 𝑃 𝑠 𝐾 𝑠
 

 

𝑇𝑢𝑔
𝑐𝑙 (𝑠) =

𝐾(𝑠)

1 − 𝑃 𝑠 𝐾 𝑠
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Robustness 

𝑃(𝑠) 

𝐾(𝑠) 𝑣 𝑦 

𝑔 𝑢 

𝑃 (𝑠) 

Stable by design 
Nominal performances 

Model reduction 

𝑃(𝑠) 

𝐾(𝑠) 𝑣 𝑦 

𝑔 𝑢 
𝑃 (𝑠) 

Stable ? 
Performance ? 

Model reduction 
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Robustness 
The compensator 𝐾(𝑠) has been designed based on an estimate of the transfer 
function: 𝑃(𝑠). Yet, the real system may exhibit a slightly different transfer-function: 
𝑃 (𝑠). 
 
Nominal performance (performance based on 𝑃 𝑠 ) is expected when 𝑃 𝑠 = 𝑃 𝑠 . 
When 𝑃 𝑠 ≠ 𝑃 𝑠 , the actual closed-loop transfer-functions read: 

𝑇 𝑢𝑣
𝑐𝑙 𝑠 =

𝑃 (𝑠)

1 − 𝑃 𝑠 𝐾 𝑠
, 𝑇 𝑢𝑔

𝑐𝑙 𝑠 =
1

1 − 𝑃 𝑠 𝐾 𝑠
 

𝑇 𝑢𝑣
𝑐𝑙 𝑠 =

1

1 − 𝑃 𝑠 𝐾 𝑠
, 𝑇 𝑢𝑔

𝑐𝑙 𝑠 =
𝐾(𝑠)

1 − 𝑃 𝑠 𝐾 𝑠
 

Three things may happen: 
1/ The actual closed-loop system is stable and exhibits the nominal performances 
(expected situation) 
2/ The actual closed-loop system is stable but displays weak performance (bad 
situation) 
3/ The actual closed-loop system is unstable: there exists one zero  of 1 − 𝑃 𝑠 𝐾 𝑠  
which displays a positive real part (catastrophic situation) 
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Robust controllers 

A compensator 𝐾(𝑠) displays good stability robustness properties if it stabilizes the 
closed-loop system for systems 𝑃 𝑠  departing significantly from 𝑃(𝑠).  
 
 
A compensator 𝐾(𝑠) displays good performance robustness properties if it stabilizes the 
closed-loop system and exhibits nominal performance for systems 𝑃 𝑠  departing 
significantly from 𝑃(𝑠).  
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Stability robustness analysis 

The nominal closed-loop system is stable: the solutions of 1 − 𝑃 𝑠 𝐾 𝑠 = 0 all exihibt 
negative real parts. 
 
We test the stability of the closed-loop system for two families of perturbed transfer 
functions: 

𝑃 𝑔 𝑠 = 𝑔𝑃(𝑠) 

𝑃 𝜙 𝑠 = 𝑒𝑖𝜙𝑃 𝑠  

where 𝑔 and 𝜙 are real numbers. 
 
Physical interpretation: 
- 𝑃 𝑔 𝑠  represents an error in the estimate of the growth rate of the instabilities 

between 𝑢 and 𝑦. 
- 𝑃 𝜙 𝑠  represents an error in the estimate of the group velocity of the instabilities 

between 𝑢 and 𝑦. Note that a time delay is something more complex than just a 
constant phase-shift!  
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Stability robustness analysis 
For  𝑔 = 1 and 𝜙 = 0, we have: 𝑃 𝑔 = 𝑃 𝜙 𝑠 = 𝑃 𝑠  and the closed-loop system is 

stable. 
 
We now look for critical parameters 𝑔 and 𝜙 which achieve marginal stability, i.e.: 

there exists 𝑠 = 𝑖𝜔 such that 1 − 𝑃 𝑔 𝑠 𝐾 𝑠 = 0 or 1 − 𝑃 𝜙 𝑠 𝐾 𝑠 = 0.  

The system is therefore at the threshold of instability. 
 
Definitions: 
1/ the gain margin 𝑔+ is defined as the smallest gain  g > 1 , which achieves 
marginal stability. 
2/ the downside gain margin 𝑔− is the smallest gain 0 < g < 1,  which achieves 
marginal stability. 
3/ 𝜙+ is the smallest positive phase shift, which achieves marginal stability.  
 

Note: If 1 − 𝑒𝑖𝜙
+
𝑃 𝑖𝜔 𝐾 𝑖𝜔 = 0, then 1 − 𝑒−𝑖𝜙

+
𝑃 −𝑖𝜔 𝐾 −𝑖𝜔 = 0 since 𝑃 𝑠  

and 𝐾(𝑠) are polynomials of 𝑠 with real constants (the matrices (𝐴, 𝐵, 𝐶) which 
define 𝑃(𝑠) and 𝐾 𝑠  are real). Hence, 𝜙− = −𝜙+. 
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Stability robustness analysis 

A compensator 𝐾(𝑠) displays good stability robustness if  
1/ 𝑔+ is large, say 𝑎+ ≥ 2 
2/ 𝑔− is small, say 𝑎− ≤ 0.5 
3/ 𝜙+ is large, say 𝜙+ ≥ 30° 
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